Regulated Insertion-Deletion Systems

Dr. Lakshmanan Kuppusamy VIT, Vellore, INDIA.

December 2, 2019

Outline of my previous talk

(1) Can we simulate Type-0 grammars by Type-2 grammars if we regulate the rule applications in some manner?

Outline of my previous talk

(1) Can we simulate Type-0 grammars by Type-2 grammars if we regulate the rule applications in some manner?
(2) YES !! but with certain regulations on the contexts of application like

Outline of my previous talk

(1) Can we simulate Type-0 grammars by Type- 2 grammars if we regulate the rule applications in some manner?
(2) YES !! but with certain regulations on the contexts of application like
(3) Semi-Conditional grammars
(9) Simple Semi-Conditional grammars
(6) Generalised Forbidding grammars
(0) Matrix grammars (we did not discuss this)
(3) Graph-Controlled grammars (we did not discuss this)

Insertion-Deletion Systems

Insention-Deletion Systems

A counterpart of Rewriting Systems

Theoretical meaning of ins-del

- Insertion (Deletion) means appending (removing) a (sub)string to (from) a given string with specific contexts.
- This is not Rewriting and motivation comes from DNA.
- If a string α is inserted between two parts w_{1} and w_{2} of a string $w_{1} w_{2}$ to get $w_{1} \alpha w_{2}$, the operation is insertion.
- Notation: $\left(w_{1}, \alpha, w_{2}\right)_{\text {ins }}$: means $\left(w_{1} w_{2} \Longrightarrow w_{1} \alpha w_{2}\right)$

Theoretical meaning of ins-del

- Insertion (Deletion) means appending (removing) a (sub)string to (from) a given string with specific contexts.
- This is not Rewriting and motivation comes from DNA.
- If a string α is inserted between two parts w_{1} and w_{2} of a string $w_{1} w_{2}$ to get $w_{1} \alpha w_{2}$, the operation is insertion.
- Notation: $\left(w_{1}, \alpha, w_{2}\right)_{\text {ins }}$: means $\left(w_{1} w_{2} \Longrightarrow w_{1} \alpha w_{2}\right)$
- If a substring β is deleted from a string $w_{1} \beta w_{2}$ to get $w_{1} w_{2}$, the operation is deletion.
- Notation: $\left(w_{1}, \beta, w_{2}\right)_{\text {del }}$: means $\left(w_{1} \beta w_{2} \Longrightarrow w_{1} w_{2}\right)$
- Suffixes of w_{1} and prefixes of w_{2} are called the left and right context of α or β.
- Starting with axioms and iterating the ins-del operations, we get a set of terminal strings (language of ins-del system).

Definition

An insertion-deletion system is a construct $G=(V, T, A, R)$

- V is an alphabet, $T \subseteq V, A \subseteq V^{*}$
- R is a finite set of n rules of the form $\left(u_{i}, \alpha_{i}, v_{i}\right)_{t}$ $t \in\{$ ins, del $\}, 1 \leq i \leq n, \quad u_{i}, v_{i} \in V^{*}, \alpha_{i} \in V^{+}$.

Definition

An insertion-deletion system is a construct $G=(V, T, A, R)$

- V is an alphabet, $T \subseteq V, A \subseteq V^{*}$
- R is a finite set of n rules of the form $\left(u_{i}, \alpha_{i}, v_{i}\right)_{t}$ $t \in\{i n s, d e l\}, 1 \leq i \leq n, \quad u_{i}, v_{i} \in V^{*}, \alpha_{i} \in V^{+}$.

Size of an Ins-Del (ID) system

Notation: ($\left.n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where
(1) $n=$ the maximal length of the insertion string
(2) $i^{\prime}=$ maximal length of left contexts used in insertion rules
(3) $i^{\prime \prime}=$ maximal length of right contexts used in insertion rules
(1) $m, j^{\prime}, j^{\prime \prime}$ denote similar maximal lengths among deletion rules.

