Descriptional Complexity of Some Regulated Rewriting Grammars

Dr. Lakshmanan Kuppusamy School of Comp. Sci. & Engg., VIT Vellore, INDIA.

email: klakshma@vit.ac.in

18th Nov 2019, Brno

Outline of the Talk

- Recalling Chomsky Hierarchy
- 2 Motivation and Objective
- Semi-Conditional Grammars (SCG)
 Variants of SCG
- ④ Geffert Normal Form
 - Variants of Geffert Normal Form
- 5 Describing RE with Regulated Grammars
 - Describing RE with SCG
 - Describing RE with Simple SCG (SSCG)
 - Describing RE with GFG

Chomsky hierarchy

Class	Grammars	Languages	Automaton	
Туре-0	Unrestricted	Recursive Enumerable	Turing Machine	recursively enumeral
Туре-1	Context Sensitive	Context Sensitive	Linear- Bound	context-sensitive
Type-2	Context Free	Context Free	Pushdown	context-free regular
Туре-З	Regular	Regular	Finite	
Chom	isky Hierarch	y		Courtesy: Google II

Motivation and Objective

- CFGs have desirable properties, but not suffice.
- Can we describe a type-0 language using type-2 grammar? (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?

Motivation and Objective

- CFGs have desirable properties, but not suffice.
- Can we describe a type-0 language using type-2 grammar? (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?
- One is context-based restriction and the other is rule based restriction.
 - Semi-conditional grammars, generalized forbidding grammars
 - Graph-controlled grammars, Matrix grammars, etc.

Motivation and Objective

- CFGs have desirable properties, but not suffice.
- Can we describe a type-0 language using type-2 grammar? (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?
- One is context-based restriction and the other is rule based restriction.
 - Semi-conditional grammars, generalized forbidding grammars
 - Graph-controlled grammars, Matrix grammars, etc.
- Question: What and how much resources are required for grammars to generate RE? Is that optimal/succinct?
- resources meant the component size that require to describe the system, thus, called descriptional complexity measures.

Variants of SCG

Semi-conditional grammars

A semi-conditional grammar of degree (i, j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \rightarrow x, \alpha, \beta)$, where

• $A \rightarrow x$ is a context-free rule,

•
$$\alpha, \beta = \phi$$
 or $\alpha, \beta \in (N \cup T)^*$ and

•
$$|\alpha| \leq i, |\beta| \leq j.$$

Variants of SCG

Semi-conditional grammars

A semi-conditional grammar of degree (i, j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \rightarrow x, \alpha, \beta)$, where

• $A \rightarrow x$ is a context-free rule,

•
$$\alpha, \beta = \phi$$
 or $\alpha, \beta \in (\mathsf{N} \cup \mathsf{T})^*$ and

•
$$|\alpha| \leq i, |\beta| \leq j.$$

A rule $(A \rightarrow x, \alpha, \beta)$ can be applied to a string w if and only if

- α (when $\alpha \neq \phi$) is a substring of *w* (permitting context) and
- β (when $\beta \neq \phi$) is not a substring of w (forbidding context).
- If $\alpha = \phi$, $\beta = \phi$, the rule is called unconditional.

Variants of SCG

Semi-conditional grammars

A semi-conditional grammar of degree (i, j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \rightarrow x, \alpha, \beta)$, where

• $A \rightarrow x$ is a context-free rule,

•
$$\alpha, \beta = \phi$$
 or $\alpha, \beta \in (\mathsf{N} \cup \mathsf{T})^*$ and

•
$$|\alpha| \leq i, |\beta| \leq j.$$

A rule (A \rightarrow x, $\alpha,\beta)$ can be applied to a string w if and only if

- α (when $\alpha \neq \phi$) is a substring of *w* (permitting context) and
- β (when $\beta \neq \phi$) is not a substring of w (forbidding context).
- If $\alpha = \phi$, $\beta = \phi$, the rule is called unconditional.
- A rule is applied based on the presence of the permitting string and the absence of the forbidden string in the current sentential form.
- As usual, $w \in T^*$ is collected for languages.

Variants of SCG

Variants of Semi-conditional grammars

- A semi-conditional grammar is called
 - Random Context Grammar: if each rule has permitting set and forbidding set of symbols over nonterminals
 - Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of *P*.
 - Permitting SC Grammar: if degree = (i, 0)Here $\beta = \phi$ in every rule of *P*.
 - Forbidding SC Grammar: if degree = (0, j)Here $\alpha = \phi$ in every rule of *P*.

Variants of SCG

Variants of Semi-conditional grammars

- A semi-conditional grammar is called
 - Random Context Grammar: if each rule has permitting set and forbidding set of symbols over nonterminals
 - Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of *P*.
 - Permitting SC Grammar: if degree = (i, 0)Here $\beta = \phi$ in every rule of *P*.
 - Forbidding SC Grammar: if degree = (0, j)Here $\alpha = \phi$ in every rule of *P*.

