Partial Determinization of Finite Automata

Denis Matoušek LTA, 2015

Outline

- Motivation
- NFA vs. DFA in FPGA
- Hybrid FA
- System of Parallel Automatons Parts

Motivation

- Network intrusion detection systems (NIDS) use rules described with regular expressions (RE)
 - Significant state transition redundancy
- Implementation of equivalent computational machine — finite automaton (FA) — in hardware is used to achieve high performance / throughput on high-speed network links through massive parallelism
- FPGA technology is used for ability to change the configuration (implement different FAs)

Implementation in FPGA: DFA vs. NFA I

Tradeoff between DFA and NFA:

- NFA using FF registers (states) and LUTs (transitions)
- DFA using BlockRAMs (storage of a hash table) and LUTs (computation of a hash function)

• FA parameters of interest:

- Number of states
- Maximum number of concurrently active states

Implementation in FPGA: DFA vs. NFA II

Tradeoff between DFA and NFA:

- NFA using FF registers (states) and LUTs (transitions)
- DFA using BlockRAMs (storage of a hash table) and LUTs (computation of a hash function)

Implementation in FPGA: DFA vs. NFA III

Tradeoff between DFA and NFA:

NFA using FF registers (states) and LUTs (transitions)

• DFA using BlockRAMs (storage of a hash table) and LUTs (computation of a hash function)

• FA parameters of interest:

- Number of states
- Maximum number of concurrently active states

Implementation in FPGA: DFA vs. NFA IV

Tradeoff between DFA and NFA:

- NFA using FF registers (states) and LUTs (transitions)
- DFA using BlockRAMs (storage of a hash table) and LUTs (computation of a hash function)

Implementation in FPGA: DFA vs. NFA V

Tradeoff between DFA and NFA:

- NFA using FF registers (states) and LUTs (transitions)
- DFA using BlockRAMs (storage of a hash table) and LUTs (computation of a hash function)
- FA parameters of interest:
 - Number of states
 - Maximum number of concurrently active states

Typical Form of Rules Used in NIDS

• Example:

• a part of IMAP ruleset of Snort (https://www.snort.org/) and corresponding NFA:

\sCREATE\s*\{ \sLIST\s[^\n]*?\s\{ \sPARTIAL.*BODY\[[^\]]{1024}

Problematic NFA Constructions I

- Parts of REs that cause state explosion during NFA determinization
- Mainly "dot-star" constructions
- Example:
 - 1. ab.*cd
 - 2. efgh

• Corresponding NFA:

• Transitions to 0 omitted

Problematic NFA Constructions II

- Parts of REs that cause state explosion during NFA determinization
- Mainly "dot-star" constructions
- Example:
 - 1. ab.*cd
 - 2. efgh

• Corresponding NFA:

• Transitions to 0 omitted

Problematic NFA Constructions III

- Parts of REs that cause state explosion during NFA determinization
- Mainly "dot-star" constructions
- Example:
 - 1. ab.*cd
 - 2. efgh
 - Corresponding NFA (from [1]):

Figure 2: DFA representing (1) ab.*cd and (2) efgh. In the accepting states, the number following the "/" represents the accepted regular expression.

Approach #1: Hybrid FA

- Introduced by Michaela Becchi [1]
- Partial transformation of an NFA to a DFA
 - Interruption of subset construction algorithm at problematic states

From [1]

Approach #2: System of Parallel Automaton Parts

- Introduced by Jan Kořenek [2]
- Formalism to describe division of a single NFA into several parts
- Based on analysis of concurrency of an NFA
- Each part is either NFA, or DFA
 - DFA parts deal with states of the original NFA that cannot be active concurrently
 - NFA parts deal with the other states

Analysis of NFA Concurrency: Practical cases

• Number of concurrently active states in L7 decoder (from [3])

System of Parallel Automaton Parts: States without Collision

Let A be an NFA $A = (Q, \Sigma, \delta, q_0, F)$. Two states $q_i, q_j \in Q, q_i \neq g_j$ are called *states without collisoin* or *non-collision states*, if for any input string $w \in \Sigma^*$ does not exist a sequence of configurations

 $(q_0, w) \vdash^* (q_i, \varepsilon)$

 $(q_0, w) \vdash^* (q_j, \varepsilon)$

Example:

System of Parallel Automaton Parts: Set of States without Collision I

- 1. Transform NFA $A = (Q, \Sigma, \delta, q_0, F)$ to DFA $A^D = (Q^D, \Sigma, \delta^D, q_0^D, F^D)$, where $Q_D \subseteq 2^Q$.
- 2. For all states $q_i \in Q$ create the set $S_{q_i}^{ca}$ which contains collision states with q_i : $S_{q_i}^{ca} = \{q_j \in Q | q_i \neq q_j \land \exists q^D \in Q^D : q_i, q_j \in q^D\}$
- 3. Let $Q^{nca} = Q$.

