### Jumping Finite Automata: New Results Part One: Solved Questions

#### Radim Kocman and Zbyněk Křivka

Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno Czech Republic

{ikocman,krivka}@fit.vutbr.cz



LTA 2016 (December 5, 2016)



### Introduction

• Definitions and Examples

#### Results

Power of JFAs and GJFAs Closure Properties Decidability and Complexity

### Concluding Remarks



- Alexander Meduna, Petr Zemek: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7): 1555-1578 (2012)
- Vojtěch Vorel: Two Results on Discontinuous Input Processing. DCFS 2016: 205-216
- Vojtěch Vorel: On Basic Properties of Jumping Finite Automata. Int. J. Found. Comput. Sci. (conditionally accepted; 2015)
- Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, Vojtěch Vorel: Characterization and Complexity Results on Jumping Finite Automata. Theoret. Comput. Sci. (in press, 2016)













































Accepted language:  $\{a\}^* \{c\} \{b\}^*$ 





































Accepted language:  $\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$ 



### Definition (Meduna, Zemek (2012))

A general jumping finite automaton (GJFA) is a quintuple

$$M = \left(Q, \Sigma, R, \underline{s}, F\right)$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- *R* is a finite set of rules of the form

 $py \rightarrow q$   $(p, q \in Q, y \in \Sigma^*)$ 

- s is the start state;
- F is a set of final states.



### Definition (Meduna, Zemek (2012))

A general jumping finite automaton (GJFA) is a quintuple

$$M = \left(Q, \Sigma, R, \underline{s}, F\right)$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- *R* is a finite set of rules of the form

 $py \rightarrow q$   $(p, q \in Q, y \in \Sigma^*)$ 

- s is the start state;
- F is a set of final states.

### Definition

If all rules  $py \rightarrow q \in R$  satisfy  $|y| \leq 1$ , then *M* is a jumping finite automaton (JFA).



If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a jump from xpyz to x'qz', symbolically written as

 $X \underline{\rho} Y Z \curvearrowright X' \underline{q} Z'$ 

If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a jump from xpyz to x'qz', symbolically written as

 $X \underline{\rho} Y Z \curvearrowright X' \underline{q} Z'$ 

 $\curvearrowright^*$  intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of  $\curvearrowright$ 

If  $x, z, x', z', y \in \Sigma^*$  such that xz = x'z' and  $py \to q \in R$ , then M makes a jump from xpyz to x'qz', symbolically written as

 $x \underline{\rho} y z \curvearrowright x' \underline{q} z'$ 

 $\curvearrowright^*$  intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of  $\curvearrowright$ 

#### Definition

The language accepted by M, denoted by L(M), is defined as

$$L(M) = \{ uv : u, v \in \Sigma^*, u \underline{s} v \frown^* \underline{f}, f \in F \}$$

Note: Hereafter, a family of languages defined by model X is denoted by  $\mathcal{L}(X)$ .

# Example #1



### Example

The JFA

$$M = \left(\{s, r, t\}, \{a, b, c\}, R, s, \{s\}\right)$$

with

$$R = \left\{ sa \to r, rb \to t, tc \to s \right\}$$

accepts

$$L(M) = \left\{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \right\}$$

For instance:

# Example #2



#### Example

The GJFA

$$H = \left(\{\mathbf{s}, \mathbf{f}\}, \{\mathbf{a}, \mathbf{b}\}, \mathbf{R}, \mathbf{s}, \{\mathbf{f}\}\right),\$$

with

$$R = \{ sba \rightarrow f, fa \rightarrow f, fb \rightarrow f \}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

For instance:

$$bb\underline{s}baa \land bb\underline{f}a \quad [sba \rightarrow f] \\ \land \quad \underline{f}bb \quad [fa \rightarrow f] \\ \land \quad \underline{f}b \quad [fb \rightarrow f] \\ \land \quad \underline{f} \quad [fb \rightarrow f] \\ \land \quad \underline{f} \quad [fb \rightarrow f] \end{cases}$$

The shuffle operation, denoted by  $\amalg$ , is defined by

$$u \sqcup v = \left\{ x_1 y_1 x_2 y_2 \dots x_n y_n : \begin{array}{l} u = x_1 x_2 \dots x_n, v = y_1 y_2 \dots y_n \\ x_i, y_i \in \Sigma^*, 1 \le i \le n, n \ge 1 \end{array} \right\},$$
$$L_1 \sqcup L_2 = \bigcup_{u \in L_1, v \in L_2} (u \sqcup v),$$
for  $u, v \in \Sigma^*$  and  $L_1, L_2 \subseteq \Sigma^*.$ 