A Forbidding Rule: $(A \rightarrow x, \beta)$

- $A \rightarrow x$ is a context-free rule,
- $\beta = \phi$ or $\beta \in (N \cup T)^*$ [β is a string]

6/30

Variants of SCG

An Example

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P) \text{ where } P \text{ is :} \\1. (S \to AC, \phi, \phi), 2. (C \to Y, A, \phi), 3. (A \to aXb, Y, \phi) \\4. (Y \to Cc, \phi, A), 5. (X \to A, C, \phi) 6. (A \to ab, Y, \phi), \\7. (Y \to c, \phi, A).$$

Variants of SCG

An Example

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P) \text{ where } P \text{ is :} \\ 1. (S \to AC, \phi, \phi), 2. (C \to Y, A, \phi), 3. (A \to aXb, Y, \phi) \\ 4. (Y \to Cc, \phi, A), 5. (X \to A, C, \phi) 6. (A \to ab, Y, \phi), \\ 7. (Y \to c, \phi, A).$$

 $S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc$

Variants of SCG

An Example

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P) \text{ where } P \text{ is :} \\ 1. (S \to AC, \phi, \phi), 2. (C \to Y, A, \phi), 3. (A \to aXb, Y, \phi) \\ 4. (Y \to Cc, \phi, A), 5. (X \to A, C, \phi) 6. (A \to ab, Y, \phi), \\ 7. (Y \to c, \phi, A).$$

 $S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2}$

Variants of SCG

An Example

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P) \text{ where } P \text{ is :} \\ 1. (S \to AC, \phi, \phi), 2. (C \to Y, A, \phi), 3. (A \to aXb, Y, \phi) \\ 4. (Y \to Cc, \phi, A), 5. (X \to A, C, \phi) 6. (A \to ab, Y, \phi), \\ 7. (Y \to c, \phi, A).$$

 $S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2} a^{n-1}Ab^{n-1}Cc^{n-1} \Rightarrow_2 a^{n-1}Ab^{n-1}Yc^{n-1} \Rightarrow_6 a^nb^nYc^{n-1} \Rightarrow_7 a^nb^nc^n.$

An Example

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P) \text{ where } P \text{ is :} \\1. (S \to AC, \phi, \phi), 2. (C \to Y, A, \phi), 3. (A \to aXb, Y, \phi) \\4. (Y \to Cc, \phi, A), 5. (X \to A, C, \phi) 6. (A \to ab, Y, \phi), \\7. (Y \to c, \phi, A).$$

 $S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2} a^{n-1}Ab^{n-1}Cc^{n-1} \Rightarrow_2 a^{n-1}Ab^{n-1}Yc^{n-1} \Rightarrow_6 a^nb^nYc^{n-1} \Rightarrow_7 a^nb^nc^n.$

Language and Degree

- $L(G) = \{a^n b^n c^n \mid n \ge 1\}$: a context-sensitive language.
- #Conditional Productions =6.

Controlled Rewriting Grammars

Variants of SCG

7/30

General Objective

Variants of SCG

Usual ambition: How small the four parameters (i, j, n, c) could be for a semi-conditional grammar to describe RE?

Variants of SCG

General Objective

Usual ambition: How small the four parameters (i, j, n, c) could be for a semi-conditional grammar to describe RE? Usual Technique to show SC(i, j; n; c)=RE: Consider a type-0 grammar for RE in one of the variants of Geffert Normal Form; produce SCG rules of prescribed size to simulate the assumed GNF.

Variants of SCG

General Objective

Usual ambition: How small the four parameters (i, j, n, c) could be for a semi-conditional grammar to describe RE? Usual Technique to show SC(i, j; n; c)=RE: Consider a type-0 grammar for RE in one of the variants of Geffert Normal Form; produce SCG rules of prescribed size to simulate the assumed GNF. Need to choose the normal form cleverly

Variants of Geffert Normal Form

Geffert Normal Form: (5,2)-GNF

A type-0 grammar G is said to be in Geffert Normal Form if all of its production rules are of the form

- $S \rightarrow uSa, S \rightarrow uSv, S \rightarrow uVv, S \rightarrow uv,$
- $AB \rightarrow \lambda$, $CD \rightarrow \lambda$.

where S is the initial nonterminal and A, B, C, D are nonterminals and $u \in \{A, C\}^*$, $v \in \{B, D\}^*$. Only 5 nonterminals are used But no control on the length of the RHS of S.

Variants of Geffert Normal Form

Geffert Normal Form: (5,2)-GNF

A type-0 grammar G is said to be in Geffert Normal Form if all of its production rules are of the form

- $S \rightarrow uSa, S \rightarrow uSv,$ $S \rightarrow uv,$
- $AB \rightarrow \lambda$, $CD \rightarrow \lambda$.

where S is the initial nonterminal and A, B, C, D are nonterminals and $u \in \{A, C\}^*$, $v \in \{B, D\}^*$. Only 5 nonterminals are used But no control on the length of the RHS of S. A type-0 grammar *G* is said to be in Special Geffert Normal Form if all of its production rules are of the form

• $X \to bY$, $X \to Yb$, $S' \to \lambda$,

• $AB \rightarrow \lambda$, $CD \rightarrow \lambda$.

where $N = N_1 \cup N_2$, $\{X, Y, S, S'\} \subseteq N_1$, $\{A, B, C, D\} = N_2$ and $b \in N_2 \cup T$. The derivation in 2 Phases. Phase-*I*: $\{A, C\}^*S'\{B, D\}^* T^*$ Phase-*II*: $AB \rightarrow \lambda, CD \rightarrow \lambda$.