Continues on the next slide...

System of Parallel Automaton Parts: Set of States without Collision II

- 4. Keep removing collision states from the set Q^{nca} until the set contains only states without collisions:
 - (a) select a state $q_{max} \in Q^{nca}$ with the largest set of states $S_{q_{max}}^{ca}$:

$$\forall q_i \in Q^{nca} : |S^{ca}_{q_{max}}| \ge |S^{ca}_{q_i}|$$

- (b) remove q_{max} from Q^{nca} ,
- (c) for all states $q_i \in Q^{nca}$ remove q_{max} from the set $S_{q_i}^{ca}$ and
- (d) if $\exists q_i \in Q^{nca} : S_{q_i}^{ca} \neq \emptyset$ then go to (a).
- 5. Q^{nca} is the set of states without collision.

System of Parallel Automaton Parts: Set of States without Collision III

- The complexity is exponential
 - Transformation of NFA to DFA in the step 1.
- The state to be removed in the step 4. (a) is selected based on the number of collision states (heuristic)
 - States with the most collisions are removed first.
- Multiple sets of states without collision can be found by recursive application of the algorithm

•
$$Q^N = Q \backslash Q^{nca}$$

System of Parallel Automaton Parts: Set of States without Collision IV

- Improved algorithm to find all pairs of simultaneously active states [4]
- Does not require transformation of original NFA to corresponding DFA
- Better complexity

System of Parallel Automaton Parts: Set of States without Collision V

- 1. normalize $(q_1, q_2) = (q_1 < q_2) ? (q_1, q_2) : (q_2, q_1);$
- 2. $concurrent = \{(s, s)\}; workplace = \{(s, s)\};$
- 3. while $\exists (q_1, q_2) \in workplace$ do
- 4. workplace = workplace \{(q_1, q_2)\};

5. foreach
$$q_3 \in \delta(q_1, a)$$
 do

- 6. foreach $q_4 \in \delta(q_2, b)$ do
- 7. **if** $a \cap_k b \neq (\emptyset, \emptyset, \dots, \emptyset)$ **then**
- 8. **if** $((q_5, q_6) = \text{normalize}(q_3, q_4)) \notin \text{concurrent then}$
- 9. $concurrent = concurrent \cup \{(q_5, q_6)\};$
- 10. $workplace = workplace \cup \{(q_5, q_6)\};$
- 11. return $concurrent \setminus \{(p, p) | p \in Q\};$

System of Parallel Automaton Parts: Part of the Automaton Determined by a Set of States I

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA and $Q^s \subseteq Q$ is a set of states. Then the set of states Q^s determines the part of the automaton A/Q^s , which is defined by tuple $A/Q^s = (Q^s, Q_{in}, Q_{out}, \Sigma, \delta^s, q_0^s, F^s)$, where

- $Q^s \subseteq Q$ is the set of internal states.
- $Q_{in} = \{q_s | q_s \in Q^s \land q_s \in \delta(q, a) \land q \in (Q \setminus Q^s)\}$ is the set of input states.
- $Q_{out} = \{q | q \in (Q \setminus Q^s) \land q \in \delta(q_s, a) \land q_s \in Q^s\}$ is the set of output states.
- Σ is the input alphabet.

Continues on the next slide...