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
\begin{aligned}
& \begin{array}{l}
G_{1}= \\
(\{a, b\},\{a, b\},\{a b\}, R) \\
\bullet r_{1}:(a, a b, b)_{\text {ins }}
\end{array} \\
& \text { Size }=(2,1,1 ; 0,0,0) .
\end{aligned}
$$

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
\begin{aligned}
& \begin{array}{l}
G_{1}= \\
(\{a, b\},\{a, b\},\{a b\}, R) \\
\bullet r_{1}:(a, a b, b)_{\text {ins }}
\end{array} \\
& \text { Size }=(2,1,1 ; 0,0,0) .
\end{aligned}
$$

Can generate more grammars for the same language?

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
\begin{aligned}
& G_{1}= \\
& (\{a, b\},\{a, b\},\{a b\}, R) \\
& \bullet r_{1}:(a, a b, b)_{\text {ins }} \\
& \text { Size }=(2,1,1 ; 0,0,0) .
\end{aligned}
$$

Can generate more grammars for the same language?

$$
\begin{aligned}
& G_{2}= \\
& \begin{array}{l}
\{a, X, b\},\{a, b\},\{a b\}, R) \\
\text { • } r_{1}:(a, X, b)_{\text {ins }} \\
\text { - } r_{2}:(X, a b, b)_{\text {ins }} \\
\text { - } r_{3}:(\lambda, X, \lambda)_{\text {del }} \\
\text { Size }=(2,1,1 ; 1,0,0) .
\end{array}
\end{aligned}
$$

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
\begin{aligned}
& G_{1}= \\
& (\{a, b\},\{a, b\},\{a b\}, R) \\
& \bullet r_{1}:(a, a b, b)_{\text {ins }} \\
& \text { Size }=(2,1,1 ; 0,0,0) .
\end{aligned}
$$

Can generate more grammars

$$
\begin{aligned}
& G_{3}=(\{a, C, b\},\{a, b\},\{a b\}, R) \\
& \text { - } r_{1}:(a, a C, b)_{\text {ins }} \\
& \text { - } r_{2}:(a, b, C)_{\text {ins }} \\
& \text { - } r_{3}:(b, C, b)_{\text {del }} \\
& \text { Size }=(2,1,1 ; 1,1,1) .
\end{aligned}
$$ for the same language?

$$
\begin{aligned}
& G_{2}= \\
& (\{a, X, b\},\{a, b\},\{a b\}, R) \\
& \text { - } r_{1}:(a, X, b)_{\text {ins }} \\
& \text { - } r_{2}:(X, a b, b)_{\text {ins }} \\
& \text { - } r_{3}:(\lambda, X, \lambda)_{\text {del }} \\
& \text { Size }=(2,1,1 ; 1,0,0) .
\end{aligned}
$$

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
\begin{aligned}
& G_{1}= \\
& (\{a, b\},\{a, b\},\{a b\}, R) \\
& \bullet r_{1}:(a, a b, b)_{\text {ins }} \\
& \text { Size }=(2,1,1 ; 0,0,0) .
\end{aligned}
$$

Can generate more grammars for the same language?

$$
\begin{aligned}
& G_{2}= \\
& (\{a, X, b\},\{a, b\},\{a b\}, R) \\
& \bullet r_{1}:(a, X, b)_{\text {ins }} \\
& \bullet r_{2}:(X, a b, b)_{\text {ins }} \\
& \text { - } r_{3}:(\lambda, X, \lambda)_{\text {del }}
\end{aligned}
$$

$$
G_{4}=(\{a, \$, Y, b\},\{a, b\},\{a b\}, R)
$$

$$
\text { - } r_{1}:(a, a Y, b)_{i n s}
$$

$$
\text { - } r_{2}:(a, b \$, Y)_{i n s}
$$

$$
\text { - } r_{3}:(b, \$ Y, b)_{d e l}
$$

$$
\text { Size }=(2,1,1 ; 2,1,1)
$$

$$
\begin{aligned}
& G_{3}=(\{a, C, b\},\{a, b\},\{a b\}, R) \\
& \text { - } r_{1}:(a, a C, b)_{\text {ins }} \\
& \text { - } r_{2}:(a, b, C)_{\text {ins }} \\
& \text { - } r_{3}:(b, C, b)_{d e l} \\
& \text { Size }=(2,1,1 ; 1,1,1) \text {. }
\end{aligned}
$$

Size $=(2,1,1 ; 1,0,0)$.