9/30

Variants of Geffert Normal Form

Variants of $GNF(S \rightarrow v, AB \rightarrow \lambda, CD \rightarrow \lambda)$

(4, 1)-GNF

If
$$\phi_1(A) = AB$$
, $\phi_1(B) = C$,
 $\phi_1(C) = A$, $\phi_1(D) = BC$, then
• $S \rightarrow v$,

•
$$ABC \rightarrow \lambda$$
 (after C no A).

(4,2)-GNF

If
$$\phi_2(A) = CAA$$
, $\phi_2(B) = BBC$,
 $\phi_2(C) = CA$, $\phi_2(D) = BC$, then

- $S \rightarrow v$, $AB \rightarrow \lambda$, $CC \rightarrow \lambda$.
- Only one (*AB* or *CC*) is in center. No *CCC* together.

Talk in Brno

Variants of Geffert Normal Form

Variants of $GNF(S \rightarrow v, AB \rightarrow \lambda, CD \rightarrow \lambda)$

(4,1)-GNF

If
$$\phi_1(A) = AB$$
, $\phi_1(B) = C$,
 $\phi_1(C) = A$, $\phi_1(D) = BC$, then

- $S \rightarrow v$,
- $ABC \rightarrow \lambda$ (after C no A).

(4, 2)-GNF

If
$$\phi_2(A) = CAA$$
, $\phi_2(B) = BBC$,
 $\phi_2(C) = CA$, $\phi_2(D) = BC$, then

- $S \rightarrow v$, $AB \rightarrow \lambda$, $CC \rightarrow \lambda$.
- Only one (*AB* or *CC*) is in center. No *CCC* together.

Talk in Brno

(3,1)-GNF

- If $\phi_3(A) = ABB$, $\phi_3(B) = BA$, $\phi_3(C) = AB$, $\phi_3(D) = BBA$, then
 - $S \rightarrow v$,
 - $ABBBA \rightarrow \lambda$ (no 4 B's together).

(3,2)-GNF

•
$$S \rightarrow v$$
,

•
$$AA \rightarrow \lambda$$
, $BBB \rightarrow \lambda$.

Controlled Rewriting Grammars

10/30

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Semi-Conditional Grammars and RE

Degree	# Non-	# Conditional	References	
(i,j)	Terminals <i>n</i>	Productions c		
(2,1)	8	7	Masopust, 2007	
	7	6	Okubo, IPL, 2009	
	6	$7 + P_{cf} $	We @ CiE 2018	
(2, 2)	6	7	We @ CiE 2018	
(3,1)	6	13	We @ CiE 2018	

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

 $S \rightarrow w$ is simulated by $S \rightarrow w, 0, 0$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$

 - $\textcircled{3} B \to \#, \$B, \#$
 - $\textcircled{3} C \rightarrow \$, CD, \$$

 - $\texttt{S} \ \$ \rightarrow \lambda, \ \$\#, \ \lambda$
 - $\ \, \textcircled{ 0 } \ \ \, \# \rightarrow \lambda \text{, } 0 \text{, } \$$

N={S, A, B, C, D, \$, #} Normal Form is (5,2)-GNF ($AB \rightarrow \lambda, CD \rightarrow \lambda$)

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$
 - $A \rightarrow $,AB,$$
 - $\textcircled{3} B \to \#, \$B, \#$
 - $\textcircled{3} C \rightarrow \$, CD, \$$

 - $\textbf{ 5 } \textbf{ $ $} \rightarrow \lambda \textbf{, $ $$} \# \textbf{, } \lambda$
 - ${\small \small \bigcirc } \ \# \rightarrow \lambda \text{, 0, \$}$

N={S, A, B, C, D, \$, #} Normal Form is (5,2)-GNF ($AB \rightarrow \lambda, CD \rightarrow \lambda$) Sample Simulation for $AB \rightarrow \lambda$ $AB \Rightarrow_1 \$B \Rightarrow_2 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$
 - $A \rightarrow $,AB,$$
 - 2 $B \rightarrow \#$, \$B, #
 - $\textcircled{3} C \rightarrow \$, CD, \$$

 - ${\small \textcircled{0}} \hspace{0.1 cm} \# \to \lambda \text{, 0, \$}$

N={S, A, B, C, D, \$, #} Normal Form is (5,2)-GNF ($AB \rightarrow \lambda, CD \rightarrow \lambda$) Sample Simulation for $AB \rightarrow \lambda$ $AB \Rightarrow_1 \$B \Rightarrow_2 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$

Sample Simulation for $\mathit{CD} \rightarrow \lambda$

 $CD \Rightarrow_3 \$D \Rightarrow_4 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

$SC(2, 1; 6, 7 + |P_{cf}|) = RE : CiE 2018$

- S
 ightarrow w is simulated by
- $P_{cf}: S \rightarrow w, 0,$ plus

 - $\ \, {\mathfrak S} \rightarrow \$, \ \, {\mathfrak S} \#, \ \, {\mathfrak 0}$
 - $\textcircled{3} C \rightarrow \$\$, CC, \$$

