Jumping Finite Automata: New Results

Part One: Solved Questions

Radim Kocman and Zbyněk Křivka

Faculty of Information Technology
Brno University of Technology
Božetěchova 2, Brno Czech Republic
\{ikocman,krivka\}@fit.vutbr.cz

- | BRNO FACULTY |
| :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |

LTA 2016 (December 5, 2016)

- Introduction
- Definitions and Examples
- Results

Power of JFAs and GJFAs
Closure Properties
Decidability and Complexity

- Concluding Remarks

Alexander Meduna, Petr Zemek: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7): 1555-1578 (2012)

Vojtěch Vorel: Two Results on Discontinuous Input Processing. DCFS 2016: 205-216

Vojtěch Vorel: On Basic Properties of Jumping Finite Automata.
Int. J. Found. Comput. Sci. (conditionally accepted; 2015)
Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, Vojtěch Vorel: Characterization and Complexity Results on Jumping Finite Automata. Theoret. Comput. Sci. (in press, 2016)

Accepted!

Accepted language: $\{a\}^{*}\{c\}\{b\}^{*}$

Accepted language: $\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}$

Definition (Meduna, Zemek (2012))

A general jumping finite automaton (GJFA) is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$
p y \rightarrow q \quad\left(p, q \in Q, y \in \Sigma^{*}\right)
$$

- s is the start state;
- F is a set of final states.

Definition (Meduna, Zemek (2012))

A general jumping finite automaton (GJFA) is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$
p y \rightarrow q \quad\left(p, q \in Q, y \in \Sigma^{*}\right)
$$

- s is the start state;
- F is a set of final states.

Definition

If all rules $p y \rightarrow q \in R$ satisfy $|y| \leq 1$, then M is a jumping finite automaton (JFA).

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x p y z \curvearrowright x^{\prime} \underline{q} z^{\prime}
$$

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x p y z \curvearrowright x^{\prime} q z^{\prime}
$$

intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of \curvearrowright

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x p y z \curvearrowright x^{\prime} q z^{\prime}
$$

$\curvearrowright^{*} \quad$ intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of \curvearrowright

Definition

The language accepted by M, denoted by $L(M)$, is defined as

$$
L(M)=\left\{u v: u, v \in \Sigma^{*}, u \underline{s} v \curvearrowright^{*} \underline{f}, f \in F\right\}
$$

Note: Hereafter, a family of languages defined by model X is denoted by $\mathscr{L}(X)$.

Example

The JFA

$$
M=(\{s, r, \dagger\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{rlll}
\text { bacbcsa } & \curvearrowright & b a c r b c & {[s a \rightarrow r]} \\
& \curvearrowright & b a c+c & {[r b \rightarrow t]} \\
& \curvearrowright & b s a c & {[\dagger c \rightarrow s]} \\
& \curvearrowright & r b c & {[s a \rightarrow r]} \\
& \curvearrowright & t c & {[r b \rightarrow \dagger]} \\
& \curvearrowright & \underline{s} & {[\dagger c \rightarrow s]}
\end{array}
$$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:

$$
\begin{array}{ccll}
\text { bbsbaaa } & \curvearrowright & b b f a & {[s b a \rightarrow f]} \\
& \curvearrowright & f b b & {[f a \rightarrow f]} \\
& \curvearrowright & \underline{f b} & {[f b \rightarrow f]} \\
& \curvearrowright & {[f b \rightarrow f]}
\end{array}
$$

Definition

The shuffle operation, denoted by $\boldsymbol{\mathrm { w }}$, is defined by

$$
\begin{aligned}
& L_{1} ш L_{2}=\bigcup_{u \in L_{1}, v \in L_{2}}(u ш v),
\end{aligned}
$$

for $u, v \in \Sigma^{*}$ and $L_{1}, L_{2} \subseteq \Sigma^{*}$.

Definition

The shuffle operation, denoted by $\boldsymbol{\mathrm { w }}$, is defined by

$$
\begin{aligned}
& L_{1} ш L_{2}=\bigcup_{u \in L_{1}, v \in L_{2}}(u ш v),
\end{aligned}
$$

for $u, v \in \Sigma^{*}$ and $L_{1}, L_{2} \subseteq \Sigma^{*}$.