Ins-del systems for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$G_{1}=$

$(\{a, b\},\{a, b\},\{a b\}, R)$

- $r_{1}:(a, a b, b)_{\text {ins }}$

Size $=(2,1,1 ; 0,0,0)$.
Can generate more grammars for the same language?

$$
\begin{aligned}
& G_{2}= \\
& (\{a, X, b\},\{a, b\},\{a b\}, R) \\
& \bullet r_{1}:(a, X, b)_{\text {ins }} \\
& \bullet r_{2}:(X, a b, b)_{\text {ins }} \\
& \bullet r_{3}:(\lambda, X, \lambda)_{\text {del }}
\end{aligned}
$$

Size $=(2,1,1 ; 1,0,0)$.

$$
\begin{aligned}
G_{3} & =(\{a, C, b\},\{a, b\},\{a b\}, R) \\
\bullet & r_{1}:(a, a C, b)_{\text {ins }} \\
\text { - } r_{2} & :(a, b, C)_{\text {ins }} \\
\text { - } r_{3} & :(b, C, b)_{\text {del }} \\
\text { Size } & =(2,1,1 ; 1,1,1) .
\end{aligned}
$$

$$
G_{4}=(\{a, \$, Y, b\},\{a, b\},\{a b\}, R)
$$

$$
\text { - } r_{1}:(a, a Y, b)_{i n s}
$$

$$
\text { - } r_{2}:(a, b \$, Y)_{i n s}
$$

$$
r_{3}:(b, \$ Y, b)_{d e l}
$$

$$
\text { Size }=(2,1,1 ; 2,1,1)
$$

$$
\left\{a^{n} b^{n}\right\} \in I D(2,1,1 ; 0,0,0)
$$

Trivial yet important result

- If $L \in I D\left(s_{1}, s_{2}, s_{3} ; s_{4}, s_{5}, s_{6}\right)$, then $L \in I D\left(t_{1}, t_{2}, t_{3} ; t_{4}, t_{5}, t_{6}\right)$ for every $t_{i} \geq s_{i}$. Objective: Minimize the s_{i} 's.
- If $L \in I D\left(s_{1}, s_{2}, s_{3} ; s_{4}, s_{5}, s_{6}\right)$, then $L^{r} \in I D\left(s_{1}, s_{3}, s_{2} ; s_{4}, s_{6}, s_{5}\right)$.
- If \mathcal{L} is a language class that is closed under reversal and $\mathcal{L}=I D\left(s_{1}, s_{2}, s_{3} ; s_{4}, s_{5}, s_{6}\right)$, then $\mathcal{L}=I D\left(s_{1}, s_{3}, s_{2} ; s_{4}, s_{6}, s_{5}\right)$.
- Implication: If $R E=I D(1,1,0 ; 1,0,1)$ implies $R E=I D(1,0,1 ; 1,1,0)$.

With what sizes does an ID system (not known to) characterize RE ?

- $(1,1,1 ; 1,1,1)$
- ($1,1,1 ; 2,0,0)$
- ($2,0,0 ; 1,1,1$)
- (2, 0, 0; 3, 0, 0)
- $(3,0,0 ; 2,0,0)$

Classic Result 2017

For $i^{\prime}+i^{\prime \prime}, j^{\prime}+j^{\prime \prime} \neq 0$,
ID $\left(2, i^{\prime}, i^{\prime \prime} ; 2, j^{\prime}, j^{\prime \prime}\right)=R E$
$\operatorname{ID}(2,0,0 ; 2,0,0) \neq \mathrm{RE}$

- $(1,1,0 ; 1,1,1)$
- $(1,1,1 ; 1,1,0)$
- $(1,1,0 ; 1,1,0)$
- $(1,1,1 ; 1,0,0)$
- $(1,0,0 ; 1,1,1)$
- ($1,1,0 ; 2,0,0$)
- (2, 0, $0 ; 1,1,0)$
- and so on...

