Jumping Pure Grammars

Alexander Meduna and Zbyněk Křivka

meduna@fit.vutbr.cz, krivka@fit.vutbr.cz

Talk at LTA 2018, Brno, December 12, 2018

Based on

Křivka, Z., Kučera, J., and Meduna, A.: Jumping Pure Grammars. In: The Computer Journal, 2018.

Contents of this talk:

Introduction

Preliminaries & Definitions

Introduction

Why jumping on strings

Motivation

Classical grammars and automata work strictly continuously

Why jumping on strings

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously

Why jumping on strings

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

• Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

- Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)
- Křivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found. Comput. Sci., 2015 (citations: 5)

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
 - strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

- Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)
- Křivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found. Comput. Sci., 2015 (citations: 5)
- Křivka, Z., Kučera, J. and Meduna, A.: Jumping Pure Grammars, Computer Journal, 2018

• grammar G is based on rules of the form

 $x \to y$

grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

erase x from z;

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

- selects an occurrence of x in z;
- 2 erase x from z;
- 3 G inserts y at the same position where x was.

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

2 erase x from z;

3 G inserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using $x \rightarrow y$, G performs:

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

2 erase x from z;

3 G inserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using $x \rightarrow y$, G performs:

selects an occurrence of x in z;

• grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

2 erase x from z;

3 G inserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using $x \rightarrow y$, G performs:

selects an occurrence of x in z;

erase x from z;

grammar G is based on rules of the form

$$x \to y$$

Definition (Classical grammars)

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

selects an occurrence of x in z;

2 erase x from z;

3 G inserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using $x \rightarrow y$, G performs:

- selects an occurrence of x in z;
- 2 erase x from z;
- 3 G inserts y anywhere in uv.

Definition (Pure grammars)

1 they use only terminals;

Definition (Pure grammars)

- 1 they use only terminals;
- 2 derivations start from a starting string (axiom) σ ;

Definition (Pure grammars)

- 1 they use only terminals;
- 2 derivations start from a starting string (axiom) σ ;
- 3 every string they derive from σ belongs to the generated language.

Example

Classical Grammar

1 Starting nonterminal S. Rules:

 $S \rightarrow a, S \rightarrow aa$

Trivially, generated language is $\{a, aa\}$.

Example: Pure Grammar

Example

Pure Grammars

• Starting string S. Rules:

 $S \rightarrow a, S \rightarrow aa$

Then, generated language is $\{S, a, aa\}$.

Example: Pure Grammar

T FIT

Example

Pure Grammars

1 Starting string *S*. Rules:

$$S \rightarrow a, S \rightarrow aa$$

Then, generated language is $\{S, a, aa\}$.

2 Starting string *a*. Rules:

a
ightarrow aa

Generated language is $\{a\}^+$.

Example: Pure Grammar

Example

Pure Grammars

1 Starting string *S*. Rules:

Then, generated language is $\{S, a, aa\}$.

2 Starting string *a*. Rules:

a
ightarrow aa

Generated language is $\{a\}^+$.

3 Starting string *aa*. Rules:

 $a
ightarrow \varepsilon$

Generated language is $\{\varepsilon, a, aa\}$.

Example

Jumping Grammar

1 Starting nonterminal S. Rules:

 $S \rightarrow aS, S \rightarrow b$

Trivially, generated language is $\{a\}^*\{b\}\{a\}^*$.

Example

Jumping Pure Grammar

1 Starting string *ab*. Rules:

a
ightarrow a

Generated language is {ab, ba}.

Preliminaries & Definitions

Formal Language Theory - Basic Notions

- For an alphabet of symbols Σ, Σ* denotes the set of all strings over Σ.
- Algebraically, Σ^* represents the free monoid generated by Σ under concatenation.
- The unit of Σ^* is denoted by ε (the empty string).
- $\Sigma^+ = \Sigma^* \{\varepsilon\}.$
- Any $L \subseteq \Sigma^*$ is a language over Σ .
- Let $a \in \Sigma$ and $w \in L$,
 - |w| denotes the length of w and
 - $|w|_a$ denotes the number of occurrences of a in w.
- REG \subset CF \subset CS
 - **REG**, **CF**, and **CS** denote the families of regular, context-free, and context-sensitive languages, respectively.