Example

$a b$ ш $c d=\{a b c d, a c d b, c d a b, a c b d, c a d b, c a b d\}$

Definition

For $L \subseteq \Sigma^{*}$, the iterated shuffle of L is

$$
L^{ш, *}=\bigcup_{n=0}^{\infty} L^{ш, n},
$$

where

$$
L^{\omega, 0}=\{\varepsilon\}
$$

and

$$
L^{ш, i}=L^{ш, i-1} ш L,
$$

where $i \geq 1$.

Definition

All permutations of w, denoted by perm (w), is defined as

$$
\begin{gathered}
\operatorname{perm}(\varepsilon)=\{\varepsilon\} \\
\operatorname{perm}(a u)=\{a\} ш \operatorname{perm}(u)
\end{gathered}
$$

where $a \in \Sigma$ and $u \in \Sigma^{*}$.
For $L \subseteq \Sigma^{*}, \operatorname{perm}(L)=\bigcup_{w \in L} \operatorname{perm}(w)$.

Definition

All permutations of w, denoted by perm (w), is defined as

$$
\begin{gathered}
\operatorname{perm}(\varepsilon)=\{\varepsilon\} \\
\operatorname{perm}(a u)=\{a\} ш \operatorname{perm}(u)
\end{gathered}
$$

where $a \in \Sigma$ and $u \in \Sigma^{*}$.
For $L \subseteq \Sigma^{*}, \operatorname{perm}(L)=\bigcup_{w \in L} \operatorname{perm}(w)$.

Example

$$
\operatorname{perm}(a b c)=\{a b c, a c b, c b a, b a c, b c a, c a b\}
$$

Definition

All permutations of w, denoted by perm (w), is defined as

$$
\begin{gathered}
\operatorname{perm}(\varepsilon)=\{\varepsilon\} \\
\operatorname{perm}(a u)=\{a\} ш \operatorname{perm}(u)
\end{gathered}
$$

where $a \in \Sigma$ and $u \in \Sigma^{*}$.
For $L \subseteq \Sigma^{*}, \operatorname{perm}(L)=\bigcup_{w \in L} \operatorname{perm}(w)$.

Example

$$
\operatorname{perm}(a b c)=\{a b c, a c b, c b a, b a c, b c a, c a b\}
$$

Proposition

For $u, v \in \Sigma^{*}, \operatorname{perm}(u)=\operatorname{perm}(v)$ if and only if $\psi_{\Sigma}(u)=\psi_{\Sigma}(v)$.

Definition (Jantzen (1979))

Let Σ be an alphabet. The (atomic) SHUF expressions are

- Ø
- ε
- $w \in \Sigma^{+}$

If r, s are SHUF expressions, then

- $(r+s)$
- $(r$ ш $s)$
- r山,*
are SHUF expressions. They denote the corresponding languages as expected.

Definition (Fernau et al. (2016))
A SHUF expression is an α-SHUF expression, if its atoms are only \emptyset. ε, or single symbols $a \in \Sigma$.

Example

The language from Example \#1 can be denoted by the following α-SHUF expression

$$
(a \text { ш } b \text { ш } c)^{ш, *}
$$

$$
\left\{w:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

Theorem (Meduna, Zemek (2012) \& Fernau et al. (2016))
$\mathscr{L}(J F A)=\operatorname{perm}($ REG $)=\operatorname{perm}(C F)=\operatorname{perm}($ PSL $)$

Theorem (Meduna, Zemek (2012) \& Fernau et al. (2016))
$\mathscr{L}(J F A)=\operatorname{perm}($ REG $)=\operatorname{perm}(C F)=\operatorname{perm}(P S L)$
Corollary (Fernau et al. (2016))
$\mathscr{L}(J F A)$ is closed under intersection and under complementation.

Theorem (Meduna, Zemek (2012) \& Fernau et al. (2016))

$$
\mathscr{L}(J F A)=\operatorname{perm}(\text { REG })=\operatorname{perm}(C F)=\operatorname{perm}(P S L)
$$

Corollary (Fernau et al. (2016))

$\mathscr{L}(J F A)$ is closed under intersection and under complementation.

Example

Standard complementation technique does not work for JFAs.

- For $F=\{r\}$, it accepts all words that contains at least one a.
- If $F=\{s, t\}$, it accepts all words that contain at least one b.

Theorem (Fernau et al. (2016))

$\mathscr{L}(\alpha$-SHUF $)=\mathscr{L}(J F A)$.