FIT

The shuffle operation, denoted by  $\amalg$ , is defined by

$$u \sqcup v = \left\{ x_1 y_1 x_2 y_2 \dots x_n y_n : \begin{array}{l} u = x_1 x_2 \dots x_n, v = y_1 y_2 \dots y_n \\ x_i, y_i \in \Sigma^*, 1 \le i \le n, n \ge 1 \end{array} \right\},$$
$$L_1 \sqcup L_2 = \bigcup_{u \in L_1, v \in L_2} (u \sqcup v),$$
$$r u, v \in \Sigma^* \text{ and } L_1, L_2 \subseteq \Sigma^*.$$

### Example

fo

 $ab \sqcup cd = \{abcd, acdb, cdab, acbd, cadb, cabd\}$ 



For  $L \subseteq \Sigma^*$ , the iterated shuffle of L is

$$L^{\sqcup,*} = \bigcup_{n=0}^{\infty} L^{\sqcup,n},$$

#### where

$$L^{\sqcup\!\sqcup,0}=\{\varepsilon\}$$

and

$$L^{\coprod,i} = L^{\coprod,i-1} \coprod L,$$

where  $i \ge 1$ .

# Definitions – Operations

### Definition

All permutations of w, denoted by perm(w), is defined as

```
perm(\varepsilon) = \{\varepsilon\}
perm(au) = \{a\} \sqcup perm(u)
where a \in \Sigma and u \in \Sigma^*.
```

For  $L \subseteq \Sigma^*$ , perm $(L) = \bigcup_{w \in L} \text{perm}(w)$ .

# Definitions – Operations

### Definition

All permutations of w, denoted by perm(w), is defined as

```
perm(\varepsilon) = \{\varepsilon\}
perm(au) = \{a\} \sqcup perm(u)
```

```
where a \in \Sigma and u \in \Sigma^*.
```

For  $L \subseteq \Sigma^*$ , perm $(L) = \bigcup_{w \in L} perm(w)$ .

### Example

 $perm(abc) = \{abc, acb, cba, bac, bca, cab\}$ 

# Definitions – Operations

### Definition

All permutations of w, denoted by perm(w), is defined as

```
perm(\varepsilon) = \{\varepsilon\}
perm(au) = \{a\} \sqcup perm(u)
```

where  $a \in \Sigma$  and  $u \in \Sigma^*$ .

For  $L \subseteq \Sigma^*$ , perm $(L) = \bigcup_{w \in L} perm(w)$ .

#### Example

 $perm(abc) = \{abc, acb, cba, bac, bca, cab\}$ 

#### Proposition

For  $u, v \in \Sigma^*$ , perm(u) = perm(v) if and only if  $\psi_{\Sigma}(u) = \psi_{\Sigma}(v)$ .

### Definition (Jantzen (1979))

Let  $\boldsymbol{\Sigma}$  be an alphabet. The (atomic) SHUF expressions are



- ε
- $w \in \Sigma^+$

If r, s are SHUF expressions, then

- (*r* + *s*)
- (*r*  $\sqcup s$ )
- *r*<sup>⊞,∗</sup>

are SHUF expressions. They denote the corresponding languages as expected.

### Definition (Fernau et al. (2016))

A SHUF expression is an  $\alpha$ -SHUF expression, if its atoms are only  $\emptyset$ ,  $\varepsilon$ , or single symbols  $\alpha \in \Sigma$ .



### Example

The language from Example #1 can be denoted by the following  $\alpha$ -SHUF expression

 $(a \sqcup b \sqcup c)^{\sqcup,*}$ 

# Relations Between Language Families I





# Power of JFAs



Theorem (Meduna, Zemek (2012) & Fernau et al. (2016))

 $\mathcal{L}(JFA) = perm(\textbf{REG}) = perm(\textbf{CF}) = perm(\textbf{PSL})$ 

# Power of JFAs



Theorem (Meduna, Zemek (2012) & Fernau et al. (2016))

 $\mathscr{L}(JFA) = perm(\textbf{REG}) = perm(\textbf{CF}) = perm(\textbf{PSL})$ 

Corollary (Fernau et al. (2016))

 $\mathscr{L}(JFA)$  is closed under intersection and under complementation.

# Power of JFAs



Theorem (Meduna, Zemek (2012) & Fernau et al. (2016))

 $\mathscr{L}(JFA) = perm(\textbf{REG}) = perm(\textbf{CF}) = perm(\textbf{PSL})$ 

### Corollary (Fernau et al. (2016))

 $\mathscr{L}(JFA)$  is closed under intersection and under complementation.

#### Example

Standard complementation technique does not work for JFAs.



- For  $F = \{r\}$ , it accepts all words that contains at least one a.
- If  $F = \{s, t\}$ , it accepts all words that contain at least one b.



