Expressing Type-0 Languages in Terms of Context-Free Ambiguity

Stanislav Láznička

BUT Faculty of Information Technology, UIFS

6. ledna 2016

イロト イロト イヨト イヨト 三日

1/17

- Basic Terms
- Ambiguity
- Context-Free and Type-0 Languages

The Chomsky Hierarchy of Formal Languages

< □ > < @ > < ≧ > < ≧ > ≧ ● ○ ○ ○ 3/17

The Chomsky Hierarchy of Formal Languages

Context-Free Languages

Definition

A context-free grammar (CFG) G is defined by a tuple

- $G = (N, \Sigma, P, S)$ where:
 - N is a finite set of nonterminals.
 - 2 Σ is an alphabet of terminals.
 - **③** *P* is a set of productions of form $A → (A ∪ a)^*$ where A ∈ N, a ∈ Σ.
 - $S \in N$ is the start nonterminal.

The Chomsky Hierarchy of Formal Languages

Recursively Enumerable Languages

Definition

An unrestricted grammar G is defined by a tuple $G = (N, \Sigma, P, S)$ where:

(日) (圖) (E) (E) (E)

4/17

- N is a finite set of nonterminals.
- 2 Σ is an alphabet of terminals.
- P is a set of productions of form α → β where α ∈ (N ∪ Σ)⁺, β ∈ (N ∪ Σ)^{*}.
- $S \in N$ is the start nonterminal.

Definition

Let *G* be a CFG and $x \in L(G)$. Therefore there is a derivation sequence $S = \Phi_0 \Rightarrow \Phi_1 \Rightarrow \Phi_1 \Rightarrow ... \Rightarrow \Phi_n = x$ in *G*. Such a sequence gives a rise to a derivation tree where each node is labeled with a symbol from $E(E = \Sigma \cup N)$ with *S* as the root node. *G* is **ambiguous** if there exists a string *x* in L(G) with multiple derivation trees.

Decidability

The problem of grammar ambiguousness is undecidable. However, there exists an algorithm that is able to decide whether a grammar is unambiguous for some grammars.

Vertical unambiguity

Given a CFG *G*, two sentential forms $\alpha, \alpha' \in (\Sigma \cup N)^*$ are vertically unambiguous, written $\Vdash_G \alpha; \alpha'$, iff: $L_G(\alpha) \cap L_G(\alpha') = \emptyset$ A grammar is vertically unambiguous, written $\Vdash G$, if and only if for each two different sequential forms α, α' reachable in *G* $\Vdash_G \alpha; \alpha'$

Horizontal unambiguity

Given a CFG *G*, two sentential forms $\alpha, \alpha' \in (\Sigma \cup N)^*$ are horizontally unambiguous, written $\models_G \alpha; \alpha'$, iff: $L_G(\alpha) \boxtimes L_G(\alpha') = \emptyset$ where \boxtimes is the language overlap operator defined by $X \boxtimes Y = \{xay | x, y \in \Sigma^* \land a \in \Sigma^+ \land x, xa \in X \land y, ay \in Y\}$ A grammar is horizontally unambiguous, written $\models G$, if and only if for every sentential form $\alpha \alpha'$ reachable in $G \models_G \alpha; \alpha'$

If both
$$\Vdash G$$
 and $\models G$ we write $\models G$.
 $\models G \leftrightarrow G$ is unambiguous.

< □ > < @ > < 볼 > < 볼 > 볼 ∽ Q @ 7/17

Examples

Ambiguity examples

• Vertical ambiguous grammar $S \rightarrow Ay$ | xB $A \rightarrow xa$ $B \rightarrow ay$ There are two ways to parse the string xay.

e Horizontal ambiguous grammar

$$S \rightarrow xAB$$

$$A \rightarrow a$$

$$| \quad \epsilon$$

$$B \rightarrow ay$$

$$| \quad y$$
Again, two possible derivation trees for *xay*.

Can CFG ambiguity be used to describe Type-0 languages?

イロト イポト イヨト イヨト 三日

9/17

Possibly.

Can it be used to get out of CFL class?

Yes.