 - ${\small \small \bigcirc } \$ \to \lambda \text{, } \$ \# \text{, } 0$
 - $\bigcirc \# \rightarrow \lambda$, 0, \$
- $N = \{S, A, B, C, \$, \#\}$ NF: $AB \rightarrow \lambda$, $CC \rightarrow \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

 $SC(2, 1; 6, 7 + |P_{cf}|) = RE : CiE 2018$

- S
 ightarrow w is simulated by
- $P_{cf}: S \rightarrow w, 0,$ plus

 - $\textcircled{2} B \to \#, \$S, \#$
 - $\ \, {\mathfrak S} \rightarrow \$, \ S\#, \ 0 \\$

 - ${\small \small \bigcirc } \$ \to \lambda \text{, } \$ \# \text{, } 0$
 - $\bigcirc \# \rightarrow \lambda$, 0, \$
- $N = \{S, A, B, C, \$, \#\}$ NF: $AB \rightarrow \lambda$, $CC \rightarrow \lambda$

Sample Simulation for $AB o \lambda$		
$AB \Rightarrow_1 \$SB \Rightarrow_2 \$S\# \Rightarrow_3 $ $\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$		

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

$SC(2, 1; 6, 7 + |P_{cf}|) = RE : CiE 2018$

- S
 ightarrow w is simulated by
- $P_{cf}: S \rightarrow w, 0,$ plus

 - $\textcircled{2} B \to \#, \$S, \#$
 - $\ \, {\mathfrak S} \rightarrow \$, \ S\#, \ 0 \\$

 - $\texttt{ 0 } \$ \rightarrow \lambda, \$\#, 0$
 - $\textcircled{0} \# \to \lambda, \ 0, \ \$$

 $N = \{S, A, B, C, \$, \#\}$ NF: $AB \rightarrow \lambda$, $CC \rightarrow \lambda$

Sample Simulation for $AB \rightarrow \lambda$				
$AB \Rightarrow_1 \$SB \Rightarrow_2 \$S\# \Rightarrow_3$				
$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$				
Sample Simulation for $\mathcal{CC} ightarrow \lambda$				
Sample Simulation for $CC \rightarrow \lambda$ $CC \Rightarrow_4 $ \$ $C \Rightarrow_5 $ \$ $\# \Rightarrow_6$				

SC(2,2;6,7)=RE : CiE 2018

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$

 - 2 $\$ \rightarrow \$\$$, \$B, C#
 - $\textcircled{3} B \to \#, \, \$\$, \, \#$

 - **⑤** C → ##, \$C, ##

 - $\bigcirc \# \rightarrow \lambda$, 0, \$

N={*S*, *A*, *B*, *C*, \$, #} NF is (4,2)-GNF:

 $AB \rightarrow \lambda, CC \rightarrow \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SC(2,2;6,7)=RE : CiE 2018

- $S \rightarrow w$ is simulated by
- $S \rightarrow w, 0, 0$

 - 2 $\$ \rightarrow \$\$$, \$B, C#

 - **5** $C \to \#\#, \$ **5** $C, \$ **4**#
 - $\textcircled{0} \ \$ \to \lambda, \ \$\#, \ \textit{AB}$
 - $\bigcirc \# \rightarrow \lambda$, 0, \$

N={S, A, B, C, \$, #} NF is (4,2)-GNF: $AB \rightarrow \lambda, CC \rightarrow \lambda$ Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Sample Simulation for $AB ightarrow \lambda$		
$AB \Rightarrow_1 \$B \Rightarrow_2 \$\$B \Rightarrow_3 \$\$\# \Rightarrow_6$		
$\$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$		

SC(2,2;6,7)=RE : CiE 2018

- $S \rightarrow w$ is simulated by
- $S \rightarrow w, 0, 0$

 - 2 $\$ \rightarrow \$\$$, \$B, C#

 - **5** $C \to \#\#, \$ **5** C, ##

 - $\textcircled{0} \# \to \lambda, \ 0, \ \$$

N={S, A, B, C, \$, #} NF is (4,2)-GNF: $AB \rightarrow \lambda, CC \rightarrow \lambda$ Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Sample Simulation for $AB \rightarrow \lambda$ $AB \Rightarrow_1 \$B \Rightarrow_2 \$\$B \Rightarrow_3 \$\$\# \Rightarrow_6$ $\$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$

Sample Simulation for $CC \rightarrow \lambda$ $CC \Rightarrow_4 \# \$C \Rightarrow_5 \# \$ \# \# \Rightarrow_6$ $\# \# \# \Rightarrow_7^3 \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

	Simple Semi-Conditional Grammars and RE					
ſ	Degree	# Non-	# Conditional	References		
	(<i>i</i> , <i>j</i>)	Terminals <i>n</i>	Productions <i>c</i>			
	(2,1)	10	9	T. Masopust, 2007		
		9	9	We @ MCU'18		
		9	8	We @ FI (submitted)		
	(3,1)	9	8	Okubo, IPL, 2009		
		7	7	We @ MCU'18, FI (submitted)		
	(4,1)	7	6	We @ MCU'18, FI (submitted)		
		6	8	We, submitted to Fl		

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(3,1;9,8)=RE : Okubo, IPL, 2009

