
LL(∗) Parsing strategy
The Foundation of the ANTLR Parser Generator

Jan Tuma xtumaj02
Karol Troska xtrosk00

November 7, 2015

Non-deterministic top-down parsers are not efficient. They must find first deriva-
tion to proceed. Deterministic top-down parsers are faster, because ambiguity is no
longer a problem. LL(1) parsers are quite efficient, but there are occasionally situa-
tions when LL(1) parsers are not useful and it is better to look ahead k symbols with
k > 1. Here it comes to construction of LL(k) parsers that brings up new problems
and can cause to unexpected parse-time behavior which introduces many potecional
errors.

The goal of this presentation is to describe LL(∗) parsing strategy and associated
grammar analysis algorithm that constructs LL(∗) parsing decisions from ANTLR
grammars.

In first part, we will focus LL(∗) parsing by explaining how it works for two
ANTLR grammar fragments constructed to illustrate the algorithm. We will formally
define predicate grammar, to desrice LL(∗) parsing precisely. Next part will focus on
LL(∗) parsers and LL(∗) grammar analysis. We will takl about existing parsers and
we will try explain how LL(∗) parsing works. Finally, we will takl about efficiency of
LL(∗) parsing.

1


