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Why jumping on strings

Motivation

• Classical grammars and automata work strictly continuously

• Adaptation of classical models to work on strings discontinuously

• strongly-scattered information processing (bioinformatics,
DNA computing)

• Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Related important publications

• Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J.
Found. Comput. Sci., 2012 (citations: 34)

• Ǩrivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found.
Comput. Sci., 2015 (citations: 5)

• Ǩrivka, Z., Kučera, J. and Meduna, A.: Jumping Pure Grammars,
Computer Journal, 2018
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• Ǩrivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found.
Comput. Sci., 2015 (citations: 5)
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Grammars

• grammar G is based on rules of the form
x → y

Definition (Classical grammars)

Let z = uxv . By using x → y , G rewrites uxv to uyv .

1 selects an occurrence of x in z;
2 erase x from z;
3 G inserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv . By using x → y , G performs:

1 selects an occurrence of x in z;
2 erase x from z;
3 G inserts y anywhere in uv .
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Pure Grammars

Definition (Pure grammars)

1 they use only terminals;

2 derivations start from a starting string (axiom) σ;
3 every string they derive from σ belongs to the generated

language.

Jumping Pure Grammars 21 / 80



Pure Grammars

Definition (Pure grammars)

1 they use only terminals;
2 derivations start from a starting string (axiom) σ;

3 every string they derive from σ belongs to the generated
language.

Jumping Pure Grammars 22 / 80



Pure Grammars

Definition (Pure grammars)

1 they use only terminals;
2 derivations start from a starting string (axiom) σ;
3 every string they derive from σ belongs to the generated

language.

Jumping Pure Grammars 23 / 80



Example: Classical Grammar

Example

Classical Grammar
1 Starting nonterminal S. Rules:

S → a, S → aa

Trivially, generated language is {a,aa}.
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Example: Pure Grammar

Example

Pure Grammars
1 Starting string S. Rules:

S → a, S → aa

Then, generated language is {S,a,aa}.

2 Starting string a. Rules:

a → aa

Generated language is {a}+.
3 Starting string aa. Rules:

a → ε

Generated language is {ε,a,aa}.
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Example: Jumping Grammar

Example

Jumping Grammar
1 Starting nonterminal S. Rules:

S → aS, S → b

Trivially, generated language is {a}∗{b}{a}∗.
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Example: Jumping Pure Grammar

Example

Jumping Pure Grammar
1 Starting string ab. Rules:

a → a

Generated language is {ab,ba}.
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Preliminaries & Definitions
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Formal Language Theory - Basic Notions

• For an alphabet of symbols Σ, Σ∗ denotes the set of all
strings over Σ.

• Algebraically, Σ∗ represents the free monoid generated by
Σ under concatenation.

• The unit of Σ∗ is denoted by ε (the empty string).
• Σ+ = Σ∗ − {ε}.
• Any L ⊆ Σ∗ is a language over Σ.
• Let a ∈ Σ and w ∈ L,

• |w | denotes the length of w and
• |w |a denotes the number of occurrences of a in w .

• REG ⊂ CF ⊂ CS
• REG, CF, and CS denote the families of regular, context-free,

and context-sensitive languages, respectively.
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Pure Grammar

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, G = (Σ,P, σ), where
• Σ is an alphabet;
• P is a finite relation from Σ+ to Σ∗;
• σ ∈ Σ+ is the start string.

Any member (x , y) ∈ P is called a rule and written as x → y

Definition (Propagating Pure Grammars)

If for every x → y ∈ P, y 6= ε, G is propagating.