Okubo's rules

- 2 $B \rightarrow B',0, B'$
- $\ \textbf{ 4'} \rightarrow \$, \ A'B'C', 0$

- \bigcirc \$ \rightarrow λ , \$#, 0
- ${\color{black}\textcircled{0.5pt}{0.5pt}} \hspace{0.5pt} \# \to \lambda \text{, 0, } \hspace{0.5pt} \$$

NF: (4,1)-GNF

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(3,1;9,8)=RE : Okubo, IPL, 2009

Okubo's rules

- 2 $B \rightarrow B',0, B'$
- $\ \textbf{ 4'} \rightarrow \$, \ A'B'C', 0$

- \bigcirc \$ \rightarrow λ , \$#, 0
- ${\color{black}\textcircled{3}} \hspace{0.1cm} \# \to \lambda \text{, 0, } \hspace{0.1cm} \$$

NF: (4,1)-GNF

Aim: to avoid #,\$

- 2 $B \rightarrow B',0, B'$

- $C' \rightarrow \lambda$, 0,A'

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(3,1;9,8)=RE : Okubo, IPL, 2009

Okubo's rules

- 2 $B \rightarrow B',0, B'$
- ④ $A' \rightarrow$ \$, A'B'C',0

- \bigcirc \$ \rightarrow λ , \$#, 0
- ${\small \textcircled{0}} \ \# \to \lambda \text{, 0, \$}$

NF: (4,1)-GNF

Aim: to avoid #,\$

- 2 $B \rightarrow B',0, B'$

- $C' \rightarrow \lambda$, 0,A'

Unintended Simulation for $AC \rightarrow \lambda$

$$AC \Rightarrow_{1,3} A'C' \Rightarrow_5 C' \Rightarrow_6 \lambda$$

Talk in Brno

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(3, 1; 7, 7)=RE

Recall Okubo's rules

- $\textcircled{2} B \rightarrow B', 0, B'$
- $A' \rightarrow$, A'B'C',0
- $0 B' \to \lambda, \ B' \#, \ 0$
- \bigcirc \$ $\rightarrow \lambda$, \$#, 0
- $\textcircled{0} \# \to \lambda, \ 0, \ \#$

Avoiding B', \$ (MCU'18)

- $\bigcirc C \rightarrow C', 0, C'$
- $\ \ \mathbf{0} \quad C' \to \#, \ A'A'C', \ \mathbf{0}$
- $\ \, {\bf 0} \ \, {\cal A}' \rightarrow \lambda, \ \, {\cal A}' {\cal A}' \#, 0$
- $0 A' \to \lambda, \ \# A' \#, \ 0$
- $0 \# \to \lambda, \ 0, \ A'$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(3, 1; 7, 7)=RE

Recall Okubo's rules

- $A \rightarrow A', 0, A'$
- 2 $B \rightarrow B',0, B'$
- $A' \rightarrow$, A'B'C',0
- $0 B' \to \lambda, \ B' \#, \ 0$
- \bigcirc \$ $\rightarrow \lambda$, \$#, 0
- $\textcircled{0} \# \to \lambda, \ 0, \ \#$

Avoiding B', \$ (MCU'18)

- $\ \ \mathbf{0} \quad C' \to \#, \ A'A'C', \ \mathbf{0}$

•
$$A' \rightarrow \lambda$$
, $A'A'\#$,0

- $0 A' \to \lambda, \ \# A' \#, \ 0$
- $\textcircled{0} \# \to \lambda, \ 0, \ A'$

Intended Simulation for $ABC \rightarrow \lambda$

 $ABC \Rightarrow_2 AA'C \Rightarrow_{1,3} \#A'A'C' \Rightarrow_4 \\ \#A'A'\# \Rightarrow_c \#A'\# \Rightarrow_c \#\# \Rightarrow_2^2 \lambda \\ Controlled Rewriting Grammars 17/30$

Talk in Brno

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(2,1;9,9)=RE : MCU 2018

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$

 - 2 $B \rightarrow B'$, 0, B'
 - $\textcircled{O} C \rightarrow C' \$\#, 0, \#$
 - () A'
 ightarrow B', A'B', 0
 - $O C' \to \lambda, B'B', 0$

 - ${f 0}$ \$ ${f +}$ #, \$\$,0
 - $\textcircled{0} \quad \$ \to \#, \ \#\#, 0$
 - $\textcircled{9} \ \# \rightarrow \lambda \text{, 0, \$}$

 $N = \{S, A, B, C, A', B', C', \$, \#\}$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(2,1;9,9)=RE : MCU 2018

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$

 - $\textcircled{2} B \rightarrow B', \ 0, \ B'$
 - 3 $C \rightarrow C'$ \$#, 0, #
 - ④ A'
 ightarrow B', A'B', 0
 - $\ \bullet \ C' \rightarrow \lambda, B'B', 0$

 - \bigcirc \$ \rightarrow #, \$\$,0
 - $\textcircled{0} \quad \$ \to \#, \ \#\#, 0$
 - $\textcircled{9} \# \to \lambda, \ 0, \ \$$

