Jumping Pure Grammars

Alexander Meduna and Zbyněk Křivka

meduna@fit.vutbr.cz, krivka@fit.vutbr.cz

- | BRNO FACULTY |
| :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |

Talk at LTA 2018, Brno,

- Based on

Krivka, Z., Kučera, J., and Meduna, A.: Jumping Pure Grammars. In: The Computer Journal, 2018.

Contents of this talk:

- Introduction
- Preliminaries \& Definitions
\square Results
\square Conclusion

Introduction

Motivation

- Classical grammars and automata work strictly continuously

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

- Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

- Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)
- Kǐivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found. Comput. Sci., 2015 (citations: 5)

Motivation

- Classical grammars and automata work strictly continuously
- Adaptation of classical models to work on strings discontinuously
- strongly-scattered information processing (bioinformatics, DNA computing)
- Keep the structure of classical models unchanged. Change the way they work so they jump on strings.

Related important publications

- Meduna, A. and Zemek, P.: Jumping Finite Automata, Int. J. Found. Comput. Sci., 2012 (citations: 34)
- Kǐivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found. Comput. Sci., 2015 (citations: 5)
- Krivka, Z., Kučera, J. and Meduna, A.: Jumping Pure Grammars, Computer Journal, 2018
- grammar G is based on rules of the form

$$
x \rightarrow y
$$

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)
Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) G inserts y at the same position where x was.

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ performs:

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ performs:
(1) selects an occurrence of x in z;

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ performs:
(1) selects an occurrence of x in z;
(2) erase x from z;

- grammar G is based on rules of the form

$$
x \rightarrow y
$$

Definition (Classical grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites uxv to uyv.
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let $z=u x v$. By using $x \rightarrow y, G$ performs:
(1) selects an occurrence of x in z;
(2) erase x from z;
(3) Ginserts y anywhere in uv.

Definition (Pure grammars)

(1) they use only terminals;

Definition (Pure grammars)

(1) they use only terminals;
(2) derivations start from a starting string (axiom) σ;

Definition (Pure grammars)

(1) they use only terminals;
(2) derivations start from a starting string (axiom) σ;
(3) every string they derive from σ belongs to the generated language.

Example

Classical Grammar
(1) Starting nonterminal S. Rules:

$$
S \rightarrow a, S \rightarrow a a
$$

Trivially, generated language is $\{a, a a\}$.

Example

Pure Grammars
(1) Starting string S. Rules:

$$
S \rightarrow a, S \rightarrow a a
$$

Then, generated language is $\{S, a, a a\}$.

Example

Pure Grammars

(1) Starting string S. Rules:

$$
S \rightarrow a, S \rightarrow a a
$$

Then, generated language is $\{S, a, a a\}$.
2 Starting string a. Rules:

$$
a \rightarrow a a
$$

Generated language is $\{a\}^{+}$.

Example

Pure Grammars

(1) Starting string S. Rules:

$$
S \rightarrow a, S \rightarrow a a
$$

Then, generated language is $\{S, a, a a\}$.
(2) Starting string a. Rules:

$$
a \rightarrow a a
$$

Generated language is $\{a\}^{+}$.
(3) Starting string aa. Rules:

$$
a \rightarrow \varepsilon
$$

Generated language is $\{\varepsilon, a, a a\}$.

Example

Jumping Grammar
(1) Starting nonterminal S. Rules:

$$
S \rightarrow a S, S \rightarrow b
$$

Trivially, generated language is $\{a\}^{*}\{b\}\{a\}^{*}$.

Example

Jumping Pure Grammar
(1) Starting string $a b$. Rules:

$$
a \rightarrow a
$$

Generated language is $\{a b, b a\}$.

Preliminaries \& Definitions

- For an alphabet of symbols Σ, Σ^{*} denotes the set of all strings over Σ.
- Algebraically, Σ^{*} represents the free monoid generated by Σ under concatenation.
- The unit of Σ^{*} is denoted by ε (the empty string).
- $\Sigma^{+}=\Sigma^{*}-\{\varepsilon\}$.
- Any $L \subseteq \Sigma^{*}$ is a language over Σ.
- Let $a \in \Sigma$ and $w \in L$,
- $|w|$ denotes the length of w and
- $|w| a$ denotes the number of occurrences of a in w.
- $\mathbf{R E G} \subset \mathbf{C F} \subset \mathbf{C S}$
- REG, CF, and CS denote the families of regular, context-free, and context-sensitive languages, respectively.