Pure Grammar

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G = (\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- *P* is a finite relation from Σ^+ to Σ^* ;
- $\sigma \in \Sigma^+$ is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \to y$

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G = (\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- *P* is a finite relation from Σ^+ to Σ^* ;
- $\sigma \in \Sigma^+$ is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \to y$

Definition (Propagating Pure Grammars)

If for every $x \to y \in P$, $y \neq \varepsilon$, G is propagating.

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G = (\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- *P* is a finite relation from Σ^+ to Σ^* ;
- $\sigma \in \Sigma^+$ is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \to y$

Definition (Propagating Pure Grammars)

If for every $x \to y \in P$, $y \neq \varepsilon$, G is propagating.

Definition (Context-Free Pure Grammars)

If for every $x \to y \in P$, |x| = 1, G is context-free (CFPG for short).

Derivation Modes

Definition (Derivation Modes)

Let $u, v \in \Sigma^*$. Derivation step according to a mode:

1 Sequential mode: $uxv_s \Rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;

Definition (Derivation Modes)

Let $u, v \in \Sigma^*$.

Derivation step according to a mode:

1 Sequential mode: $uxv \rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;

2 Jumping mode: Let $w \in \Sigma^*$. (a) right mode: $uxwv \Rightarrow uwyv$ in G iff $x \rightarrow y \in P$ or (b) left mode: $uwxv \Rightarrow uywv$ in G iff $x \rightarrow y \in P$ in G;

Let $u, v \in \Sigma^*$.

Derivation step according to a mode:

- **1** Sequential mode: $uxv \rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;
- 2 Jumping mode: Let $w \in \Sigma^*$. (a) right mode: $uxwv_j \Rightarrow uwyv$ in G iff $x \rightarrow y \in P$ or (b) left mode: $uwxv_j \Rightarrow uywv$ in G iff $x \rightarrow y \in P$ in G;
- **3** Parallel mode: $u_p \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \dots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = y_1 y_2 \cdots y_n$, where $n \ge 0$;

Let $u, v \in \Sigma^*$.

Derivation step according to a mode:

- **1** Sequential mode: $uxv_s \Rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;
- 2 Jumping mode: Let $w \in \Sigma^*$. (a) right mode: $uxwv_j \Rightarrow uwyv$ in G iff $x \rightarrow y \in P$ or (b) left mode: $uwxv_j \Rightarrow uywv$ in G iff $x \rightarrow y \in P$ in G;
- **3** Parallel mode: $u_p \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \dots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = y_1 y_2 \cdots y_n$, where $n \ge 0$;
- **4** Jumping Parallel mode: $u_{jp} \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \ldots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = z_1 z_2 \cdots z_n$, where (z_1, z_2, \ldots, z_n) is a permutation of $(y_1, y_2, \ldots, y_n), n \ge 0$.

Let $u, v \in \Sigma^*$.

Derivation step according to a mode:

- **1** Sequential mode: $uxv \rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;
- 2 Jumping mode: Let $w \in \Sigma^*$. (a) right mode: $uxwv_j \Rightarrow uwyv$ in G iff $x \rightarrow y \in P$ or (b) left mode: $uwxv_j \Rightarrow uywv$ in G iff $x \rightarrow y \in P$ in G;
- **3** Parallel mode: $u_p \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \dots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = y_1 y_2 \cdots y_n$, where $n \ge 0$;
- **4** Jumping Parallel mode: $u_{jp} \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \ldots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = z_1 z_2 \cdots z_n$, where (z_1, z_2, \ldots, z_n) is a permutation of $(y_1, y_2, \ldots, y_n), n \ge 0$.

Let $u, v \in \Sigma^*$.

Derivation step according to a mode:

- **1** Sequential mode: $uxv_s \Rightarrow uyv$ in G iff there exists $x \rightarrow y \in P$;
- 2 Jumping mode: Let w ∈ Σ*.
 (a) right mode: uxwv → uwyv in G iff x → y ∈ P or
 (b) left mode: uwxv → uywv in G iff x → y ∈ P in G;
- **3** Parallel mode: $u_p \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \dots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = y_1 y_2 \cdots y_n$, where $n \ge 0$;
- **4** Jumping Parallel mode: $u_{jp} \Rightarrow v$ in *G* iff there exist $x_1 \rightarrow y_1, x_2 \rightarrow y_2, \ldots, x_n \rightarrow y_n \in P$ such that $u = x_1 x_2 \cdots x_n$ and $v = z_1 z_2 \cdots z_n$, where (z_1, z_2, \ldots, z_n) is a permutation of $(y_1, y_2, \ldots, y_n), n \ge 0$.

