Regression neural networks.
Application to speaker’s age
identification.




Regression problems

y=fxa)
e Linear

e Nonlinear

o f(xa)=Xag(x), g(x)- nonlinear
o f(x,a)is nonlinear in respect to both x and a



Biological inspiration
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The artificial neuron




Multilayer perceptron




Network’s training

e Backpropagation algorithm
e Algorithms utilizing first-order derivative

iInformation of error surface

O Stochastic gradient descent

e Algorithms utilizing higher-order derivative
iInformation of error surface

O Broyden—Fletcher—Goldfarb—Shanno algorithm




Overfitting prevention

e Early stopping
e Dropout
e [,-regularization




Drawbacks of MLP

e |Large amount of data is needed

e For areasonable performance great deal of
training is needed

e The great amount of time is consumed for

training




Radial basis function networks

b(a)=27,e(/[a-c{]),
o(/la-cf)=exp(-B/la-c{])




General regression NN

exp(-D?/25%)

Output j N2
erator b(a): ZblexP( b ]/202)

Sexp( -DZ]. /206°)
DZ].:( a-a’)’(a-a’)



Examples of regression problems

solved by NN

e Foreign exchange forecasting and trading

e Forecasting plant disease by leaf wetness
prediction

e Flow forecasting
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Automatic speaker’s age

identification

S =(X,,Y, ) (X,, Y ] X, and Yp - the p-th
speech utterance and its age label

The goal is to create a system, which will

predict, for an unseen utterance X __, its label
Y . accurately.
est
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Training Phase

X p i-vector extr. WCCN /
Y, -

X,. i-vector extr. WCCN

Y; >
X1 i-vector extr. WCCN

y, ’\

SVR

State-of-the-art baseline approach

Testing Phase

WCCN

i-vector extr.

J

y (estimated age)




Neural network system

description

e |-vectors
e \WCCN
e NN-backend

o MLP with single hidden layer (1024 neurons)
o Minimum squared error objective function

o SGD training algorithm

o 1,-regularization
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MAE (females) MAE (males)

Baseline method 5.75 6.65
NN-based method 5.49 6.35

Mean absolute error (MAE) in years for female and male speakers of NIST SRE 2008,
NIST SRE 2010 datasets
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Thank you!
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