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G=(\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- P is a finite relation from Σ^{+}to Σ^{*};
- $\sigma \in \Sigma^{+}$is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \rightarrow y$

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G=(\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- P is a finite relation from Σ^{+}to Σ^{*};
- $\sigma \in \Sigma^{+}$is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \rightarrow y$

Definition (Propagating Pure Grammars)

If for every $x \rightarrow y \in P, y \neq \varepsilon, G$ is propagating.

Definition (Pure Grammars)

A pure grammar (PG for short) is a triplet, $G=(\Sigma, P, \sigma)$, where

- Σ is an alphabet;
- P is a finite relation from Σ^{+}to Σ^{*};
- $\sigma \in \Sigma^{+}$is the start string.

Any member $(x, y) \in P$ is called a rule and written as $x \rightarrow y$

Definition (Propagating Pure Grammars)

If for every $x \rightarrow y \in P, y \neq \varepsilon, G$ is propagating.

Definition (Context-Free Pure Grammars)

If for every $x \rightarrow y \in P,|x|=1, G$ is context-free (CFPG for short).

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;
(2) Jumping mode: Let $w \in \Sigma^{*}$.
(a) right mode: $u x W v_{j} \Rightarrow u w y v$ in G iff $x \rightarrow y \in P$ or
(b) left mode: $u w x v_{j} \Rightarrow u y w v$ in G iff $x \rightarrow y \in P$ in G;

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v{ }_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;
(2) Jumping mode: Let $w \in \Sigma^{*}$.
(a) right mode: $u x W v_{j} \Rightarrow u w y v$ in G iff $x \rightarrow y \in P$ or
(b) left mode: $u w x v_{j} \Rightarrow u y w v$ in G iff $x \rightarrow y \in P$ in G;
(3) Parallel mode: $u_{p} \Rightarrow v$ in G iff there exist
$x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and
$v=y_{1} y_{2} \cdots y_{n}$, where $n \geq 0$;

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;
(2) Jumping mode: Let $w \in \Sigma^{*}$.
(a) right mode: $u x W v_{j} \Rightarrow u w y v$ in G iff $x \rightarrow y \in P$ or
(b) left mode: $u w x v_{j} \Rightarrow u y w v$ in G iff $x \rightarrow y \in P$ in G;
(3) Parallel mode: $u_{p} \Rightarrow v$ in G iff there exist
$x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and
$v=y_{1} y_{2} \cdots y_{n}$, where $n \geq 0$;
(4) Jumping Parallel mode: $u_{j p} \Rightarrow v$ in G iff there exist $x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and $v=z_{1} z_{2} \cdots z_{n}$, where $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a permutation of $\left(y_{1}, y_{2}, \ldots, y_{n}\right), n \geq 0$.

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;
(2) Jumping mode: Let $w \in \Sigma^{*}$.
(a) right mode: $u x W v_{j} \Rightarrow u w y v$ in G iff $x \rightarrow y \in P$ or
(b) left mode: $u w x v_{j} \Rightarrow u y w v$ in G iff $x \rightarrow y \in P$ in G;
(3) Parallel mode: $u_{p} \Rightarrow v$ in G iff there exist
$x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and
$v=y_{1} y_{2} \cdots y_{n}$, where $n \geq 0$;
(4) Jumping Parallel mode: $u_{j p} \Rightarrow v$ in G iff there exist $x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and $v=z_{1} z_{2} \cdots z_{n}$, where $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a permutation of $\left(y_{1}, y_{2}, \ldots, y_{n}\right), n \geq 0$.

Definition (Derivation Modes)

Let $u, v \in \Sigma^{*}$.
Derivation step according to a mode:
(1) Sequential mode: $u x v_{s} \Rightarrow u y v$ in G iff there exists $x \rightarrow y \in P$;
(2) Jumping mode: Let $w \in \Sigma^{*}$.
(a) right mode: $u x W v_{j} \Rightarrow u w y v$ in G iff $x \rightarrow y \in P$ or
(b) left mode: $u w x v_{j} \Rightarrow u y w v$ in G iff $x \rightarrow y \in P$ in G;
(3) Parallel mode: $u_{p} \Rightarrow v$ in G iff there exist
$x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and
$v=y_{1} y_{2} \cdots y_{n}$, where $n \geq 0$;
(4) Jumping Parallel mode: $u_{j p} \Rightarrow v$ in G iff there exist
$x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n} \in P$ such that $u=x_{1} x_{2} \cdots x_{n}$ and $v=z_{1} z_{2} \cdots z_{n}$, where $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a permutation of $\left(y_{1}, y_{2}, \ldots, y_{n}\right), n \geq 0$.