### Theorem (Fernau et al. (2016))

 $\mathscr{L}(\alpha\operatorname{-SHUF}) = \mathscr{L}(JFA).$ 

### Proof Idea

- ⊇: If  $L \in \mathscr{L}(JFA)$ , there exists regular L' such that L = perm(L'). Then, RE R' denotes L'. Then, we find an α-SHUF expression R with L = perm(L(R')) = L(R).
- ⊆: Let  $\alpha$ -SHUF expression R describes L. Construct RE R' by replacing all  $\square$  by  $\cdot$  and  $\square,*$  by \*, so L(R) = perm(L(R')). As  $\text{perm}(L(R')) \in \text{REG}$ ,  $L \in \mathscr{L}(JFA)$ .



### Theorem (Fernau et al. (2016))

 $\mathscr{L}(\alpha\operatorname{-SHUF}) = \mathscr{L}(JFA).$ 

### Proof Idea

- ⊇: If  $L \in \mathscr{L}(JFA)$ , there exists regular L' such that L = perm(L'). Then, RE R' denotes L'. Then, we find an α-SHUF expression R with L = perm(L(R')) = L(R).
- ⊆: Let  $\alpha$ -SHUF expression R describes L. Construct RE R' by replacing all  $\square$  by  $\cdot$  and  $\square,*$  by \*, so L(R) = perm(L(R')). As  $\text{perm}(L(R')) \in \text{REG}$ ,  $L \in \mathscr{L}(JFA)$ .

#### Corollary

 $\mathscr{L}(JFA)$  is closed under iterated shuffle.

# Power of GJFA



### Theorem (Fernau et al. (2016))

 $\mathscr{L}(GJFA)$  and  $\mathscr{L}(SHUF)$  are incomparable.

### Proof Idea

- Let  $M = (\{s\}, \Sigma, \{sab \rightarrow s, scd \rightarrow s\}, s, \{s\})$ .  $L(M) \notin \mathscr{L}(SHUF)$ .
- $L(ac \sqcup (bd)^{\sqcup,*})$  is not accepted by any GJFA.

# Power of GJFA



## Theorem (Fernau et al. (2016))

 $\mathscr{L}(GJFA)$  and  $\mathscr{L}(SHUF)$  are incomparable.

### Proof Idea

- Let  $M = (\{s\}, \Sigma, \{sab \rightarrow s, scd \rightarrow s\}, s, \{s\})$ .  $L(M) \notin \mathscr{L}(SHUF)$ .
- $L(ac \sqcup (bd)^{\sqcup,*})$  is not accepted by any *GJFA*.

### Lemma (Fernau et al. (2016))

 $\{ab\}^{\sqcup,*} \in (\mathscr{L}(GJFA) \cap \mathscr{L}(SHUF)) - \mathscr{L}(JFA).$ 

# Power of GJFA



### Theorem (Fernau et al. (2016))

 $\mathscr{L}(GJFA)$  and  $\mathscr{L}(SHUF)$  are incomparable.

### Proof Idea

- Let  $M = (\{s\}, \Sigma, \{sab \rightarrow s, scd \rightarrow s\}, s, \{s\})$ .  $L(M) \notin \mathscr{L}(SHUF)$ .
- L(ac ш (bd)<sup>ш,\*</sup>) is not accepted by any GJFA.

### Lemma (Fernau et al. (2016))

 $\{ab\}^{\sqcup,*} \in (\mathscr{L}(GJFA) \cap \mathscr{L}(SHUF)) - \mathscr{L}(JFA).$ 

#### Theorem (Fernau et al. (2016))

 $\mathcal{L}(JFA) = \text{perm}(REG) = \text{perm}(CF) = \text{perm}(PSL)$ =  $\text{perm}(\mathcal{L}(GJFA)) = \text{perm}(\mathcal{L}(SHUF))$ 

# Relations Between Language Families II (Fernau et al., 2016)







## Theorem (Vorel (2015), Theorem 2)

 $\mathscr{L}(GJFA)$  is not closed under Kleene star, Kleene plus,  $\varepsilon$ -free and general homomorphism and finite substitution.

#### Proof

- We have  $\{ab\} \in \mathscr{L}(GJFA)$ , but  $\{ab\}^* \notin \mathscr{L}(GJFA)$ .
- Since  $\mathscr{L}(GJFA)$  is closed under union,  $\{ab\}^+ \notin \mathscr{L}(GJFA)$ .
- Consider  $\varepsilon$ -free homomorphism  $\varphi \colon \{a\}^* \to \{a,b\}^*$  with  $\varphi(a) = ab$ .
- For  $L = \{a\}^* \in \mathscr{L}(GJFA)$ ,  $\varphi(L) = \{ab\}^* \notin \mathscr{L}(GJFA)$ .
- In addition,  $\varphi$  is a general homomorphism and finite substitution as well.