 $N = \{S, A, B, C, A', B', C', \$, \#\}$

Sample Simulation for $ABC \rightarrow \lambda$ $ABC \Rightarrow_3 ABC' \$ \# \Rightarrow_2$ $AB'C' \$ \# \Rightarrow_1 \# \$A'B'C' \$ \#$ $\Rightarrow_4 \# \$B'B'C' \$ \# \Rightarrow_5$ $\# \$B'B'B' \$' \$ \# \Rightarrow_6^3 \# \$ \$ \#$ $\Rightarrow_7 \# \$ \# \# \Rightarrow_8 \#^4 \Rightarrow_9^4 \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(2,1;9,8)=RE : FI (Submitted)

- S
 ightarrow w is simulated by
- S
 ightarrow w, 0, 0

 - 2 $B \rightarrow B'$, 0, B'
 - 3 $C \rightarrow C'$ \$#, 0, #

 - $\textcircled{0} \$ \to \#, \ \#\#, 0$
 - $\textbf{3} \ \# \to \lambda, \ \textbf{0}, \ \textbf{\$}$

$N = \{S, A, B, C, A', B', C', \$, \#\}$ NF: $ABC \rightarrow \lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

SSC(2,1;9,8)=RE : FI (Submitted)

- S
 ightarrow w is simulated by
- $S \rightarrow w, 0, 0$

 - 2 $B \rightarrow B'$, 0, B'
 - 3 $C \rightarrow C'$ \$#, 0, #

 - $C' \to \lambda, A'A', 0$

 - $\textcircled{0} \$ \to \#, \ \#\#, 0$
 - $\mathbf{0} \ \# \to \lambda$, 0, \$

$N = \{S, A, B, C, A', B', C', \$, \#\}$ NF: *ABC* $\rightarrow \lambda$

Sample Simulation for $ABC \rightarrow \lambda$

 $ABC \Rightarrow_{3} ABC' \$\# \Rightarrow_{2}$ $AB'C' \$\# \Rightarrow_{1} \#\$A'B'C' \$\#$ $\Rightarrow_{4} \#\$A'A'C' \$\# \Rightarrow_{5}$ $\#\$A'A' \$\# \Rightarrow_{6}^{2} \#\$\# \#\$\#$ $\Rightarrow_{7}^{2} \#\#\# \#\# \# \Rightarrow_{8} \#^{6}\lambda$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Generalized Forbidding Grammar

- Introduced by Meduna in 1990. Its a context-free rule, where each rule is regulated with finitely many forbidding strings.
- A nonterminal is rewritten by a rule only if none of the forbidding strings of the rule occur in the sentential form.
- GFG is a quadruple G = (V, T, P, S) where
 - V is the total alphabet, $T \subset V$ is the terminal alphabet,
 - $S \in V \setminus T$ is the start symbol and P is a set of rules
 - Rule Form: $(A \to x, F)$, where $A \in V \setminus T$, $x \in V^*$, $F \subset (N \cup T)^+ \to a$ finite set of forbidding words
- Every RE language can be generated by some GF grammar whose forbidding strings have length (degree) at most two but not one.
- i.e., GF(2)=RE but, GF(1) = Fordibben random context gr. = $\subsetneq RE$.

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(d, i, n, c): The resources

The language family GF(d, i, n, c) is defined as follows:

 $L \in GF(d, i, n, c)$ iff there is a GFG, G = (V, T, P, S) such that:

$$L = L(G),$$

$$d \geq d(G) := \max_{(A \to x, F) \in P} \max_{f \in F} |f|,$$

Informally: *d* is maximum length of the strings in a forbidding set, called degree

- $n \ge |V \setminus T|$, the number or nonterminals in *G*,
- $c \ge |P_c|$, the number of conditional rules in G.

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Describing RE by GF(d, i, n, c)

Generalized Forbidding Grammars and RE			
(<i>d</i> , <i>i</i>)	# Non-	# Conditional	References
	Terminals <i>n</i>	Productions <i>c</i>	
(2,6)	9	10	Masopust, Meduna, 2007
	8	6	We, submitted to DAM
(2,5)	8	8	We, @ CALDAM 2019
	9	7	We, submitted to DAM
(2,4)	10	11	Masopust, Meduna, 2007
	9	9	We, @ CALDAM 2019
	7	8	We, submitted to DAM
(2,3)	20	18	We, submitted to DAM

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Simulation technique

- Consider a type-0 grammar (in some GNF) starting with S.
- Consider a new starting variable S' (in $G') such that <math display="inline">S' \to \sigma S \sigma$
- $S \rightarrow g(x)$ whenever $S \rightarrow x$ (unconditional rules).

•
$$g(\gamma) = \begin{cases} \sigma \gamma \sigma \text{ if } \gamma \in T \\ \gamma \text{ if } \gamma \in V \end{cases}$$

- By induction, $S' \Rightarrow^* \sigma u \alpha v \sigma t \sigma$ where $t \in (T \cup \{\sigma\})^*$ and
- If the grammar is in (4, 1)-GNF, then
 - $u \in \{A, AB\}^*$, $v \in \{BC, C\}^*$,
 - $\alpha \in \{AC, ABBC, ABC\}$ (the central part),
- If the grammar is in (5, 2)-GNF, then
 - $u \in \{A, C\}^*$, $v \in \{B, D\}^*$,
 - $\alpha \in \{AB, CD, AD, CB\}$ (the central part).

