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Božetěchova 2, Brno Czech Republic

{ikocman,krivka}@fit.vutbr.cz

LTA 2016 (December 5, 2016)



Table of Contents

Introduction

Definitions and Examples

Results
Power of JFAs and GJFAs
Closure Properties
Decidability and Complexity

Concluding Remarks

Jumping Finite Automata: New Results – Part One: Solved Questions 2 / 29



Part One Based on ...

Alexander Meduna, Petr Zemek: Jumping Finite Automata. Int.
J. Found. Comput. Sci. 23(7): 1555-1578 (2012)
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Definitions

Definition (Meduna, Zemek [2012])

A general jumping finite automaton (GJFA) is a quintuple

M =
(
Q,Σ,R, s, F

)
where

• Q is a finite set of states;
• Σ is the input alphabet;
• R is a finite set of rules of the form

py → q (p,q ∈ Q, y ∈ Σ∗)

• s is the start state;
• F is a set of final states.

Definition

If all rules py → q ∈ R satisfy |y | ≤ 1, then M is a jumping finite
automaton (JFA).
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Definitions – Continued

Definition

If x , z, x ′, z ′, y ∈ Σ∗ such that xz = x ′z ′ and py → q ∈ R, then M
makes a jump from xpyz to x ′qz ′, symbolically written as

xpyz y x ′qz ′

y∗ intuitively, a sequence of jumps (possibly empty);
mathematically, the reflexive-transitive closure of y

Definition

The language accepted by M, denoted by L(M), is defined as

L(M) =
{

uv : u, v ∈ Σ∗,usv y∗ f , f ∈ F
}

Note: Hereafter, a family of languages defined by model X is
denoted by L (X).
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Example #1

Example

The JFA
M =

(
{s, r , t}, {a,b,c},R, s, {s}

)
with

R =
{

sa → r , rb→ t , tc → s
}

accepts

L(M) =
{

w ∈ {a,b,c}∗ : |w |a = |w |b = |w |c
}

For instance:

bacbcsa y bacrbc [sa → r ]
y bactc [rb→ t ]
y bsac [tc → s]
y rbc [sa → r ]
y tc [rb→ t ]
y s [tc → s]
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Example #2

Example

The GJFA
H =

(
{s, f}, {a,b},R, s, {f}

)
,

with
R =

{
sba → f , f a → f , f b→ f

}
accepts

L(H) =
{

a,b
}∗{

ba
}{

a,b
}∗

For instance:

bbsbaa y bbf a [sba → f ]
y f bb [f a → f ]
y f b [f b→ f ]
y f [f b→ f ]
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Definitions – Operations

Definition

The shuffle operation, denoted by �, is defined by

u� v =

{
x1y1x2y2 . . . xnyn :

u = x1x2 . . . xn, v = y1y2 . . . yn

xi , yi ∈ Σ∗, 1 ≤ i ≤ n,n ≥ 1

}
,

L1 � L2 =
⋃

u∈L1,v∈L2

(u� v),

for u, v ∈ Σ∗ and L1, L2 ⊆ Σ∗.

Example

ab� cd = {abcd,acdb,cdab,acbd,cadb,cabd}

Jumping Finite Automata: New Results – Part One: Solved Questions 10 / 29



Definitions – Operations

Definition

The shuffle operation, denoted by �, is defined by

u� v =

{
x1y1x2y2 . . . xnyn :

u = x1x2 . . . xn, v = y1y2 . . . yn

xi , yi ∈ Σ∗, 1 ≤ i ≤ n,n ≥ 1

}
,

L1 � L2 =
⋃

u∈L1,v∈L2

(u� v),

for u, v ∈ Σ∗ and L1, L2 ⊆ Σ∗.

Example

ab� cd = {abcd,acdb,cdab,acbd,cadb,cabd}

Jumping Finite Automata: New Results – Part One: Solved Questions 10 / 29



Definitions – Operations

Definition

For L ⊆ Σ∗, the iterated shuffle of L is

L�,∗ =
∞⋃

n=0

L�,n,

where
L�,0 = {ε}

and
L�,i = L�,i−1

� L,

where i ≥ 1.
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Definitions – Operations

Definition

All permutations of w , denoted by perm(w), is defined as

perm(ε) = {ε}

perm(au) = {a}� perm(u)

where a ∈ Σ and u ∈ Σ∗.