Definition (Generated Language)

For
$$h \in \{s, j, p, jp\}$$
, $L(G, {}_h \Rightarrow) = \{x \mid \sigma {}_h \Rightarrow^* x\}$.

Example (1)

Consider CFPG $G = (\{a, b, c, d\}, P, a)$ with

$$P = \{a \rightarrow abcd, a \rightarrow a, b \rightarrow b, c \rightarrow c, d \rightarrow d\}$$

Modes $_{s} \Rightarrow$ and $_{p} \Rightarrow$:

 $\begin{array}{l} a_{s} \Rightarrow abcd_{s} \Rightarrow abcd_{s} \Rightarrow abcdbcd_{s} \Rightarrow abcdbcdbcd\\ a_{p} \Rightarrow abcd_{p} \Rightarrow abcd_{p} \Rightarrow abcdbcd_{p} \Rightarrow abcdbcdbcd\\ L(G,_{s} \Rightarrow) = L(G,_{p} \Rightarrow) = \{a\}\{bcd\}^{*} \in \textbf{REG}\\ \text{Modes}_{j} \Rightarrow and_{jp} \Rightarrow:\\ a_{j} \Rightarrow abcd_{j} \Rightarrow bacd_{j} \Rightarrow badc_{j} \Rightarrow bdabcdc\\ a_{jp} \Rightarrow abcd_{jp} \Rightarrow badc_{jp} \Rightarrow bdabcdc\\ L(G,_{j} \Rightarrow) = L(G,_{jp} \Rightarrow) = \{w \mid |w|_{a} = 1, |w|_{b} = |w|_{c} = |w|_{d}\} \in\\ \textbf{CS} - \textbf{CF}\end{array}$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$:

1 In classical CF grammar, G_1 with $_s \Rightarrow$:

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$:

1 In classical CF grammar, G_1 with $_s \Rightarrow$:

 $S \rightarrow aA, S \rightarrow bB$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$:

1 In classical CF grammar, G_1 with $_s \Rightarrow$:

 $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon, A \rightarrow aA$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$:

1 In classical CF grammar, G_1 with $_s \Rightarrow$:

 $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon, A \rightarrow aA$ $B \rightarrow \varepsilon, B \rightarrow bB$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$:

1 In classical CF grammar, G_1 with $_s \Rightarrow$:

 $S \rightarrow aA, S \rightarrow bB \\ A \rightarrow \varepsilon, A \rightarrow aA \\ B \rightarrow \varepsilon, B \rightarrow bB$

2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $s \Rightarrow; \sigma = ?. P :$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: 1 In classical CF grammar, G_1 with $_s \Rightarrow$: $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon, A \rightarrow aA$ $B \rightarrow \varepsilon, B \rightarrow bB$ 2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $_s \Rightarrow$; $\sigma =$?. P: $a \rightarrow aa, b \rightarrow bb$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: 1 In classical CF grammar, G_1 with $_s \Rightarrow$: $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon, A \rightarrow aA$ $B \rightarrow \varepsilon, B \rightarrow bB$ 2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $_s \Rightarrow$; $\sigma =$?. P: $a \rightarrow aa, b \rightarrow bb$ $a \rightarrow b$ or $c \rightarrow a, c \rightarrow b$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: 1 In classical CF grammar, G_1 with $_s \Rightarrow$: $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon, A \rightarrow aA$ $B \rightarrow \varepsilon, B \rightarrow bB$ 2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $_s \Rightarrow$; $\sigma =$?. P: $a \rightarrow aa, b \rightarrow bb$ $a \rightarrow b \text{ or } c \rightarrow a, c \rightarrow b$ 3 In classical CF grammar with jumping, simply use G_1 with

