
Topic: Parallelism in Modern Compilers (abstract) 

Author: Ing. Vojtěch Nikl 

Specialization: Parallel systems, high-performance computing, system architectures 

Ph.D. Supervisor: Prof. Ing. Václav Dvořák, DrSc. 

Course: Modern Theoretical Computer Science 

Academic Year: 2014/2015 

 

Parallel compilers help accelerate the software development process by compiling code quickly and 

efficiently. A large number of computationally intensive problems can be divided into smaller problems 

and each of them can be given to an independent processor with shared or independent resources. 

Various techniques have been developed like vectorization and dependency graph analysis in order to 

extract parallelizable segments in a piece of code written for a serial compiler. 

 

A serial compiler typically consists of these sections: lexical analyzer, which converts input text into a 

stream of tokens (lexeme) and constructs a symbol table. Syntax analyzer checks whether the input 

adheres to rules specified by the grammer. If the input is correct, the intermediate code is generated, 

optimized and converted into native code of the current machine. Each of these parts can internally run 

in parallel and shorten the running time of a compilation, however the main question is what kind of 

pieces a program should be divided into and how these pieces may be rearranged. This involves 

granularity, level, and degree of parallelism and analysis of the dependencies among the candidates of 

parallel execution. 

 

Vectorization exploits parallelism at granularity level of machine instruction. A computer program is 

converted from a scalar implementation, which processes a single pair of operands at a time, to a vector 

implementation, which processes one operation on multiple pairs of operands at once. Vectorization is 

typically applied on loops. 

 

Other sources of parallelism are loop interchange and scalar expansion. Loop interchange switches the 

nesting order of two loops in a perfect nest and moves the parallelism to the innermost loop level. Scalar 

expansion replaces scalars by a temporary array, which allows to distribute a loop around the statement 

blocks. 

 

One of the main barries to parallelism are dependencies. A program is a collection of statements, the 

ordering and scheduling of which depends on dependence constraints. Dependencies are broadly 

classified into two categories: data dependencies, where statements compute data that are used by 

other statements, and control dependencies, which arise from the ordered flow of control in a program. 

The result of this analysis is a dependency graph, which helps divide the program into separate parts and 

determing the processing order of these parts. It is possible to derive an evaluation order or the absence 

of an evaluation order that respects the given dependencies from the dependency graph. 

 

 

http://www.tutorial-reports.com/computer-science/parallel-compiler/vectorisers.php
http://www.tutorial-reports.com/computer-science/parallel-compiler/dependency-graph.php
http://www.tutorial-reports.com/computer-science/parallel-compiler/compiler-essentials.php