| T FIT |
|-------|
|-------|

|                                  | $\mathscr{L}(GJFA)$                  | $\mathscr{L}(JFA)$      |
|----------------------------------|--------------------------------------|-------------------------|
| union                            | +                                    | +                       |
| intersection                     | _*(Vorel, 2015)                      | +                       |
| concatenation                    | _                                    | _                       |
| intersection with reg. lang.     | _                                    | —                       |
| complement                       | _                                    | +*(Fernau et al., 2016) |
| shuffle                          | - (Vorel, 2015)                      | +                       |
| iterated shuffle                 | ?                                    | + (Fernau et al., 2016) |
| mirror image                     | + (Vorel, 2015)                      | +                       |
| Kleene star                      | – (Vorel, 2015)                      | —                       |
| Kleene plus                      | – (Vorel, 2015)                      | —                       |
| substitution                     | _                                    | —                       |
| regular substitution             | _                                    | —                       |
| finite substitution              | <ul> <li>– (Vorel, 2015)*</li> </ul> | _                       |
| homomorphism                     | <ul> <li>– (Vorel, 2015)*</li> </ul> | _                       |
| $\varepsilon$ -free homomorphism | – (Vorel, 2015)*                     | _                       |
| inverse homomorphism             | - (Vorel, 2015)*                     | +                       |

Note: \* marks corrections. (Meduna, Zemek, 2012) when the source is not specified.

# Decidability – Summary by Meduna, Zemek (2012)



|              | $\mathscr{L}(GJFA)$ | $\mathscr{L}(JFA)$ |
|--------------|---------------------|--------------------|
| membership   | +                   | +                  |
| emptiness    | +                   | +                  |
| finiteness   | +                   | +                  |
| infiniteness | +                   | +                  |



### Theorem (Vorel (2016), Thm. 1)

Given a GJFA  $M = (Q, \Sigma, R, s, F)$ , it is undecidable whether  $L(M) = \Sigma^*$ .

#### Proof Idea

By reduction from universality of context-free grammar to the universality of GJFA.

Theorem (Vorel (2015), Thm. 6)

Given GJFA  $M_1$  and  $M_2$  over an 8-letter alphabet, it is undecidable whether  $L(M_1) \cap L(M_2) = \emptyset$ .

#### Proof Idea

Using a prefix-disjoint instance of the Post correspondence problem over a range alphabet.

|--|

|              | $\mathscr{L}(GJFA)$          | $\mathscr{L}(JFA)$      |  |
|--------------|------------------------------|-------------------------|--|
| membership   | +                            | +                       |  |
| emptiness    | +                            | +                       |  |
| finiteness   | +                            | +                       |  |
| infiniteness | +                            | +                       |  |
| universality | – (Vorel, 2016)              | + (Fernau et al., 2016) |  |
| disjointness | – (Vorel, 2016) <sup>1</sup> | + (Fernau et al., 2016) |  |

<sup>&</sup>lt;sup>1</sup>GJFAs are over an 8-letter alphabet.



### Note on Parsing of Fixed JFA

Scan over w and store the current state and the Parikh mapping (as  $\Sigma$  fixed, use working tape of non-det. logspace machine). Thus,  $\mathscr{L}(JFA) \subseteq NL \subseteq P$ .



### Note on Parsing of Fixed JFA

Scan over w and store the current state and the Parikh mapping (as  $\Sigma$  fixed, use working tape of non-det. logspace machine). Thus,  $\mathscr{L}(JFA) \subseteq NL \subseteq P$ .

### Theorem (Fernau et al. (2016))

Unless ETH fails, there is no algorithm that, for given JFA M with state set Q and a given word w, decides whether  $w \in L(M)$  and runs in time  $O^*(2^{o(|Q|)})$ .

#### Note on ETH

Often, Exponential Time Hypothesis (ETH) is used to state computational complexity results. If ETH holds, then  $P \neq NP$ .



| Problem          | GJFA | $GJFA  \Sigma  = k$ | JFA  | $ JFA \Sigma  = k$ |
|------------------|------|---------------------|------|--------------------|
| Fixed word       | NP-C | NP-C*               | Р    | Р                  |
| Universal word   | NP-C | NP-C*               | NP-C | Р                  |
| Non-disjointness | Und. | Und.                | NP-C | Р                  |
| Non-universality | Und. | NP-H                | NP-H | NP-C               |

Note: \* marks results from (Fernau et al., 2016). NP-C = NP-complete; NP-H = NP-hard, membership in NP unknown; Und. = undecidable.



- closure property of  $\mathcal{L}(GJFA)$  (iterated shuffle?)
- other decision problems of  $\mathscr{L}(\textit{GJFA})$  and  $\mathscr{L}(\textit{JFA}),$  like equivalence and inclusion
- variants of JFA and GJFA (determinism, parallel, regulated, ...)

Thank you for your attention!

# Part Two follows!



## M. Jantzen: Eigenschaften von Petrinetzsprachen. Technical report IFI-HH-B-64