Proof Idea

२: If $L \in \mathscr{L}(J F A)$, there exists regular L^{\prime} such that $L=\operatorname{perm}\left(L^{\prime}\right)$. Then, RE R^{\prime} denotes L^{\prime}. Then, we find an α-SHUF expression R with $L=\operatorname{perm}\left(L\left(R^{\prime}\right)\right)=L(R)$.
\subseteq : Let α-SHUF expression R describes L. Construct RE R^{\prime} by replacing all $ш$ by . and ${ }^{\omega, *}$ by ${ }^{*}$, so $L(R)=\operatorname{perm}\left(L\left(R^{\prime}\right)\right)$. As $\operatorname{perm}\left(L\left(R^{\prime}\right)\right) \in$ REG, $L \in \mathscr{L}(J F A)$.

Theorem (Fernau et al. (2016))

$$
\mathscr{L}(\alpha-\mathrm{SHUF})=\mathscr{L}(J F A) .
$$

Proof Idea

२: If $L \in \mathscr{L}(J F A)$, there exists regular L^{\prime} such that $L=\operatorname{perm}\left(L^{\prime}\right)$. Then, RE R^{\prime} denotes L^{\prime}. Then, we find an α-SHUF expression R with $L=\operatorname{perm}\left(L\left(R^{\prime}\right)\right)=L(R)$.
\subseteq : Let α-SHUF expression R describes L. Construct RE R^{\prime} by replacing all $ш$ by . and ${ }^{\omega, *}$ by ${ }^{*}$, so $L(R)=\operatorname{perm}\left(L\left(R^{\prime}\right)\right)$. As $\operatorname{perm}\left(L\left(R^{\prime}\right)\right) \in$ REG, $L \in \mathscr{L}(J F A)$.

Corollary

\mathscr{L} (JFA) is closed under iterated shuffle.

Theorem (Fernau et al. (2016))

\mathscr{L} (GJFA) and \mathscr{L} (SHUF) are incomparable.
Proof Idea

- Let $M=(\{s\}, \Sigma,\{s a b \rightarrow s, s c d \rightarrow s\}, s,\{s\}) . L(M) \notin \mathscr{L}($ SHUF $)$.
- $L\left(a c ш(b d)^{\text {(,* }}\right)$ is not accepted by any GJFA.

Theorem (Fernau et al. (2016))
\mathscr{L} (GJFA) and \mathscr{L} (SHUF) are incomparable.

Proof Idea

- Let $M=(\{s\}, \Sigma,\{s a b \rightarrow s, s c d \rightarrow s\}, s,\{s\}) . L(M) \notin \mathscr{L}($ SHUF $)$.
- $L\left(\right.$ ac ш $\left.(b d)^{\amalg, *}\right)$ is not accepted by any GJFA.

Lemma (Fernau et al. (2016))
$\{a b\}^{Ш, *} \in(\mathscr{L}(G J F A) \cap \mathscr{L}(S H U F))-\mathscr{L}(J F A)$.

Theorem (Fernau et al. (2016))

\mathscr{L} (GJFA) and \mathscr{L} (SHUF) are incomparable.

Proof Idea

- Let $M=(\{s\}, \Sigma,\{s a b \rightarrow s, s c d \rightarrow s\}, s,\{s\}) . L(M) \notin \mathscr{L}($ SHUF $)$.
- $L\left(\right.$ ac $\left.ш(b d)^{\amalg, *}\right)$ is not accepted by any GJFA.

Lemma (Fernau et al. (2016))
$\{a b\}^{Ш, *} \in(\mathscr{L}(G J F A) \cap \mathscr{L}(S H U F))-\mathscr{L}(J F A)$.

Theorem (Fernau et al. (2016))
$\mathscr{L}(J F A)=\operatorname{perm}($ REG $)=\operatorname{perm}(C F)=\operatorname{perm}($ PSL $)$
$=\operatorname{perm}(\mathscr{L}(G J F A))=\operatorname{perm}(\mathscr{L}(S H U F))$

Relations Between Language Families II (Fernau et al., 2016)

Theorem (Vorel (2015), Theorem 2)

\mathscr{L} (GJFA) is not closed under Kleene star, Kleene plus, ε-free and general homomorphism and finite substitution.