 $_{i}$ \Rightarrow . For instance,

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: 1 In classical CF grammar, G_1 with \Rightarrow : $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon A \rightarrow \alpha A$ $B \rightarrow \varepsilon, B \rightarrow bB$ 2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $\Rightarrow; \sigma = ?. P$: $a \rightarrow aa, b \rightarrow bb$ $a \rightarrow b \text{ or } \mathbf{c} \rightarrow a, \mathbf{c} \rightarrow b$ **3** In classical CF grammar with jumping, simply use G_1 with $i \Rightarrow$. For instance, $S_i \Rightarrow aA_i \Rightarrow aAa_i \Rightarrow aaaA_i \Rightarrow aaa$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: 1 In classical CF grammar, G_1 with \Rightarrow : $S \rightarrow aA, S \rightarrow bB$ $A \rightarrow \varepsilon A \rightarrow \alpha A$ $B \rightarrow \varepsilon, B \rightarrow bB$ 2 In CFPG, $G_2 = (\{a, b\}, P, \sigma)$ with $\Rightarrow; \sigma = ?. P$: $a \rightarrow aa, b \rightarrow bb$ $a \rightarrow b \text{ or } c \rightarrow a, c \rightarrow b$ **3** In classical CF grammar with jumping, simply use G_1 with $i \Rightarrow$. For instance, $S_i \Rightarrow aA_i \Rightarrow aAa_i \Rightarrow aaaA_i \Rightarrow aaa$ $L(G_{1,i} \Rightarrow) = \{a\}^{+} \cup \{b\}^{+}.$

Example (2)

Our goal: Language
$$L = \{a\}^+ \cup \{b\}^+$$
 with $\Sigma = \{a, b\}$:

3 In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P:

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: **3** In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \rightarrow b, a \rightarrow bb$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: (3) In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \rightarrow b, a \rightarrow bb$ $b \rightarrow a, b \rightarrow aa$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: (3) In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \to b, a \to bb$ $b \to a, b \to aa$ For instance, $a_p \Rightarrow b_p \Rightarrow aa_p \Rightarrow bbb_p \Rightarrow aaa_p \Rightarrow \cdots$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: (a) In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \rightarrow b, a \rightarrow bb$ $b \rightarrow a, b \rightarrow aa$ For instance, $a_p \Rightarrow b_p \Rightarrow aa_p \Rightarrow bbb_p \Rightarrow aaa_p \Rightarrow \cdots$ $L(G_{3}, _p \Rightarrow) = \{a\}^+ \cup \{b\}^+$. $\textcircled{\odot}$

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: (a) In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \rightarrow b, a \rightarrow bb$ $b \rightarrow a, b \rightarrow aa$ For instance, $a_p \Rightarrow b_p \Rightarrow aa_p \Rightarrow bbb_p \Rightarrow aaa_p \Rightarrow \cdots$ $L(G_3, _p \Rightarrow) = \{a\}^+ \cup \{b\}^+$. \bigcirc

In CFPG grammar with $_{jp}$ ⇒, simply use G_3 with $_{jp}$ ⇒.

Example (2)

Our goal: Language $L = \{a\}^+ \cup \{b\}^+$ with $\Sigma = \{a, b\}$: (a) In CFPG, $G_3 = (\{a, b\}, P, a)$ with $_p \Rightarrow$ and P: $a \rightarrow b, a \rightarrow bb$ $b \rightarrow a, b \rightarrow aa$ For instance, $a_p \Rightarrow b_p \Rightarrow aa_p \Rightarrow bbb_p \Rightarrow aaa_p \Rightarrow \cdots$ $L(G_3, _p \Rightarrow) = \{a\}^+ \cup \{b\}^+$. (c) (a) In CFPG grammar with $_{jp} \Rightarrow$, simply use G_3 with $_{jp} \Rightarrow$. For instance, $a_{jp} \Rightarrow b_{jp} \Rightarrow aa_{jp} \Rightarrow bbb_{jp} \Rightarrow aaa_{jp} \Rightarrow \cdots$

 $L(G_{3,in} \Rightarrow) = \{a\}^+ \cup \{b\}^+.$

T FIT

J = Jumping, S = Sequential, P = Parallel, CF = Context-Free. For a language family X, its propagating variant is $X^{-\varepsilon}$.

8 JPCF = {
$$L(G, _{jp} \Rightarrow) \mid G \text{ is a CFPG}$$
};

Results

Hierarchy of Pure-Language Families

Figure: Dashed arrow = open problem. No connection = incomparability.

Note: Two language families X and Y are incomparable iff $X \not\subseteq Y$ and $Y \not\subseteq X$.