Definition (Generated Language)

For $h \in\{s, j, p, j p\}, L\left(G,{ }_{h} \Rightarrow\right)=\left\{x \mid \sigma_{h} \Rightarrow^{*} x\right\}$.

Example (1)

Consider CFPG $G=(\{a, b, c, d\}, P, a)$ with

$$
P=\{a \rightarrow a b c d, a \rightarrow a, b \rightarrow b, c \rightarrow c, d \rightarrow d\}
$$

Modes $_{s} \Rightarrow$ and $_{p} \Rightarrow$:

$$
\begin{aligned}
& a_{s} \Rightarrow a b c d_{s} \Rightarrow a b c d_{s} \Rightarrow a b c d b c d_{s} \Rightarrow a b c d b c d b c d \\
& a_{p} \Rightarrow a b c d_{p} \Rightarrow a b c d_{p} \Rightarrow a b c d b c d_{p} \Rightarrow a b c d b c d b c d \\
& L\left(G,{ }_{s} \Rightarrow\right)=L\left(G,_{p} \Rightarrow\right)=\{a\}\{b c d\}^{*} \in \text { REG }
\end{aligned}
$$

Modes $_{j} \Rightarrow$ and $_{j p} \Rightarrow$:

$$
\begin{aligned}
& a_{j} \Rightarrow \text { abcd }_{j} \Rightarrow \text { bacd }_{j} \Rightarrow \text { badc }_{j} \Rightarrow \text { bdabcdc } \\
& a_{j p} \Rightarrow \text { abcd }_{j p} \Rightarrow \text { badc }_{j p} \Rightarrow \text { bdabcdc }
\end{aligned}
$$

$L\left(G,{ }_{j} \Rightarrow\right)=L\left(G, j_{p} \Rightarrow\right)=\left\{\left.w| | w\right|_{a}=1,|w|_{b}=|w|_{c}=|w| d\right\} \in$
CS - CF

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{l} with ${ }_{s} \Rightarrow$:

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{l} with $_{s} \Rightarrow$:

$$
S \rightarrow a A, S \rightarrow b B
$$

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{l} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A
\end{aligned}
$$

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{l} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $G_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $\mathrm{G}_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

$$
a \rightarrow a a, b \rightarrow b b
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $\mathrm{G}_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

$$
\begin{aligned}
& a \rightarrow a a, b \rightarrow b b \\
& a \rightarrow b \text { or } c \rightarrow a, c \rightarrow b
\end{aligned}
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $\mathrm{G}_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

$$
\begin{aligned}
& a \rightarrow a a, b \rightarrow b b \\
& a \rightarrow b \text { or } c \rightarrow a, c \rightarrow b
\end{aligned}
$$

(3) In classical CF grammar with jumping, simply use G_{1} with $j \Rightarrow$. For instance,

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $G_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

$$
\begin{aligned}
& a \rightarrow a a, b \rightarrow b b \\
& a \rightarrow b \text { or } c \rightarrow a, c \rightarrow b
\end{aligned}
$$

(3) In classical CF grammar with jumping, simply use G_{1} with $j \Rightarrow$. For instance,

$$
S_{j} \Rightarrow a A_{j} \Rightarrow a A a_{j} \Rightarrow a a a A_{j} \Rightarrow a a a
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(1) In classical CF grammar, G_{1} with ${ }_{s} \Rightarrow$:

$$
\begin{aligned}
& S \rightarrow a A, S \rightarrow b B \\
& A \rightarrow \varepsilon, A \rightarrow a A \\
& B \rightarrow \varepsilon, B \rightarrow b B
\end{aligned}
$$

(2) In CFPG, $G_{2}=(\{a, b\}, P, \sigma)$ with $_{s} \Rightarrow ; \sigma=$?. P :

$$
\begin{aligned}
& a \rightarrow a a, b \rightarrow b b \\
& a \rightarrow b \text { or } c \rightarrow a, c \rightarrow b
\end{aligned}
$$

(3) In classical CF grammar with jumping, simply use G_{1} with $j \Rightarrow$. For instance,

$$
S_{j} \Rightarrow a A_{j} \Rightarrow a A a_{j} \Rightarrow a a a A_{j} \Rightarrow a a a
$$

$$
L\left(G_{1, j} \Rightarrow\right)=\{a\}^{+} \cup\{b\}^{+} .
$$

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $\mathcal{G}_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $G_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
a \rightarrow b, a \rightarrow b b
$$

Example (2)
Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $\mathcal{G}_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
\begin{aligned}
& a \rightarrow b, a \rightarrow b b \\
& b \rightarrow a, b \rightarrow a a
\end{aligned}
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $G_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
\begin{aligned}
& a \rightarrow b, a \rightarrow b b \\
& b \rightarrow a, b \rightarrow a a
\end{aligned}
$$

