
VYPe –Modern Compiler Design

Jan Kalina, xkalin03@stud.fit.vutbr.cz
Tomáš Trkal, xtrkal00@stud.fit.vutbr.cz

November 6, 2015

One of the modern compilation methods, which is applied at compiler writing time and which is targeted on
obtaining better rewriting templates, is technique called Supercompilation. The main idea of supercompilation is
creation of optimal code sequences for some simple but useful functions by trying combinations of instructions
from a suitable set of machine instructions. At first, all combinations of two instructions are tried. If no
combination performs the required function all combinations of three instructions are tried, and so on, until
we find an appropriate combination that works. Supercompilation is still an experimental technique at the
moment, but it is an example of original thinking and it yields surprising results.

Modern code generators often use tens and sometimes hundreds of optimization techniques and tricks, each
of which can in principle interfere with each of the other optimizations. However, if we find out that a program
fails when compiled with optimizations and runs correctly when compiled without them, it does not necessarily
mean that the error is in the optimizer, because the program may be incorrect in a way that depends on details
of the compilation. It is important to have a flag allowing the optimization to be performed or skipped, because
this allows selective testing of the optimizations and any of their combinations.

Preprocessing the intermediate code involves preprocessing of expressions, preprocessing of if-statements and
goto statements and preprocessing of routines. Preprocessing of expression techniques include optimizations
constant folding and arithmetic simplification, which are performed during construction of an AST. Transfor-
mations that replace an operations by a simpler ones are called strength reductions and operations that can be
removed completely are called null sequences. Dead code elimination belongs to methods of preprocessing of
if-statements and goto statements. Preprocessing of routines include processes in-lining and cloning.

Unfortunately, even moderately sophisticated code generation techniques can produce pointless machine
instruction sequences. These inefficient sequences of symbolic machine instructions may be replaced by more
efficient sequences using the peephole optimization. Peephole optimizations consist in creating replacement
patterns and locating and replacing suitable sequences of instructions by applying these replacement patterns.

The result of the compilation is usually a generated executable file. However, writing code for straightforward
conversion of the machine code into the object file could be an error-prone work, therefore sometimes generating
of symbolic assembly code is preferred. The assembly code is converted into object files by assembler. Assembler
converts symbolic instructions to a binary machine code and symbolic data to binary data and this pack into the
object file. Some non-imperative languages (functional, logical, distributed) compilers even use a higher-level
language like C/C++ as the output code, which ensures platform independence.

References

[1] Dick Grune. Kees van Reeuwijk. Koen Langendoen. Modern Compiler Design. Springer-Verlag, New York,
second edition, 2012.

1


