Automated GPU Kernel Transformation as an Optimization Problem

Kristian Kadlubiak

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole

ikadlubiak@fit.vutbr.cz

An Introduction to the GPGPU

The Streaming Multiprocessor

T	FIT

SM	5M														
Instruction Cache															
	Instruction Buffer						Instruction Buffer								
	Warp Scheduler						Warp Scheduler								
Dispatch Unit			Dispatch Unit			Dispatch Unit				Dispatch Unit					
Register File (32,768 x 32-bit)					Register File (32,768 x 32-bit)										
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SFU
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit		SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
	Texture / L1 Cache														
						Tex				Tex					
	64KB Shared Memory														

The Performance of Different Memory Types

Memory type	Latency [clocks]	Visibility	Amount		
Register	aprox. 0	thread	128 B		
Shared Memory	aprox. 50	block	64 KB (32 B)		
Global Memory	aprox. 200	global	8 GB		

Different Memory Types Usage Example

```
_____global___ void MatrixAdd(A, B, C, stride)
 shared sB[blockDim.v][blockDim.x];
 int globalIdX = getGlobalIdX();
 int globalIdY = getGlobalIdY();
 int localIdX = getLocalIdX();
 int localIdY = getLocalIdY();
 float rA;
 float rC;
 rA = A[globalIdY * stride + globalIdX];
 sB[localIdY][localIdX] = B[globalIdY * stride + globalIdX];
 rC = rA + sB[localIdY][localIdX];
 C[globalIdY * stride + globalIdX] = rC;
```

The Roofline Model

- Modeling theoretical peak performance in relation with the operational intensity
- Helpful in determination of a bottleneck


```
T FIT
```

```
__global__ void vectorAdd(A, B, C)
{
    int globalIdX = getGlobalIdX();
    C[globalIdX] = A[globalIdX] + B[globalIdX];
}
```

- 1 FLOP per 8 bytes loaded from the global memory
- A memory bound problem
- 1/8 operational intensity with 320 GB/s memory throughput leads to 40 GFLOPS instead of 8228 GFLOPS (Nvidia GTX 1080)
- Considering addition of two vectors, each of size 1 GB, the computation would take 25 ms (40 GFLOPS) compared to 0.12 ms (8228 GFLOPS)

The Kernel Fusion


```
__global__ void twoVectorAdd(A, B, C, D, E)
{
    int globalIdX = getGlobalIdX();
    float rA = A[globalIdX];
    D[globalIdX] = rA + B[globalIdX];
    E[globalIdX] = rA + C[globalIdX];
}
```

- 2 FLOP per 12 bytes loaded from global memory
- Still a memory bound problem
- 1/6 operational intensity with 320 GB/s memory throughput leads to 53 GFLOPS
- Considering addition of three vectors each of size 1 GB. The computation would take 37.5 ms. However two consecutive calls to the vectorAdd() would take 50 ms.
- By fusing two kernels into one we are able to cut the runtime by 25 %

• Two constructions are suitable for the fusion

```
kernel1<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inA, outC);
```

Aforementioned example

kernel1<<<grid,block>>>(inA, outB); kernel2<<<grid,block>>>(inB, outC); kernel3<<<grid,block>>>(inC, outD);

- · Kernels creating "chain" or "pipeline"
- Data dependencies implies the order of execution

The Kernel Fusion

Demonstration Example

int main() { //preprocessing

kernell<<<grid,block>>>(inA, outB); kernel2<<<grid,block>>>(inA, outC); kernel3<<grid,block>>>(inB, inC, outD); kernel4<<<grid,block>>>(inF, outE); kernel5<<grid,block>>>(inF, outG); kernel6<<<grid,block>>>(inF, outH); kernel7<<grid,block>>>(inH, inI, outJ); kernel8<<grid,block>>>(inI, outK); kernel9<<<grid,block>>>(inI, outK);

//postprocessing

The data dependency graph

It is a DAG $G_{ddg}(V, E)$ where $K \subseteq V$ and $D \subseteq V$ represents kernels and data arrays respectively. *E* is a set of edges composed of two types of edges:

- $(x, y) \in E; x \in D, y \in K$ and x is input array of the kernel y
- $(y, x) \in E; x \in D, y \in K$ and x is output array of the kernel y

The Data Dependency Graph of Example

The Order-of-execution graph

It is a DAG $G_{ooe}(K, O)$ where K represents kernels and O is a set of edges defined as follows:

• $\forall x, z \in K, y \in D; (x, y) \in E \lor (y, z) \in E \iff (x, z) \in O$

The Order-of-Execution Graph of Example

An General Combinatorial Optimization Problem

General definition of an combinatorial optimization problem

The goal is to find $y \in f(x)$, such that

 $m(x, y) = g\{m(x, y')|y' \in f(x)\}$

where $x \in I$ and *I* is a set of instances, f(x) is a set of feasible solutions. Function *m* is a measure of *y* which for every tuple $(x, y); x \in I, y \in f(x)$ returns positive integer and *g* is goal function, which is either *max* or *min*.