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 6, 8, 6) = RE

Simulating rules for $ABC \rightarrow \lambda$

1: $(B \rightarrow \$$, $\{S, AC, BB, \$, \#\}$) 2: $(A \rightarrow \#\$, \{S, AC, BB, \#\}$) 3: $(C \rightarrow \$\#, \{S, AC, BB, \$\#, C\#, \#C\}$) 4: $(\$ \rightarrow \lambda, \{A\$, \$C, \$\sigma, \sigma\$, B\$, \$B\}$) 5: $(\# \rightarrow \lambda, \{\$, \#A, C\#\}$) 6: $(\sigma \rightarrow \lambda, \{A, B, C, \#, \$, S\}$)

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 6, 8, 6) = RE

Simulating rules for $ABC \rightarrow \lambda$

1: $(B \rightarrow \$, \{S, AC, BB, \$, \#\})$ 2: $(A \rightarrow \#\$, \{S, AC, BB, \#\})$ 3: $(C \rightarrow \$\#, \{S, AC, BB, \$\#, C\#, \#C\})$ 4: $(\$ \rightarrow \lambda, \{A\$, \$C, \$\sigma, \sigma\$, B\$, \$B\})$ 5: $(\# \rightarrow \lambda, \{\$, \#A, C\#\})$ 6: $(\sigma \rightarrow \lambda, \{A, B, C, \#, \$, S\})$

Simulating $ABC \rightarrow \lambda$

 $\sigma uABC v \sigma t \sigma \Rightarrow_1 \sigma uA C v \sigma t \sigma \Rightarrow_2 \sigma u \# S C v \sigma t \sigma \Rightarrow_3 \sigma u \# S \delta \sigma \Rightarrow_4^3 \sigma u \# v \sigma t \sigma \Rightarrow_5^2 \sigma u v \sigma t \sigma.$

- $ABA \Rightarrow_1 A A \Rightarrow_2 \# A \Rightarrow_2^2 \# A \Rightarrow_5^2 \# A \Rightarrow_6^2 \# A \oplus A =_6^2 \# A \oplus A =_6^2 \# A \oplus A =_6^2 \# =_6^2 \# A =_6^2 \# =_6^2 \# A =_6^$
- $ABB \neq_{1,2,3}$
- BBC $\neq_{1,2,3}$
- $CBC \Rightarrow_1 \mathbb{C} C \Rightarrow_3 \#C \Rightarrow_4$
- $CBC \Rightarrow_1 C C \Rightarrow_3 C C \Rightarrow_3 C C \Rightarrow_4 C \# \Rightarrow_5$

Brno Controlled Rewriting Grammars

24 / 30

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 5, 9, 7)=RE

Recalling simulating rules of GF(2, 6, 8, 6) = RE

Simulating rules of GF(2, 5, 9, 7) = RE

 $\begin{array}{ll} 1: & (B \to \dagger & , \ \{S, AC, BB, \dagger, \#\}) & 5: \ (\$ \to \lambda & , \ \{\dagger, \$A, \$B, B\$, C\$\}) \\ 2: & (A \to \#\$, \ \{S, AC, BB, \#\}) & 6: \ (\# \to \lambda, \ \{\$, \dagger, \#\sigma, \sigma\#\}) \\ 3: & (C \to \$\#, \ \{S, AC, BB, \$\#, \#C\}) & 7: \ (\sigma \to \lambda & , \ \{A, B, C, \#, S\}) \\ 4: & (\dagger \to \lambda & , \ \{A\dagger, \dagger C, C\dagger, \dagger \sigma, \sigma\dagger\}) \end{array}$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 5, 9, 7)=RE

Recalling simulating rules of GF(2, 6, 8, 6) = RE

Simulating rules of GF(2, 5, 9, 7) = RE

 $\begin{array}{ll} 1: & (B \to \dagger & , \ \{S, AC, BB, \dagger, \#\}) & 5: \ (\$ \to \lambda & , \ \{\dagger, \$A, \$B, B\$, C\$\}) \\ 2: & (A \to \#\$, \ \{S, AC, BB, \#\}) & 6: \ (\# \to \lambda, \ \{\$, \dagger, \#\sigma, \sigma\#\}) \\ 3: & (C \to \$\#, \ \{S, AC, BB, \$\#, \#C\}) & 7: \ (\sigma \to \lambda & , \ \{A, B, C, \#, S\}) \\ 4: & (\dagger \to \lambda & , \ \{A\dagger, \dagger C, C\dagger, \dagger \sigma, \sigma\dagger\}) \end{array}$

Simulating $ABC \rightarrow \lambda$

 $\sigma u ABC v \sigma t \sigma \Rightarrow_{1,2,3} \sigma u \# \$ \dagger \$ \# v \sigma t \sigma \Rightarrow_4 \sigma u \# \$ \$ \# v \sigma t \sigma \Rightarrow_5^2 \sigma u \# \# v \sigma t \sigma \Rightarrow_6^2 \sigma u v \sigma t \sigma.$