Proof

- We have $\{a b\} \in \mathscr{L}(G J F A)$, but $\{a b\}^{*} \notin \mathscr{L}(G J F A)$.
- Since \mathscr{L} (GJFA) is closed under union, $\{a b\}^{+} \notin \mathscr{L}$ (GJFA).
- Consider ε-free homomorphism $\varphi:\{a\}^{*} \rightarrow\{a, b\}^{*}$ with $\varphi(a)=a b$.
- For $L=\{a\}^{*} \in \mathscr{L}($ GJFA $), \varphi(L)=\{a b\}^{*} \notin \mathscr{L}($ GJFA $)$.
- In addition, φ is a general homomorphism and finite substitution as well.

	\mathscr{L} (GJFA)	$\mathscr{L}(J F A)$
union	+	$+$
intersection	-*(Vorel, 2015)	+
concatenation	-	-
intersection with reg. lang.	-	-
complement	-	+*(Fernau et al., 2016)
shuffle	- (Vorel, 2015)	+
iterated shuffle	?	+ (Fernau et al. . 2016)
mirror image	+ (Vorel, 2015)	+
Kleene star	- (Vorel, 2015)	-
Kleene plus	- (Vorel, 2015)	-
substitution	- -	-
regular substitution	-	-
finite substitution	- (Vorel, 2015)*	-
homomorphism	- (Vorel, 2015)*	-
ε-free homomorphism	- (Vorel, 2015)*	-
inverse homomorphism	- (Vorel, 2015)*	+

Note: * marks corrections. (Meduna, Zemek, 2012) when the source is not specified.

I Decidability - Summary by Meduna, Zemek (2012)

	\mathscr{L} (GJFA)	\mathscr{L} (JFA)
membership	+	+
emptiness	+	+
finiteness	+	+
infiniteness	+	+

Theorem (Vorel (2016), Thm. 1)

Given a GJFA $M=(Q, \Sigma, R, s, F)$, it is undecidable whether $L(M)=\Sigma^{*}$.

Proof Idea

By reduction from universality of context-free grammar to the universality of GJFA.

Theorem (Vorel (2015), Thm. 6)

Given GJFA M_{1} and M_{2} over an 8-letter alphabet, it is undecidable whether $L\left(M_{1}\right) \cap L\left(M_{2}\right)=\emptyset$.

Proof Idea

Using a prefix-disjoint instance of the Post correspondence problem over a range alphabet.

	\mathscr{L} (GJFA)	\mathscr{L} (JFA)
membership	+	+
emptiness	+	+
finiteness	+	+
infiniteness	+	+
universality	- (Vorel, 2016) $^{\prime}$	+ (Fernau et al., 2016) $^{\text {disjointness }}$
(Vorel, 2016)	+ (Fernau et al., 2016) 2	

${ }^{1}$ GJFAs are over an 8-letter alphabet.

Note on Parsing of Fixed JFA

Scan over w and store the current state and the Parikh mapping (as Σ fixed, use working tape of non-det. logspace machine). Thus, $\mathscr{L}(J F A) \subseteq \mathrm{NL} \subseteq \mathrm{P}$.

Note on Parsing of Fixed JFA

Scan over w and store the current state and the Parikh mapping (as Σ fixed, use working tape of non-det. logspace machine). Thus, $\mathscr{L}(J F A) \subseteq N L \subseteq P$.

Theorem (Fernau et al. (2016))

Unless ETH fails, there is no algorithm that, for given JFA M with state set Q and a given word w, decides whether $w \in L(M)$ and runs in time $O^{*}\left(2^{\circ(|Q|)}\right)$.

Note on ETH

Often, Exponential Time Hypothesis (ETH) is used to state computational complexity results.
If ETH holds, then $P \neq N P$.

Problem	GJFA	GJFA $\|\Sigma\|=k$	JFA	JFA $\|\Sigma\|=k$
Fixed word	NP-C	NP-C* *	P	P
Universal word	NP-C	NP-C *	NP-C	P
Non-disjointness	Und.	Und.	NP-C	P
Non-universality	Und.	NP-H	NP-H	NP-C

Note: * marks results from (Fernau et al., 2016). NP-C = NP-complete; NP-H = NP-hard, membership in NP unknown; Und. = undecidable.

- closure property of \mathscr{L} (GJFA) (iterated shuffle?)
- other decision problems of \mathscr{L} (GJFA) and \mathscr{L} (JFA), like equivalence and inclusion
- variants of JFA and GJFA (determinism, parallel, regulated, ...)

Thank you for your attention! Part Two follows!
M. Jantzen: Eigenschaften von Petrinetzsprachen. Technical report IFI-HH-B-64