FIT

 $\ell_T = \{a^p \mid p \text{ is a prime}\} \in \mathbb{CS} - (\mathsf{PCF} \cup \mathsf{CF} \cup \mathsf{JSCF} \cup \mathsf{JPCF})$ $\mathsf{Idea} \ \ell_T \notin \mathsf{JPCF}: \ a \to \varepsilon \notin P, \text{ so } \sigma = a^2. \text{ We need } a^2_{jp} \Rightarrow a^3 \text{ by}$ $a \to aa \text{ and } a \to a, \text{ but we get } a^4 \text{ as well.}$ $\mathsf{Then}, \mathsf{JPCF}_u = \mathsf{PCF}_u \supset \mathsf{JSCF}_u = \mathsf{SCF}_u.$

 $\ell_D = \{a^{2^n} \mid n \ge 0\} = (\mathsf{PCF} \cap \mathsf{JPCF}) - (\mathsf{CF} \cup \mathsf{JSCF})$ Idea $\ell_D \in \mathsf{PCF} \cap \mathsf{JPCF}$: Take rule $a \to aa$ with $\sigma = a$. Idea $\ell_D \notin \mathsf{CF} \cup \mathsf{JSCF}$: ℓ_D is not semilinear.

 $\ell_A = \{a^{2^n}b^{2^n} \mid n \ge 0\} = \mathbf{PCF} - (\mathbf{CF} \cup \mathbf{JSCF} \cup \mathbf{JPCF})$

Idea $\ell_A \in \mathbf{PCF}$: Take rules $a \to aa$ and $b \to bb$ with $\sigma = ab$. Idea $\ell_A \notin \mathbf{JPCF}$: Show the proof by contradiction.

 $\ell_E = \{a^n c b^n \mid n \ge 0\} \in \mathsf{SCF} - (\mathsf{JSCF} \cup \mathsf{JPCF})$ Idea $\ell_E \in \mathsf{SCF}$: Take rule $c \to acb$ with $\sigma = c$.

 $\ell_F = \{aa, aab, aac, aabc\} \in (SCF \cap JSCF) - JPCF$ Idea for $\ell_F \in SCF \cap JSCF$: Take $\sigma = aabc$ and rules $b \to \varepsilon$ and $c \to \varepsilon$.

$\ell_G = \{ \alpha \}^+ \in \text{SCF} \cap \text{JSCF} \cap \text{JPCF}$

Relations between pure-language families

 $\ell_{l} = \{aabb, ccdd\} \in (\textbf{PCF} \cap \textbf{CF}) - (\textbf{SCF} \cup \textbf{JSCF} \cup \textbf{JPCF})$

 $\ell_L = \{ab, cd, dc\} \in (\mathsf{PCF} \cap \mathsf{CF} \cap \mathsf{JPCF}) - (\mathsf{SCF} \cup \mathsf{JSCF})$

We need to rewrite two symbols in parallel such as with $a \rightarrow c, b \rightarrow d, c \rightarrow d, d \rightarrow c$ with $\sigma = ab$. For instance, $ab_{p} \Rightarrow cd_{p} \Rightarrow dc$ or $ab_{ip} \Rightarrow dc$.

$\ell_M = \{ a^n b^n \mid n \ge 1 \} \in \mathbf{CF} - (\mathbf{PCF} \cup \mathbf{JSCF} \cup \mathbf{JPCF})$

 $\ell_{O} = \{aabb, abab, abba, baab, baba, bbaa\} \in (CF \cap JSCF \cap JPCF) - PCF$

 $\ell_{P} = \{aabb, ccdd, cdcd, cddc, dccd, dcdc, ddcc\} \in (CF \cap JPCF) - (PCF \cup JSCF)$

$$\ell_{\mathcal{R}} = \left\{ w \left| \begin{array}{c} |w|_{a} - 1 = |w|_{b} = |w|_{c}, \\ w \in \{a, b, c\}^{+} \end{array} \right\} \in (\mathsf{JSCF} \cap \mathsf{JPCF}) - (\mathsf{CF} \cup \mathsf{PCF}) \right\}$$

$$\ell_{S} = \{\hat{a}\hat{b}\hat{c}\} \cup \left\{ w \middle| \begin{array}{c} |w|_{a} - 1 = |w|_{b} = |w|_{c}, \\ w \in \{a, b, c\}^{+} \end{array} \right\} \in$$

JPCF - (CF \cup PCF \cup JSCF)

Pure-Language Families over Unary Alphabe

Pure-Language Families over Unary Alphabe

Note: **SCF**_{*u*} and **PCF**^{$-\varepsilon$} are incomparable.

Conclusion

- Open Problems
- Closure Properties
- Decidability (Emptiness, Universality, ...)
- Left-jumps and Right-jumps in Pure Grammars

Thank You For Your Attention!