System of Parallel Automaton Parts: Part of the Automaton Determined by a Set of States II

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA and $Q^s \subseteq Q$ is a set of states. Then the set of states Q^s determines the part of the automaton A/Q^s , which is defined by tuple $A/Q^s = (Q^s, Q_{in}, Q_{out}, \Sigma, \delta^s, q_0^s, F^s)$, where

- $\delta^s: Q^S \times 2^Q$ is the state-transition function restricted to the set of states Q^s . For a state $q_{src} \in Q^s$ and $q_{dst} \in Q$ and an input symbol $a \in \Sigma$ of transition $q_{dst} \in \delta^s(q_{src}, a)$ is defined only if the transition $q_{dst} \in \delta(q_{src}, a)$ is defined.
- q_0^s is the initial state of the automaton part which is defined as:

$$q_0^s = \begin{cases} q_0 & \text{for} \quad q_0 \in Q^s \\ idle & \text{for} \quad q_0 \notin Q^s \end{cases}$$

• $F^s \subseteq F$ is the set of final states restricted to Q^s : $F^s = F \cap Q^s$

System of Parallel Automaton Parts

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an automaton and sets of states $Q^1, Q^2, \ldots, Q^k \subseteq Q$ determine k different parts of the automaton $A/_{Q^1}, A/_{Q^2}, \ldots, A/_{Q^k}$. System of Parallel Automaton Parts $A/_{[Q^1,Q^2,\ldots,Q^k]}$ is defined by set of states Q^1, Q^2, \ldots, Q^k , if

$$Q = \bigcup_{i=1}^{k} Q^{i}$$

System of Parallel Automaton Parts: Communication Models

- Without central part (a)
 - Significant communication overhead

• With central part (b)

• Simpler communication through central part

$$\frac{k(k-1)}{2}$$

k-1

System of Parallel Automaton Parts: Centralised System of Automaton Parts

Let $A/_{[Q^1,Q^2,...,Q^k]}$ is a System of Automaton Parts for NFA $A = (Q, \Sigma, \delta, q_0, F)$. The System is called *centralised* if for any set of states $Q^j, j \in <1; k >$ it holds:

- 1. $\forall i \in <1; k>, i\neq j: (Q^i\cap Q^j)=\varnothing$
- 2. $\forall i \in <1; k >, i \neq j : (Q_{in}^i \subseteq Q_{out}^j)$
- 3. $\forall i \in <1; k >, i \neq j : (Q_{out}^i \subseteq Q_{in}^j)$

Then A/Q^{j} is called a *central part* or a *central item* of the centralised system $A/[Q^{1},Q^{2},...,Q^{k}]$.

System of Parallel Automaton Parts: Tranformation to Centralised System

- 1. Let $\forall i \in \langle 1; k \rangle, i \neq r : Q^{c_i} = Q_i^{nca} \backslash Q_r^{nca}$
- 2. Let $Q^{c_N} = Q^N$
- 3. For all $i \in \langle 1; k \rangle$, $i \neq r$ do:

(a)
$$Q^{c_N} = Q^{c_N} \cup Q^{c_i}_{out}$$

(b) $\forall j \in \langle 1; k \rangle, j \neq r : Q^{c_j} \setminus Q^{c_i}_{out}$

- 4. The system $A/_{[Q^{c_N},Q^{c_1},Q^{c_2},...,Q^{c_k}]}$ is centralised and $A/_{Q^{c_N}}$ is the central part.
- The algorithm moves all output states of all parts to the central part.

System of Parallel Automaton Parts: Issues I

- The algorithm to find a set of states without collision is applied recursively
- The issue is that the set of states obtained with the first application of the algorithm:
 - contains much more states than the sets of states obtained by another applications of the algorithm,
 - has many isolated groups of states, which causes significant communication overhead.

System of Parallel Automaton Parts: Issues II

References

[1] Michela Becchi and Patrick Crowley. A Hybrid Finite Automaton for Practical Deep Packet Inspection. In *Proceedings of the International Conference on emerging Networking Experiments and Technologies (CoNEXT)*, New York, NY, December 2007. ACM.

[2] Jan Kořenek. Rychlé vyhledávání regulárních výrazů s využitím technologie FPGA, disertační práce, Brno, FIT VUT v Brně, 2010

[3] Jan Kořenek. Fast Regular Expression Matching Using FPGA. Information Sciences and Technologies Bulletin of the ACM Slovakia. Bratislava: Vydavateľstvo STU, 2010, vol. 2, no. 2, pp. 103-111. ISSN 1338-1237.

[4] KOŠAŘ Vlastimil and KOŘENEK Jan. Multi-Stride NFA-Split Architecture for Regular Expression Matching Using FPGA. In: *Proceedings of the 9th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science.* Brno: NOVPRESS s.r.o., 2014, s. 77-88. ISBN 978-80-214-5022-6.