For L ⊆ Σ∗, perm(L) =
⋃

w∈L perm(w).

Example

perm(abc) = {abc,acb,cba,bac,bca,cab}

Proposition

For u, v ∈ Σ∗, perm(u) = perm(v) if and only if ψΣ(u) = ψΣ(v).
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Definitions – SHUF Expressions

Definition (Jantzen [1979])

Let Σ be an alphabet. The (atomic) SHUF expressions are
• ∅
• ε

• w ∈ Σ+

If r , s are SHUF expressions, then
• (r + s)

• (r � s)

• r�,∗

are SHUF expressions. They denote the corresponding
languages as expected.

Definition (Fernau et al. [2016])

A SHUF expression is an α-SHUF expression, if its atoms are only ∅,
ε, or single symbols a ∈ Σ.
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Definitions – SHUF Expressions

Example

The language from Example #1 can be denoted by the
following α-SHUF expression

(a� b� c)�,∗
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Relations Between Language Families I

{ab,ba}
{ab}

{a}∗
{w : |w |a = |w |b}

{w : |w |a = |w |b = |w |c}

{a,b}∗{ba}{a,b}∗

{a}∗{b}∗

{anbn : n ≥ 0}

{anbncn : n ≥ 0}
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Power of JFAs

Theorem (Meduna, Zemek [2012] & Fernau et al. [2016])

L (JFA) = perm(REG) = perm(CF) = perm(PSL)

Corollary (Fernau et al. [2016])

L (JFA) is closed under intersection and under complementation.

Example

Standard complementation technique does not work for JFAs.

sstart r

t

a

b

a,b

a,b

• For F = {r}, it accepts all words that contains at least one a.
• If F = {s, t}, it accepts all words that contain at least one b.
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Power of JFA

Theorem (Fernau et al. [2016])

L (α-SHUF) = L (JFA).

Proof Idea

⊇: If L ∈ L (JFA), there exists regular L′ such that L = perm(L′).
Then, RE R′ denotes L′. Then, we find an α-SHUF expression
R with L = perm(L(R′)) = L(R).

⊆: Let α-SHUF expression R describes L. Construct RE R′ by
replacing all � by · and �,∗ by ∗, so L(R) = perm(L(R′)). As
perm(L(R′)) ∈ REG, L ∈ L (JFA).

Corollary

L (JFA) is closed under iterated shuffle.
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Power of GJFA

Theorem (Fernau et al. [2016])

L (GJFA) and L (SHUF) are incomparable.

Proof Idea
• Let M = ({s},Σ, {sab→ s, scd → s}, s, {s}). L(M) /∈ L (SHUF).
• L(ac� (bd)�,∗) is not accepted by any GJFA.

Lemma (Fernau et al. [2016])

{ab}�,∗ ∈ (L (GJFA) ∩L (SHUF))−L (JFA).

Theorem (Fernau et al. [2016])

L (JFA) = perm(REG) = perm(CF) = perm(PSL)
= perm(L (GJFA)) = perm(L (SHUF))

Jumping Finite Automata: New Results – Part One: Solved Questions 18 / 29



Power of GJFA

Theorem (Fernau et al. [2016])

L (GJFA) and L (SHUF) are incomparable.

Proof Idea
• Let M = ({s},Σ, {sab→ s, scd → s}, s, {s}). L(M) /∈ L (SHUF).
• L(ac� (bd)�,∗) is not accepted by any GJFA.

Lemma (Fernau et al. [2016])

{ab}�,∗ ∈ (L (GJFA) ∩L (SHUF))−L (JFA).

Theorem (Fernau et al. [2016])

L (JFA) = perm(REG) = perm(CF) = perm(PSL)
= perm(L (GJFA)) = perm(L (SHUF))

Jumping Finite Automata: New Results – Part One: Solved Questions 18 / 29



Power of GJFA

Theorem (Fernau et al. [2016])

L (GJFA) and L (SHUF) are incomparable.

Proof Idea
• Let M = ({s},Σ, {sab→ s, scd → s}, s, {s}). L(M) /∈ L (SHUF).
• L(ac� (bd)�,∗) is not accepted by any GJFA.

Lemma (Fernau et al. [2016])

{ab}�,∗ ∈ (L (GJFA) ∩L (SHUF))−L (JFA).

