

THE PEBBLE GAME

(as a Computational Model)

Author: Ing. Jakub Budiský, xbudis02@stud.fit.vutbr.cz

Dec 7, 2016

Games in Theoretical Computer Science

- Good as models
 - Simplified representation of a real system
 - Usually provide a "good level of abstraction"
- Simple rules allow for better understanding
 - Easy to work with

The (Black) Pebble Game

- Played on a directed acyclic graph (DAG)
- Playing
 - Placing pebbles on vertices of a graph
 - Starting with no pebbles placed
 - Complying with a given set of rules

The (Black) Pebble Game

- Rules
 - A pebble can be placed on an input vertex at any time
 - A pebble can be placed on (moved to) any non-input vertex only if all its immediate predecessors carry pebbles
 - A pebble can be removed at any time
 - Each output vertex must be pebbled at least once

What are we modeling

- DAG = data dependencies
- Vertices = computed data
 - Input vertices are inputs, output vertices results
- Pebbles = registers
- Pebbling = computational step
 - Removing pebbles is usually neglected

Limitations of The (Black) Pebble Game

- Limited to straight-line programs
 - FFT, matrix multiplication, convolution,...
 - If the branching is bounded, we can use a multi-graph
 - Otherwise you need a better model
 - Sorting, merging, compression,...
- Less powerful than other models
 - Turing machines, RAMs,...

Why we still love it

- Problems that can be interpreted using the (black) pebble game are important
- Simplicity
- Close to real computers
- Extensible

What is it good for

- Analyzing complexity classes
- Investigating space-time trade-offs
 - DAG transformations are not performed
- Optimization of database queries
- Proofs that algorithms are optimal
 - In terms of a "pebbling strategy"

Investigating space-time trade-offs

- Number of computational steps (pebbling) required = time complexity
 - Optimizing this parameter means optimizing data reuse ("single-threaded" programs)
- Number of pebbles required = space complexity

Typical (sub)graphs

- Complete binary tree
- Pyramid
- Butterfly

Complete binary tree

Complete binary tree

Pyramid

FFT butterfly

FFT butterfly

FFT butterfly

Further notes

- Families of graphs with extreme trade-offs exist
 - One more pebble can reduce the time complexity from exponential to polynomial
- Proving optimal solutions for more complex functions
 - Grigoriev's lower bound method
 - Classifying functions based on their "flow property"
 - (S+1)T complexity

Possible extensions

- Non-determinism
- Adding an interpretation to the DAG
- Introducing another player
- Better approximation of real-life hardware

Black-White Pebble Game

- White pebbles are used to express a "guess" that is justified later
- Models a non-deterministic computation
- Non-determinism can save space on some graphs

Example $(\{\},\{\}) \underset{1}{\Rightarrow} (\{\},\{3\}) \underset{2}{\Rightarrow}$ $\stackrel{2}{\xrightarrow{2}} (\{4\}, \{3\}) \stackrel{1}{\xrightarrow{2}} (\{5\}, \{3\}) \stackrel{2}{\xrightarrow{3}}$ $\stackrel{2}{\xrightarrow{2}} (\{5, 1\}, \{3\}) \stackrel{2}{\xrightarrow{3}}$ 3 $\Rightarrow (\{5, 1, 2\}, \{3\})$

Example

1

Red-Blue Pebble Game

- Modeling hierarchical memory (I/O)
- Hot (red) pebbles represent main memory
- Blue pebbles represent a secondary storage
- Computation is done with red pebbles

Two-person Pebble Game

- Several variants
 - Some of them proven equivalent later
 - A lot of variety
- Usually interpreted graphs and defined relations to other models
 - Added capabilities and complexity
- Roles may and may not be symmetric

Two-person Pebble Game

- Example: Venkateswaran and Tompa
 - Symmetric player roles
 - Boolean circuits (affects rules)
 - Characterizes LOGCFL and AC
 - It is possible to prove Savitch's theorem

Conclusions

- What is the Black Pebble Game ("basic one")
- What are the advantages of the model
- What are some of the limitations
- Basic examples
- Where you can get with it if you want(ed) to

References

- Space-Time Tradeoffs. 2008. SAVAGE, J. E. *Models of Computation: Exploring the Power of Computing* [online]. p. 462-488. Available at: http://cs.brown.edu/~jes/book/
- VENKATESWARAN, H. and M. TOMPA. 1989. A New Pebble Game that Characterizes Parallel Complexity Classes. *SIAM Journal on Computing*. 18(3), 533-549.
- MEYER AUF DER HEIDE, F. 1981. A comparison of two variations of a pebble game on graphs. *Theoretical Computer Science.* 13(3), 315-322.