For instance, $a_{p} \Rightarrow b_{p} \Rightarrow a a_{p} \Rightarrow b b b_{p} \Rightarrow a a a_{p} \Rightarrow \cdots$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $G_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
\begin{aligned}
& a \rightarrow b, a \rightarrow b b \\
& b \rightarrow a, b \rightarrow a a
\end{aligned}
$$

For instance, $a_{p} \Rightarrow b_{p} \Rightarrow a a_{p} \Rightarrow b b b_{p} \Rightarrow a a a_{p} \Rightarrow \cdots$

$$
L\left(G_{3}, p \Rightarrow\right)=\{a\}^{+} \cup\{b\}^{+} . \odot
$$

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $G_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
\begin{aligned}
& a \rightarrow b, a \rightarrow b b \\
& b \rightarrow a, b \rightarrow a a
\end{aligned}
$$

For instance, $a_{p} \Rightarrow b_{p} \Rightarrow a a_{p} \Rightarrow b b b_{p} \Rightarrow a a a_{p} \Rightarrow \cdots$

$$
L\left(G_{3}, p \Rightarrow\right)=\{a\}^{+} \cup\{b\}^{+} . \odot
$$

(4) In CFPG grammar with ${ }_{j p} \Rightarrow$, simply use G_{3} with ${ }_{j p} \Rightarrow$.

Example (2)

Our goal: Language $L=\{a\}^{+} \cup\{b\}^{+}$with $\Sigma=\{a, b\}$:
(3) In CFPG, $G_{3}=(\{a, b\}, P, a)$ with $_{p} \Rightarrow$ and P :

$$
\begin{aligned}
& a \rightarrow b, a \rightarrow b b \\
& b \rightarrow a, b \rightarrow a a
\end{aligned}
$$

For instance, $a_{p} \Rightarrow b_{p} \Rightarrow a a_{p} \Rightarrow b b b_{p} \Rightarrow a a a_{p} \Rightarrow \cdots$
$L\left(G_{3},{ }_{p} \Rightarrow\right)=\{a\}^{+} \cup\{b\}^{+} . \odot$
(4) In CFPG grammar with ${ }_{j p} \Rightarrow$, simply use G_{3} with ${ }_{j p} \Rightarrow$.

For instance, $a_{j p} \Rightarrow b_{j p} \Rightarrow a a_{j p} \Rightarrow b b b_{j p} \Rightarrow a a a_{j p} \Rightarrow \cdots$ $L\left(G_{3},{ }_{j p} \Rightarrow\right)=\{a\}^{+} \cup\{b\}^{+}$.
$\mathbf{J}=$ Jumping, $\mathbf{S}=$ Sequential, $\mathbf{P}=$ Parallel, CF $=$ Context-Free.
For a language family \mathbf{X}, its propagating variant is $\mathbf{X}^{-\varepsilon}$.
(1) $\mathbf{S}=\left\{L\left(G,{ }_{s} \Rightarrow\right) \mid G\right.$ is a PG $\}$;
(2) $\mathbf{J S}=\{L(G, j \Rightarrow) \mid G$ is a PG $\}$;
(3) $\mathbf{P}=\left\{L\left(G,{ }_{p} \Rightarrow\right) \mid G\right.$ is a $\left.P G\right\}$;
(4) $\mathbf{J P}=\left\{L\left(G,{ }_{j p} \Rightarrow\right) \mid G\right.$ is a PG $\}$;
(5) $\operatorname{SCF}=\left\{L\left(G,{ }_{s} \Rightarrow\right) \mid G\right.$ is a CFPG $\}$;
(6) JSCF $=\{L(G, j \Rightarrow) \mid G$ is a CFPG $\}$;
(7) $\operatorname{PCF}=\left\{L\left(G,{ }_{p} \Rightarrow\right) \mid G\right.$ is a CFPG $\}$;
(8) JPCF $=\left\{L\left(G,{ }_{j p} \Rightarrow\right) \mid G\right.$ is a CFPG $\}$;

Results

Figure: Dashed arrow = open problem. No connection = incomparability.

Note: Two language families X and Y are incomparable iff $X \nsubseteq Y$ and $Y \nsubseteq X$.