Theorem (Fernau et al. [2016])

L (JFA) = perm(REG) = perm(CF) = perm(PSL)
= perm(L (GJFA)) = perm(L (SHUF))

Jumping Finite Automata: New Results – Part One: Solved Questions 18 / 29



Relations Between Language Families II
[Fernau et al., 2016]
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Closure Properties

Theorem (Vorel [2015], Theorem 2)

L (GJFA) is not closed under Kleene star, Kleene plus, ε-free
and general homomorphism and finite substitution.

Proof
• We have {ab} ∈ L (GJFA), but {ab}∗ /∈ L (GJFA).
• Since L (GJFA) is closed under union, {ab}+ /∈ L (GJFA).
• Consider ε-free homomorphism ϕ : {a}∗ → {a,b}∗ with
ϕ(a) = ab.

• For L = {a}∗ ∈ L (GJFA), ϕ(L) = {ab}∗ /∈ L (GJFA).
• In addition, ϕ is a general homomorphism and finite

substitution as well.
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Closure Properties – Summary

L (GJFA) L (JFA)

union + +

intersection −∗[Vorel, 2015] +

concatenation − −
intersection with reg. lang. − −
complement − +∗[Fernau et al., 2016]

shuffle − [Vorel, 2015] +

iterated shuffle ? + [Fernau et al., 2016]
mirror image + [Vorel, 2015] +

Kleene star − [Vorel, 2015] −
Kleene plus − [Vorel, 2015] −
substitution − −
regular substitution − −
finite substitution − [Vorel, 2015]∗ −
homomorphism − [Vorel, 2015]∗ −
ε-free homomorphism − [Vorel, 2015]∗ −
inverse homomorphism − [Vorel, 2015]∗ +

Note: * marks corrections. [Meduna, Zemek, 2012] when the source is not specified.
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Decidability – Summary by Meduna, Zemek
[2012]

L (GJFA) L (JFA)
membership + +
emptiness + +
finiteness + +
infiniteness + +
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Decidability – New Results

Theorem (Vorel [2016], Thm. 1)

Given a GJFA M = (Q,Σ,R, s, F), it is undecidable whether
L(M) = Σ∗.

Proof Idea

By reduction from universality of context-free grammar to the
universality of GJFA.

Theorem (Vorel [2015], Thm. 6)

Given GJFA M1 and M2 over an 8-letter alphabet, it is
undecidable whether L(M1) ∩ L(M2) = ∅.

Proof Idea

Using a prefix-disjoint instance of the Post correspondence
problem over a range alphabet.
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Decidability – Extended Summary

L (GJFA) L (JFA)
membership + +
emptiness + +
finiteness + +
infiniteness + +
universality − [Vorel, 2016] + [Fernau et al., 2016]
disjointness − [Vorel, 2016]1 + [Fernau et al., 2016]

1GJFAs are over an 8-letter alphabet.
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Some Complexity Results

Note on Parsing of Fixed JFA

Scan over w and store the current state and the Parikh
mapping (as Σ fixed, use working tape of non-det. logspace
machine). Thus, L (JFA) ⊆ NL ⊆ P.

Theorem (Fernau et al. [2016])

Unless ETH fails, there is no algorithm that, for given JFA M with
state set Q and a given word w, decides whether w ∈ L(M)
and runs in time O∗(2o(|Q|)).

Note on ETH

Often, Exponential Time Hypothesis (ETH) is used to state
computational complexity results.
If ETH holds, then P 6= NP.
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Complexity of Basic Problems – Summary

Problem GJFA GJFA |Σ| = k JFA JFA |Σ| = k
Fixed word NP-C NP-C∗ P P
Universal word NP-C NP-C∗ NP-C P
Non-disjointness Und. Und. NP-C P
Non-universality Und. NP-H NP-H NP-C

Note: * marks results from [Fernau et al., 2016]. NP-C = NP-complete; NP-H = NP-hard,

membership in NP unknown; Und. = undecidable.
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Open Problem Areas

• closure property of L (GJFA) (iterated shuffle?)

• other decision problems of L (GJFA) and L (JFA), like
equivalence and inclusion

• variants of JFA and GJFA (determinism, parallel, regulated,
...)
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Thank you for your attention!

Part Two follows!



Additional References

M. Jantzen: Eigenschaften von Petrinetzsprachen. Technical
report IFI-HH-B-64
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