Variants of ins-del system

- Ins-del P systems by Krishna and Rama (2001)
- Tissue P systems with ins-del rules by Lakshmanan and Rama (2003)
- Graph-controlled ins-del systems by R Freund et al (2010).
- Matrix ins-del systems by Lakshmanan and Anand Mahendran (2011) and independently by I Petre and S Verlan (2012)
- Semi-conditional and Random Context ins-del systems by S Ivanov and S Verlan (2011)
- Generalized forbidding ins-del systems by S Ivanov and S Verlan (2011)

Variants of ins-del system

- Ins-del P systems by Krishna and Rama (2001)
- Tissue P systems with ins-del rules by Lakshmanan and Rama (2003)
- Graph-controlled ins-del systems by R Freund et al (2010).
- Matrix ins-del systems by Lakshmanan and Anand Mahendran (2011) and independently by I Petre and S Verlan (2012)
- Semi-conditional and Random Context ins-del systems by S Ivanov and S Verlan (2011)
- Generalized forbidding ins-del systems by S Ivanov and S Verlan (2011)

Common objective

To characterize recursively enumerable languages using any of the above regulated system with as minimal size/resource as possible.
To do so, we use Special Geffert Normal Form of type-0 grammars.

Special Geffert Normal Form (SGNF)

Definition

A type-0 grammar $G=(N, T, P, S)$ is in SGNF if

- N is partitioned into $N=N_{1} \cup N_{2}$, where $N_{2}=\{A, B, C, D\}$ and N_{1} contains at least the two non-terminals S and S^{\prime},
- The rules in P are of the form :
$p: X \rightarrow b Y, q: X \rightarrow Y b, h: S^{\prime} \rightarrow \lambda, f: A B \rightarrow \lambda, g: C D \rightarrow \lambda$. where $X, Y \in N_{1}, X \neq Y, b \in T \cup N_{2}$ and $\mathrm{p}, \mathrm{q}, \mathrm{h}, \mathrm{f}, \mathrm{g}$ are labels.

Special Geffert Normal Form (SGNF)

Definition

A type-0 grammar $G=(N, T, P, S)$ is in SGNF if

- N is partitioned into $N=N_{1} \cup N_{2}$, where $N_{2}=\{A, B, C, D\}$ and N_{1} contains at least the two non-terminals S and S^{\prime},
- The rules in P are of the form :
$p: X \rightarrow b Y, q: X \rightarrow Y b, h: S^{\prime} \rightarrow \lambda, f: A B \rightarrow \lambda, g: C D \rightarrow \lambda$. where $X, Y \in N_{1}, X \neq Y, b \in T \cup N_{2}$ and p, q, h, f, g are labels.
- In Phase I, the (linear-like) CF rules are applied and completed by applying $S^{\prime} \rightarrow \lambda$.
- Adv. At any instant of string in the sentential form, there is only ONE variable from N_{1} (No confusion of twins!).
- In Phase II, only $A B \rightarrow \lambda, C D \rightarrow \lambda$ rules are applied.

Graph-Controlled Insertion-Deletion (GCID)

Definition

- A GCID system is $\Pi=\left(k, V, T, A, H, i_{0}, i_{f}, R\right)$
- k is the number of components
- V is an alphabet, $T \subseteq V, A$ is an axiom set, H is a label set.
- i_{0} is the initial component and i_{f} is the final component.
- A rule in R is of the form $\ell:\left(i,\left(w_{1}, \alpha, w_{2}\right)_{t}, j\right), t \in\{I, D\}$.
- $\ell \in H$ is a label for the ins-del rule,
- i : current component, j : target component

Starting with \#\$ we generate $\left\{w w \mid w \in\{a, b\}^{*}\right\} \notin C F$

$\left.r_{11}:(1,(\#, a, \lambda))_{\text {ins }}, 2\right)$	$r_{21}:\left(2,(\$, a, \lambda){ }_{\text {ins }}, 1\right)$	Size is $(3 ; 1,1,0 ; 1,0,0)$
$r_{12}:\left(1,(\#, b, \lambda)_{\text {ins }}, 3\right)$	$r_{22}:\left(2,(\lambda, \#, \lambda)_{\text {del }}, 1\right)$	
$r_{13}:\left(1,(\lambda, \$, \lambda)_{d e l}, 2\right)$	$r_{31}:\left(3,(\$, b, \lambda)_{\text {ins }}, 1\right)$	