The definition of combinatorial optimization problem in context of kernel fusion

Consider *K* a set of *n* kernels. The goal is to find $K_1, K_2, \ldots, K_m \subseteq K$

•
$$K_i \cap K_j = \emptyset; i \neq j; i, j \in \{0, 1, ..., m\}$$

• $\bigcup_{i=0}^m K_i = K$
such that $\sum_{i=0}^m T_p(K_i)$ where $T_p : \mathcal{P}(K) \to \mathbb{R}$ is minimized.

The Kernel Fusion as an Optimization Problem II

The definition of an optimization problem with constrains

Consider *K* set of original kernels |K| = n and *F* set of new kernels |F| = m

The goal is to minimize $\sum_{j=1}^{m} T_p(F_j)$ which is subject to:

•
$$\sum_{i \in F_k} T_m(K_i) > T_p(F_k), \forall F_k \in F$$

•
$$x_{ij} \in \{0, 1\}, \forall i \in \{1, \dots, n\} \forall j \in \{1, \dots, m\}$$

•
$$\sum_{j=1} x_{ij} = 1, \forall i \in \{1, \dots, n\}$$

•
$$x_{qr} = 1, \forall q \in K_{a \rightarrow b}, x_{ar} = 1, x_{br} = 1$$

- $\forall F_x \in F, \forall K_i \in F_x, \exists K_j \in F_x, DegKin(K_i, K_j) > 0$
- $SHMEM(F_j) \leq SHMEM_{max}, \forall j \in \{1, \ldots, m\}$

•
$$REG(F_j) \leq REG_{max}, \forall j \in \{1, \ldots, m\}$$

The Kernel Fusion as an Optimization Problem II

Explanation

Where:

- $T_m(K_i)$ is measured execution time of the kernel $K_i \in K$
- $T_p(F_j)$ is execution time projection of new fused kernel $F_j \in F$
- $x_{ij} = 1$ when $K_i \in K$ is fused into F_j
- $K_{a \rightarrow b}$ is set of all kernels in path in G_{ooe} from kernel K_a to K_b
- *DegKin*(*K_i*, *K_j*) is number of common immediate ancestors in *G*_{ddg} for *K_i* and *K_j*
- DegKin(K_i, K_j) is n − 1, when there is path in G_{ooe} consisting of n nodes between K_i and K_j
- *DegKin*(*K_i*, *K_j*) is 0 otherwise
- *SHMEM*(*F_j*) is amount of shared memory required by new fused kernel *F_j*
- *REG*(*F_j*) is number of registers required per thread by new fused kernel *F_j*

The Line Requirement Explained

The Degree of Kinship Explained

Feasible Solution

The Order-of-execution graph of solution

It is a DAG $G_{ooefs}(F, O_s)$ where F represents new fused kernels and O_s is a set of edges defined as follows:

• $\forall F_x, F_y \in F; F_x \neq F_y; \exists K_i \in F_x \exists K_j \in F_y; (K_i, K_j) \in O \iff (F_x, F_y) \in O_s$

The Order-of-Execution Graph of Solution: Exam

int main()

//preprocessing

kernelA<<<grid,block>>>(inA, outD); kernelB<<<grid,block>>>(inF, outG, outH); kernelC<<<grid,block>>>(inH, inI, outL);

//postprocessing

Application

- It is possible to automate almost entire process
- Output of such process is a template of new kernels
- Generation of graphs is straightforward
- A modified version of GA can be used to solve combinatorial optimization problem

The Kernel fusion algorithm

- 1 Gather metadata of original kernels K_i , i = 1, ..., n
- 2 Create the dependency graph
- 3 Create the order-of-execution graph
- 4 $G_0 \leftarrow$ generate M feasible solutions as an initial population
- 5 For all $M_i \in G_i$
 - Estimate runtime of M_i
- 6 $G_t^{Se} \leftarrow$ select $N \leq M$ individuals from G_{t-1} according to selection method
- 7 $G_t^{Se} \leftarrow$ apply crossover and mutation
- 8 $G_t \leftarrow$ replace N individuals with G_t^{Se} according to selection policy
- 9 If termination criteria are not met go to step 5
- 10 Use values of the best solution as an template

Results

Feasible Solution

Reference

- Y. Lin G. Wang and W. Yi. "Kernel Fusion: An Effective Method for Better Power Efficiency on Multithreaded GPU". In: Physical and Social Computing (CPSCom) 11 (2010), pp. 344–350.
- M. Wahib and N. Maruyama. "Scalable Kernel Fusion for Memory-Bound GPU Applications". In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. 2014, pp. 191–202.
- Wikipedia: Optimization Problem. https: //en.wikipedia.org/wiki/Optimization_problem. Accessed: 2017-11-30.