Let G_1 and G_2 be CFGs, $G_1 = (V_1, \Sigma, P_1, S_1), G_2 = (V_2, \Sigma, P_2, S_2)$ where

 $\begin{array}{lll} P_1 = \{S_1 \rightarrow A_1C_1 & A_1 \rightarrow aA_1b & A_1 \rightarrow ab & C_1 \rightarrow cC_1 & C_1 \rightarrow c\} \\ P_2 = \{S_2 \rightarrow A_2C_2 & A_2 \rightarrow aA_2 & A_2 \rightarrow a & C_2 \rightarrow bC_2c & C_2 \rightarrow bc\} \\ \Sigma = \{a, b, c\} \end{array}$

 $L(G_1) \cap L(G_2) = \{a^n b^n c^n \mid n \in N\}$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $S_1 \rightarrow A_1 C_1$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_1
ightarrow a A_1 b$

aaabbbccc

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $A_1
ightarrow a A_1 b$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_1
ightarrow ab$

aaabbbccc

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $C_1 \rightarrow cC_1$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $C_1 \rightarrow cC_1$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $C_1 \rightarrow cC_1$

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

11/17

 $C_1 \rightarrow cC_1$

aaabbbccccc

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

$C_1 \rightarrow cC_1$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $S_2 \rightarrow A_2 C_2$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $C_2 \rightarrow bC_2c$

aaabbbccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $C_2 \rightarrow bC_2c$

aaabbbccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $C_2 \rightarrow bc$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_2
ightarrow aA_2$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_2
ightarrow aA_2$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_2
ightarrow aA_2$

aaabbbcccccc...

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_2
ightarrow aA_2$

aaaabbbcccccc...

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ りへで 11/17

What if we analyzed $L(G_1) \cap L(G_2)$ separately?

 $A_2
ightarrow aA_2$

...aaaaabbbcccccc...

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ りへで 11/17

Theorem

For each recursively enumerable set $E \subseteq \Sigma^*$, there exist deterministic context-free languages L_1 and L_2 , and a homomorphism h such that

$$E=h(L_1\cap L_2)$$

Proof of the theorem by Ginsburg, Greibach and Harrison.

Definition

A context-free grammar G is unambiguous if for every sentence $w \in L(G)$, there is exactly one derivation tree t with frontier(t) = w, where frontier(x) is the sequence of the edge nodes of tree x.

All deterministic CFGs are unambiguous.

Definition

Let forest(G) be a set of trees with edge nodes labeled by terminals from G. A tree $t \in forest(G)$ is a cut-frontier ambiguous tree (CFAT) if there is a $d \in forest(G)$ such that $d \neq t$ and frontier(d) = frontier(t). Let CFAT(G) denote the set of all CFATs for G.

By the theorem from the previous slide, the pre-homomorphism language is a language of ambiguous tree frontiers.

Theorem

Let L be RE language. Then, there is a CFG K such that $L = \{frontier(t) | t \in CFAT(K)\}.$

Construction

Let G and H be two deterministic CFGs over Σ , $G = (N_G, \Sigma, P_G, S_G)$ and $H = (N_H, \Sigma, P_H, S_H)$; h is a homomorphism $h: \Sigma^* \to \Sigma_I^*$. Σ_I^* is an alphabet of terminals for L. We construct a context-free grammar $K = (N, \Sigma_{I}^{*}, P, Z)$ such that $L = \{frontier(t) | t \in CFAT(K)\} = h(L(G) \cap L(H)).$ Z is a new nonterminal. We set $N = \{Z, Z'\} \cup N_G \cup N_H \cup \Sigma$, all elements of this union are mutually disjoint (without loss of generality). We also set $P = \{Z \to Z'S_G, Z \to S_HZ', Z' \to \epsilon\} \cup P_G \cup P_H \cup \{a \to h(a) | a \in I\}$

Σ}.

Note

Without loss of generality, we assume G and H use same set of terminals and different set of nonterminals.

- Based on idea of Alexander Meduna and Zbyněk Křivka
- GINSBURG, Seymour, Sheila A. GREIBACH, Michael A. HARRISON. One-Way Stack Automata. *Journal of the Association for Computing Machinery*. 1967, Vol. 14, No. 2, pg. 389-418. ISSN 0004-5411.
- BRABRAND, Claus, Robert GIEGERICH, Anders MØLLER. Analyzing Ambiguity of Context-Free Grammars. *Implementation and Application of Automata*[online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pg. 214 [cit. 2015-12-09]. DOI: 10.1007978-3-540-76336-9_21. ISBN 978-3-540-76335-2. Available from:

http:link.springer.com10.1007978-3-540-76336-9_21

Many thanks for your attention.