
Brno, 11.10.2015

CAP Theorem Impact in Reliable Data

Processing

Pavel Krobot, Faculty of Information Technology - Brno University of Technology -

xkrobo01@stud.fit.vutbr.cz

Extended abstract

This paper deals with the subject of reliable

distributed processing of IP flow data. Pre-

sented thoughts are based on Brewers CAP

theorem and its consequences. This theorem is

still one of the most important findings for

distributed databases. The need for processing

data in a distributed manner emerged from a

constant growth of datasets, which have to be

analyzed. Existing ACID (Atomicity Consis-

tency Isolation Durability) databases have

almost reached their limits and they are not

feasible for reliable processing of huge datasets

in real time, which is what we want in

processing of IP flow data. Studying new prin-

ciples is inevitable. One of such is BASE

paradigm (Basically Available Soft-state

Eventually consistent). As a result of BASE

consequence and implication analysis, Brewer

came up with CAP theorem. This theorem

deals with three main properties of distributed

data processing systems. Consistency (C) is

equivalent to having a single up-to-date copy

of data. High availability (A) provides access

to the data at any time. Partition tolerance (P)

states that the distributed system can operate as

usual when a network partition occurs. CAP

theorem itself claims that any networked sys-

tem with shared data can have at most two of

these three desirable properties. Despite the

fact that this theorem was formally proven by

Gilbert and Lynch, some of its ideas could be

misleading.

In its formulation CAP theorem presents

all three properties as equal. This is not accu-

rate in practical use. Firstly, consistency and

availability can be measured in a spectrum,

while partitions tolerance is rather binary.

Definition of the partition tolerance can vary,

but at the end we can only say if the distributed

system supports the partition tolerance or not.

Secondly, even if partitions arise rarely they

can never be forfeited absolutely. As a result,

in the real system we have to decide between

consistency and availability. On the other hand

as, this decision does not have to be binary and

we could choose a tradeoff between both,

consistency and availability, according to the

system needs.

Analyzing this tradeoff in search for

maximal consistency and availability in distri-

buted IP flow data processing system is the

main focus of this paper. One possibility is to

consider partitions as rare and have system

with both, consistency and availability along

with partition detection. When the partition is

detected, system switches into another mode of

operation with limited functionality. Some

operations, like data updates have to be ex-

ecuted carefully or postponed until system is

recovered from partition. Second choice is to

have system prepared for occurrence of parti-

tions all the time. It is necessary to have some

tradeoff between consistency and availability

in this scenario. CAP theorem as such ignores

latency, which is in the real system very im-

portant aspect. For example, it has great impact

on partition detection in the first proposed

solution. Both examined solutions have

slightly different characteristics and require

fulfillment of different conditions, which is

identified and evaluated in this study.

Brno,11.10.2015

References

[1] SALOMÉ, Simon. Report to Brewer’s

CAP Theorem [online]. 2012 [cit. 2015-

10-11]. Dostupné z: https://fenix.tecnico.

ulisboa.pt/downloadFile/8450434054427

08/10.e-CAP-3.pdf

[2] BREWER, Eric. CAP twelve years later:

How the "rules" have changed. 45(2):

23-29. DOI: 10.1109/MC.2012.37. ISSN

0018-9162. Dostupné také z:

http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6133253

[3] HALE, Coda. You Can’t Sacrifice

Partition Tolerance. http://codahale.com

[online]. 2010 [cit. 2015-10-11].

Dostupné z: http://codahale.com/you-

cant-sacrifice-partition-tolerance/