25 / 30

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 5, 9, 7) = RE

A dooming set of rules of GF(2,5,9,7) = RE

1: $(B \to \$, \{AC, BB, \$, \#, \dagger\})$ 5: $(\# \to \lambda, \{\$, \#\sigma, \#B, \#A\})$ 2: $(A \to \#, \{S, AC, BB, \#, A\dagger\})$ 6: $(\dagger \to \lambda, \{\$, \#, B\dagger, C\dagger\})$ 3: $(C \to \dagger, \{S, AC, BB, \dagger, \sigma C\})$ 7: $(\sigma \to \lambda, \{A, C, \dagger, \#, S\})$ 4: $(\$ \to \lambda, \{S, A\$, \$C, \sigma\$, \$\sigma\})$

(Not) simulating $ABC \rightarrow \lambda$ but simulating $BC \rightarrow B$

 $\sigma uABC v\sigma t\sigma \Rightarrow_{1,2,3} \sigma u \# \ddagger v\sigma t\sigma \Rightarrow_4 \sigma u \# \ddagger v\sigma t\sigma \Rightarrow_5 \sigma u \ddagger v\sigma t\sigma = \sigma u'B \ddagger v\sigma t\sigma \text{ (if } u = u'B) \neq_6 \text{ since } B \ddagger \text{ is forbidden.}$ If $B \ddagger \text{ is not there in rule 6, then} \sigma BC \sigma t\sigma \Rightarrow_3 \sigma B \ddagger \sigma t\sigma \Rightarrow_6 \sigma B \sigma t\sigma.$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

Masopust, Meduna Normal Form

Let G be a (5,2) - GNF. Let $h : \{A, B, C, D\}^* \to \{0,1\}^*$ be a homomorphism defined by h(A) = 00, h(B) = 00,h(C) = 01, and h(D) = 10,then the unconditional rules are • $S \to h(u)Sa$, if $S \to uSa$,

•
$$S \rightarrow h(u)Sh(v)$$
, if $S \rightarrow uSv$,

•
$$S \to h(u)$$
\$ $h(v)$, if $S \to uv$,

and the non-context-free rules are of the form

- 0 $0 \rightarrow$, 1 $1 \rightarrow$ and
- the context-free rule $\$ \rightarrow \lambda$.

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2,4,8,7)=RE

Using MMNF(0 $\$0 \rightarrow \$, 1\$1 \rightarrow \$, \$ \rightarrow \lambda$)

1: $(0 \rightarrow \#, \{S, \$1, \#, \dagger\})$ 5: $(1 \rightarrow \#, \{S, \$0, \#, \dagger\})$ 2: $(0 \rightarrow \dagger, \{S, 1\}, 0\}, \dagger\})$ 6: $(1 \rightarrow \dagger, \{S, 1\}, 0\}, \dagger\})$ 3: $(\# \to \lambda, \{\$0, \$1, \$\#, \$\sigma\})$ 7: $(\$ \to \lambda, \{0, 1, \dagger, \#\})$ 4: $(\dagger \rightarrow \lambda, \{S, \#, \sigma \dagger, \sigma \})$ 8: $(\sigma \rightarrow \lambda, \{S, \dagger, \#, \$\})$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 4, 8, 7) = RE

Using MMNF(0 $\$0 \rightarrow \$, 1\$1 \rightarrow \$, \$ \rightarrow \lambda$)

Simulating 0\$0 \rightarrow \$

$$\sigma u0\$0vg(t)\sigma \Rightarrow_1 \sigma u\#\$0vg(t)\sigma \Rightarrow_2 \sigma u\#\$\dagger vg(t)\sigma \Rightarrow_3 \sigma u\$\dagger vg(t)\sigma \Rightarrow_4 \sigma u\$vg(t)\sigma$$

Describing RE with SCG Describing RE with Simple SCG (SSCG) Describing RE with GFG

GF(2, 4, 8, 7) = RE

Using MMNF(0 $\$0 \rightarrow \$, 1\$1 \rightarrow \$, \$ \rightarrow \lambda$)

Simulating $0\$0 \rightarrow \$$

$$\sigma u0\$0vg(t)\sigma \Rightarrow_1 \sigma u\#\$0vg(t)\sigma \Rightarrow_2 \sigma u\#\$\dagger vg(t)\sigma \Rightarrow_3 \sigma u\$\dagger vg(t)\sigma \Rightarrow_4 \sigma u\$vg(t)\sigma$$

Simulating 1 $\$1 \rightarrow$ \$

 $\sigma u1\$1vg(t)\sigma \Rightarrow_5 \sigma u\#\$1vg(t)\sigma \Rightarrow_6 \sigma u\#\$\dagger vg(t)\sigma \Rightarrow_3$ σu $\dagger v g(t) \sigma \Rightarrow_{4} \sigma u$ $v g(t) \sigma$ Talk in Brno

Controlled Rewriting Grammars

28 / 30

Future Research

- Mathematical: Investigate further possibilities to shrink the resources, esp. proving the lower bounds?
- We have given the upper bound and finding lower bound is open. Would it be GF(2, 2, *, *) ≠ RE? Recall, GF(2) = RE.
- Impose the regulation of forbidding sets on
 - P systems (membrane Computing)
 - 2 Lindenmayer systems
 - Insertion-deletion system

and study the computational completeness of these systems.

 If not RE for a system with a particular size, then can we at least simulate CSL or MCS (Mildly context Sensitive Formalism), especially, with d = 1? or with GF(2,2)?

THANK YOU ALL (Děkuji) Questions are welcome.