Size of GCID

The size of a GCID system is given by $\left(k ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where

- k : Number of Components $(k \geq 1)$
- n : Maximal length of the insertion string
- i^{\prime} : Maximal length of the left context used in insertion rules
- $i^{\prime \prime}$: Maximal length of the right context used in insertion rules
- m : Maximal length of the deletion string
- j^{\prime} : Maximal length of the left context used in deletion rules
- $j^{\prime \prime}$: Maximal length of the right context used in deletion rules

Size of GCID

The size of a GCID system is given by $\left(k ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where

- k : Number of Components $(k \geq 1)$
- n : Maximal length of the insertion string
- i^{\prime} : Maximal length of the left context used in insertion rules
- $i^{\prime \prime}$: Maximal length of the right context used in insertion rules
- m : Maximal length of the deletion string
- j^{\prime} : Maximal length of the left context used in deletion rules
- $j^{\prime \prime}$: Maximal length of the right context used in deletion rules

Objective

(1) With what size does a GCID system (with $n+m \in\{2,3\}$) characterize RE?
(2) Is the underlying control graph, a path?

Computational completeness of GCID for $n=1, m=1$

No.	Size of the system $\left(k ; 1, i^{\prime}, i^{\prime \prime} ; 1, j^{\prime}, j^{\prime \prime}\right)$	No.of Comps	Control graph type
1.	$(k ; 1,0,0 ; 1,1,1)$ or $(k ; 1,1,1 ; 1,0,0)$	5	path
2.	$(k ; 1,1,0 ; 1,1,0)$ or $(k ; 1,0,1 ; 1,0,1)$	$\begin{aligned} & 4 \\ & 3 \\ & 4 \end{aligned}$	Non - tre Non - tre path
3.	$(k ; 1,1,0 ; 1,0,1)$ or $(k ; 1,0,1 ; 1,1,0)$	$\begin{aligned} & 4 \\ & 3 \\ & 4 \end{aligned}$	Non - tre Non - tre path
4.	$(k ; 1,1,0 ; 1,1,1)$ or $(k ; 1,0,1 ; 1,1,1)$	3	path
5.	$(k ; 1,1,1 ; 1,1,0)$ or $(k ; 1,1,1 ; 1,0,1)$	3	path
6.	$(k ; 1,1,1 ; 1,1,1)$	1	Null

Computational completeness of GCID for $n+m=3$

No.	Size $\left(k ; 1, i^{\prime}, i^{\prime \prime} ; 2, j^{\prime}, j^{\prime \prime}\right)$	No. of Comps	Graph type
1.	$(k ; 1,0,0 ; 2,1,1)$ or $(k ; 2,1,1 ; 1,0,0)$	5	path
2.	$(k ; 1,1,0 ; 2,0,0)$ or $(k ; 1,0,1 ; 2,0,0)$ or $(k ; 1,1,0 ; 2,1,0)$ or $(k ; 1,0,1 ; 2,0,1)$ or $(k ; 1,1,0 ; 2,0,1)$ or $(k ; 1,0,1 ; 2,1,0)$	3	Non - tree path
3.	$(k ; 2,0,0 ; 1,1,0)$ or $(k ; 2,0,0 ; 1,0,1)$	3	Non - treee path
4.	$(k ; 2,1,0 ; 1,1,0)$ or $(k ; 2,0,1 ; 1,0,1)$ or $(k ; 2,1,0 ; 1,0,1)$ or $(k ; 2,0,1 ; 1,1,0)$ or $(k ; 2,1,1 ; 1,1,0)$ or $(k ; 2,1,1 ; 1,0,1)$ or $(k ; 1,1,0 ; 2,1,1)$ or $(k ; 1,0,1 ; 2,1,1)$		path
5.	$(k ; 1,1,1 ; 2,0,0)$ or $(k ; 1,1,1 ; 2,1,0)$ or $(k ; 1,1,1 ; 2,0,1)$ or $(k ; 1,1,1 ; 2,1,1)$ or $(k ; 2,0,0 ; 1,1,1)$ or $(k ; 2,1,0 ; 1,1,1)$ or $(k ; 2,0,1 ; 1,1,1)$ or $(k ; 2,1,1 ; 1,1,1)$		