Definition (Context-Free Pure Grammars)

If for every x → y ∈ P, |x | = 1, G is context-free (CFPG for short).
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Derivation Modes

Definition (Derivation Modes)

Let u, v ∈ Σ∗.
Derivation step according to a mode:

1 Sequential mode: uxv s⇒ uyv in G iff there exists x → y ∈ P;

2 Jumping mode: Let w ∈ Σ∗.
(a) right mode: uxwv j⇒ uwyv in G iff x → y ∈ P or
(b) left mode: uwxv j⇒ uywv in G iff x → y ∈ P in G;

3 Parallel mode: u p⇒ v in G iff there exist
x1 → y1, x2 → y2, . . . , xn → yn ∈ P such that u = x1x2 · · · xn and
v = y1y2 · · · yn, where n ≥ 0;

4 Jumping Parallel mode: u jp⇒ v in G iff there exist
x1 → y1, x2 → y2, . . . , xn → yn ∈ P such that u = x1x2 · · · xn and
v = z1z2 · · · zn, where (z1, z2, . . . , zn) is a permutation of
(y1, y2, . . . , yn), n ≥ 0.

Definition (Generated Language)

For h ∈ {s, j,p, jp}, L(G, h⇒) = {x | σ h⇒∗ x}.
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Examples

Example (1)

Consider CFPG G = ({a,b,c,d},P,a) with

P = {a → abcd,a → a,b→ b,c → c,d → d}

Modes s⇒ and p⇒:

a s⇒ abcd s⇒ abcd s⇒ abcdbcd s⇒ abcdbcdbcd
a p⇒ abcd p⇒ abcd p⇒ abcdbcd p⇒ abcdbcdbcd

L(G, s⇒) = L(G, p⇒) = {a}{bcd}∗ ∈ REG

Modes j⇒ and jp⇒:

a j⇒ abcd j⇒ bacd j⇒ badc j⇒ bdabcdc
a jp⇒ abcd jp⇒ badc jp⇒ bdabcdc

L(G, j⇒) = L(G, jp⇒) = {w | |w |a = 1, |w |b = |w |c = |w |d} ∈
CS−CF
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Examples

Example (2)

Our goal: Language L = {a}+ ∪ {b}+ with Σ = {a,b}:
1 In classical CF grammar, G1 with s⇒:

S → aA, S → bB
A→ ε, A→ aA
B → ε, B → bB

2 In CFPG, G2 = ({a,b},P, σ) with s⇒; σ = ?. P :

a → aa, b→ bb
a → b or c → a, c → b

3 In classical CF grammar with jumping, simply use G1 with
j⇒. For instance,

S j⇒ aA j⇒ aAa j⇒ aaaA j⇒ aaa

L(G1, j⇒) = {a}+ ∪ {b}+.
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L(G1, j⇒) = {a}+ ∪ {b}+.
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Examples

Example (2)

Our goal: Language L = {a}+ ∪ {b}+ with Σ = {a,b}:
3 In CFPG, G3 = ({a,b},P,a) with p⇒ and P:

a → b, a → bb
b→ a, b→ aa

For instance, a p⇒ b p⇒ aa p⇒ bbb p⇒ aaa p⇒ · · ·

L(G3, p⇒) = {a}+ ∪ {b}+. ,
4 In CFPG grammar with jp⇒, simply use G3 with jp⇒.

For instance, a jp⇒ b jp⇒ aa jp⇒ bbb jp⇒ aaa jp⇒ · · ·
L(G3, jp⇒) = {a}+ ∪ {b}+.
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Pure-Language Families

J = Jumping, S = Sequential, P = Parallel, CF = Context-Free.
For a language family X, its propagating variant is X−ε.

1 S = {L(G, s⇒) | G is a PG};
2 JS = {L(G, j⇒) | G is a PG};
3 P = {L(G, p⇒) | G is a PG};
4 JP = {L(G, jp⇒) | G is a PG};
5 SCF = {L(G, s⇒) | G is a CFPG};
6 JSCF = {L(G, j⇒) | G is a CFPG};

7 PCF = {L(G, p⇒) | G is a CFPG};
8 JPCF = {L(G, jp⇒) | G is a CFPG};
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Results
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Hierarchy of Pure-Language Families

PCF

CF
PCF−ε

SCF

SCF−ε

JPCF

JPCF−ε
JSCF

JSCF−ε

Figure: Dashed arrow = open problem. No connection = incomparability.