$\ell_{T}=\left\{a^{p} \mid p\right.$ is a prime $\} \in \mathbf{C S}-(\mathbf{P C F} \cup \mathbf{C F} \cup \mathbf{J S C F} \cup \mathbf{J P C F})$ Idea $\ell_{T} \notin$ JPCF: $a \rightarrow \varepsilon \notin P$, so $\sigma=a^{2}$. We need $a^{2}{ }_{j p} \Rightarrow a^{3}$ by $a \rightarrow a a$ and $a \rightarrow a$, but we get a^{4} as well.
Then, $\mathbf{J P C F}_{u}=\mathbf{P C F}_{u} \supset \mathrm{JSCF}_{u}=\mathbf{S C F}_{u}$.

$\ell_{D}=\left\{a^{2^{n}} \mid n \geq 0\right\}=($ PCF $\cap \mathbf{J P C F})-(\mathbf{C F} \cup \mathbf{J S C F})$
Idea $\ell_{D} \in \mathbf{P C F} \cap$ JPCF: Take rule $a \rightarrow a a$ with $\sigma=a$.
Idea $\ell_{D} \notin \mathbf{C F} \cup J S C F: \ell_{D}$ is not semilinear.

$\ell_{A}=\left\{a^{2^{n}} b^{2^{n}} \mid n \geq 0\right\}=$ PCF $-(\mathbf{C F} \cup$ JSCF \cup JPCF $)$
Idea $\ell_{A} \in$ PCF: Take rules $a \rightarrow a a$ and $b \rightarrow b b$ with $\sigma=a b$. Idea $\ell_{A} \notin$ JPCF: Show the proof by contradiction.

$\ell_{E}=\left\{a^{n} c b^{n} \mid n \geq 0\right\} \in \mathbf{S C F}-($ JSCF \cup JPCF $)$ Idea $\ell_{E} \in \mathbf{S C F}$: Take rule $c \rightarrow$ acb with $\sigma=c$.

$\ell_{F}=\{a a, a a b, a a c, a a b c\} \in(S C F \cap J S C F)-\mathbf{J P C F}$
Idea for $\ell_{F} \in \mathbf{S C F} \cap$ JSCF: Take $\sigma=a a b c$ and rules $b \rightarrow \varepsilon$ and $c \rightarrow \varepsilon$.

$\ell_{G}=\{a\}^{+} \in \mathbf{S C F} \cap \mathbf{J S C F} \cap \mathbf{J P C F}$

$\ell_{I}=\{a a b b, c c d d\} \in(P C F \cap \mathbf{C F})-(\mathbf{S C F} \cup \mathbf{J S C F} \cup \mathbf{J P C F})$

| Relations between pure-language families

We need to rewrite two symbols in parallel such as with $a \rightarrow c, b \rightarrow d, c \rightarrow d, d \rightarrow c$ with $\sigma=a b$.
For instance, $a b_{p} \Rightarrow c d_{p} \Rightarrow d c$ or $a b_{j p} \Rightarrow d c$.

$\ell_{M}=\left\{a^{n} b^{n} \mid n \geq 1\right\} \in \mathbf{C F}-(\mathbf{P C F} \cup J S C F \cup J P C F)$

$\ell_{O}=\{a a b b, a b a b, a b b a, b a a b, b a b a, b b a a\} \in$ (CF $\cap \mathrm{JSCF} \cap \mathrm{JPCF})$ - PCF

$\ell_{p}=\{a a b b, c c d d, c d c d, c d d c, d c c d, d c d c, d d c c\} \in$
$(\mathbf{C F} \cap \mathrm{JPCF})-(\mathrm{PCF} \cup \mathrm{JSCF})$

$\ell_{R}=\left\{\begin{array}{l|l}w & \begin{array}{l}|w|_{a}-1=|w|_{b}=|w|_{c}, \\ w \in\{a, b, c\}^{+}\end{array}\end{array}\right\} \in(J S C F \cap J P C F)-(\mathbf{C F} \cup P C F)$

$\ell_{S}=\{\hat{a} \hat{b} \hat{c}\} \cup\left\{\begin{array}{l|l}w & \begin{array}{l}|w|_{a-1}-1=|w|_{b}=|w|_{c}, \\ w \in\{a, b, c\}^{+}\end{array}\end{array}\right\} \in$ $J P C F-(C F \cup P C F \cup J S C F)$
$\mathbf{P C F}_{u}^{-\varepsilon}-\mathbf{J P C F}_{u}^{-\varepsilon}$

Note: $\mathbf{S C F}_{u}$ and $\mathbf{P C F}_{u}^{-\varepsilon}$ are incomparable.

Conclusion

- Open Problems
- Closure Properties
- Decidability (Emptiness, Universality, ...)
- Left-jumps and Right-jumps in Pure Grammars

Thank You For Your Attention!