$\mathrm{RE}=\operatorname{GCID}_{P}(3 ; 1,1,0 ; 1,1,1) \quad$ Axiom $=\kappa S \kappa^{\prime}$

We simulate $r: X \rightarrow Y_{1} Y_{2}, f: A B \rightarrow \lambda \mid C D \rightarrow \lambda, h: S^{\prime} \rightarrow \lambda$ as:

Lesson learnt

- More contexts does not imply simple simulation

Component 1

```
r1.1: (1, (X,r,\lambda)।,2)
r1.2:(1,(r,\Delta,\lambda)/, 1)
r1.3:(1, (r, Y , , ) |, 2)
f1.1:(1, (\lambda,f,\lambda)।, 2)
h1.1:(1, (\lambda, S', \lambda)
\kappa 1 . 1 : ( 1 , ~ ( \lambda , \kappa , \lambda ) ~ D , ~ 1 )
\kappa
```


Component 2

$$
\begin{aligned}
& r 2.1:\left(2,(\lambda, X, r)_{D}, 1\right) \\
& r 2.2 c:\left(2,(Y 2, \Delta, c)_{D}, 3\right), c \neq \Delta \\
& r 2.3 c^{\prime}:\left(2,\left(c^{\prime}, r, Y_{1}\right)_{D}, 1\right) \\
& f 2.1:\left(2,(f, A, B)_{D}, 3\right) \\
& f 2.2:\left(2,(\lambda, f, \lambda)_{D}, 1\right)
\end{aligned}
$$

Component 3

r3.1: $\left(3,\left(r, Y_{1}, \lambda\right), 2\right)$
$r 3.2$: $\left(3,(f, B, \lambda)_{D}, 2\right)$

Why we prefer

It has applications in Membrane Computing.

Annimal Cell

Bridging the gap between LIN and CFL

- The systems $\operatorname{GCID}(\mathrm{k} ; 1,1,0 ; 1,0,0)$ and $\operatorname{GCID}(\mathrm{k} ; 2,1,0 ; 1,0,0)$ are not known to characterize RE (not even CFL) for any $k \geq 1$.
- However the systems GCID ($k ; 1,1,0 ; 1,0,0$) and GCID ($k ; 2,1,0 ; 1,0,0)$ characterize LIN for $k \geq 3$.

Bridging the gap between LIN and CFL

- The systems $\operatorname{GCID}(\mathrm{k} ; 1,1,0 ; 1,0,0)$ and $\operatorname{GCID}(\mathrm{k} ; 2,1,0 ; 1,0,0)$ are not known to characterize RE (not even CFL) for any $k \geq 1$.
- However the systems GCID ($k ; 1,1,0 ; 1,0,0$) and GCID $(k ; 2,1,0 ; 1,0,0)$ characterize LIN for $k \geq 3$.
- We aim to show that these systems characterize several classes between LIN and CFL for $k \geq 5$.
- To do so, we first introduce/look into some closure classes of LIN and we term them as super-linear languages.

Closure classes of linear Languages

Note: LIN is not closed under Kleene star and concatenation.

- $\mathcal{L}_{\text {op }}($ LIN $)=$ smallest class containing linear languages and is closed under the operation op (Kutrib, Malcher (2007))
- MLIN $:=\mathcal{L}_{\circ}($ LIN $)$ (Metalinear languages)
- SLIN $:=\mathcal{L}_{*}($ LIN $) \quad$ (Starlinear languages)
- SMLIN $:=\mathcal{L}_{*}(M L I N)=\mathcal{L}_{*}\left(\mathcal{L}_{\circ}(\right.$ LIN $\left.)\right)$ (containing MLIN...)
- MSLIN $:=\mathcal{L}_{\circ}(S L I N)=\mathcal{L}_{\circ}\left(\mathcal{L}_{*}(L I N)\right)$
- SMSLIN $:=\mathcal{L}_{*}($ MSLIN $)=\mathcal{L}_{*}\left(\mathcal{L}_{\circ}\left(\mathcal{L}_{*}(\right.\right.$ LIN $\left.\left.)\right)\right)$
- MSMLIN $:=\mathcal{L}_{\circ}(S M L I N)=\mathcal{L}_{\circ}\left(\mathcal{L}_{*}\left(\mathcal{L}_{\circ}(L I N)\right)\right)$
- RATLIN $:=\mathcal{L}_{0, *, \cup}($ LIN $)$

The smallest class containing LIN and is closed under the 3 regular operations: concatenation, Kleene star and union.