Note: Two language families X and Y are incomparable iff
X 6⊆ Y and Y 6⊆ X .
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Relations between pure-language families
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Relations between pure-language families
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?

O

P

Q
?

R

S

T

`T = {ap | p is a prime} ∈ CS− (PCF ∪CF ∪ JSCF ∪ JPCF)

Idea `T /∈ JPCF: a → ε /∈ P, so σ = a2. We need a2
jp⇒ a3 by

a → aa and a → a, but we get a4 as well.
Then, JPCFu = PCFu ⊃ JSCFu = SCFu.
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Relations between pure-language families

CS
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`D = {a2n | n ≥ 0} = (PCF ∩ JPCF)− (CF ∪ JSCF)

Idea `D ∈ PCF ∩ JPCF: Take rule a → aa with σ = a.
Idea `D /∈ CF ∪ JSCF: `D is not semilinear.
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Relations between pure-language families
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`A = {a2n
b2n | n ≥ 0} = PCF− (CF ∪ JSCF ∪ JPCF)

Idea `A ∈ PCF: Take rules a → aa and b→ bb with σ = ab.
Idea `A /∈ JPCF: Show the proof by contradiction.

Jumping Pure Grammars 65 / 80

• `A



Relations between pure-language families
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`E = {ancbn | n ≥ 0} ∈ SCF− (JSCF ∪ JPCF)

Idea `E ∈ SCF: Take rule c → acb with σ = c.
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Relations between pure-language families
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`F = {aa,aab,aac,aabc} ∈ (SCF ∩ JSCF)− JPCF
Idea for `F ∈ SCF ∩ JSCF: Take σ = aabc and rules b→ ε and
c → ε.
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Relations between pure-language families
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`G = {a}+ ∈ SCF ∩ JSCF ∩ JPCF
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Relations between pure-language families
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`I = {aabb,ccdd} ∈ (PCF ∩CF)− (SCF ∪ JSCF ∪ JPCF)
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Relations between pure-language families
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`L = {ab,cd,dc} ∈ (PCF ∩CF ∩ JPCF)− (SCF ∪ JSCF)

We need to rewrite two symbols in parallel such as with
a → c,b→ d,c → d,d → c with σ = ab.
For instance, ab p⇒ cd p⇒ dc or ab jp⇒ dc.
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Relations between pure-language families
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`M = {anbn | n ≥ 1} ∈ CF− (PCF ∪ JSCF ∪ JPCF)
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Relations between pure-language families
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`O = {aabb,abab,abba,baab,baba,bbaa} ∈
(CF ∩ JSCF ∩ JPCF)− PCF
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Relations between pure-language families
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`P = {aabb,ccdd,cdcd,cddc,dccd,dcdc,ddcc} ∈
(CF ∩ JPCF)− (PCF ∪ JSCF)
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Relations between pure-language families
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`R =

{
w

∣∣∣∣ |w |a − 1 = |w |b = |w |c,
w ∈ {a,b,c}+

}
∈ (JSCF∩ JPCF)− (CF∪PCF)
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Relations between pure-language families
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`S = {âb̂ĉ} ∪
{

w
∣∣∣∣ |w |a − 1 = |w |b = |w |c,

w ∈ {a,b,c}+
}
∈

JPCF− (CF ∪ PCF ∪ JSCF)

Jumping Pure Grammars 75 / 80

• `S



Pure-Language Families over Unary Alphabet

PCF−ε
u JPCF−ε

u

PCFu JPCFu

SCFu JSCFu

SCF−ε
u JSCF−ε

u

Note: SCFu and PCF−ε
u are incomparable.
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Conclusion
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Conclusion, Future Work

• Open Problems
• Closure Properties
• Decidability (Emptiness, Universality, ...)
• Left-jumps and Right-jumps in Pure Grammars
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Thank You For Your Attention!
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