Languages in closure classes

- $L \in M L I N$ iff $L=L_{1} L_{2} \ldots L_{k}$ for some $k \geq 1$ and $L_{i} \in L I N$.
- $L \in S L I N$ iff $L=L_{1}^{*}$ for $L_{1} \in L I N$.
- $L \in$ MSLIN iff $L=L_{1}^{*} L_{2}^{*} \ldots L_{k}^{*}$ for some $k \geq 1$ and $L_{i} \in L I N$.
- $L \in S M L I N$ iff $L=\left(L_{1} L_{2} \ldots L_{k}\right)^{*}$ for $k \geq 1$ and $L_{i} \in L I N$.
- $L \in$ SMSLIN iff $L=(M)^{*}$ for some $M=L_{1}^{*} \ldots L_{k}^{*} \in M S L I N$.
- $L \in M S M L I N$ iff $L=M_{1} M_{2} \ldots M_{k}$ for each $M_{i} \in S M L I N$, $M_{i}=\left(L_{i, 1} L_{i, 2} \ldots L_{i, t_{i}}\right)^{*}$ where $L_{i, j} \in L I N$.

Closure under reversal

The classes MLIN, SLIN, MSLIN, SMLIN, MSMLIN and SMSLIN are all closed under reversal.
We use the fact that LIN is closed under reversal

- MLIN: $\left(L_{1} L_{2} \ldots L_{k}\right)^{R}=L_{k}^{R} L_{k-1}^{R} \ldots L_{1}^{R}$.
- SLIN: $\left(L_{1}^{*}\right)^{R}=\left(L_{1}^{R}\right)^{*}$.
- SMLIN: $\left(\left(L_{1} L_{2} \ldots L_{k}\right)^{*}\right)^{R}=\left(\left(L_{1} \ldots L_{k}\right)^{R}\right)^{*}=\left(L_{k}^{R} \ldots L_{2}^{R} L_{1}^{R}\right)^{*}$.
- MSLIN: $\left(L_{1}^{*} L_{2}^{*} \ldots L_{k}^{*}\right)^{R}=\left(L_{k}^{R}\right)^{*}\left(L_{k-1}^{R}\right)^{*} \ldots\left(L_{2}^{R}\right)^{*}\left(L_{1}^{R}\right)^{*}$.

Similarly we can extend to MSMLIN and SMSLIN.

Inter-relationship

Solid arrow from A to B indicates $A \subseteq$ B. Dashed line between A and B indicates A and B are incomparable.
(1) $\operatorname{SLIN} \subseteq$ MSLIN \cap SMLIN.
(2) MLIN \subseteq MSLIN \cap SMLIN.
(3) MSLIN \subseteq MSMLIN \cap SMSLIN.
(9) SMLIN \subseteq MSMLIN \cap SMSLIN.
(5) Incomparable

- MLIN and SLIN.
- MSLIN and SMLIN.
- MSMLIN and SMSLIN.

Sa(i)mple proofs

MSLIN \subseteq SMSLIN \cap MSMLIN

- MSLIN \subseteq SMSLIN and since $L I N \subseteq M L I N, M S L I N \subseteq M S M L I N$.
MSLIN and SMLIN are incomparable
- Let $L_{1}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{c^{m} d^{m} \mid m \geq 0\right\}$
- $\left(L_{1} L_{2}\right)^{*} \in S M L I N \backslash M S L I N$
(1) $L=L_{1} L_{2} \in$ MLIN implies $L^{*}=\left(L_{1} L_{2}\right)^{*} \in$ SMLIN.
(2) $L=L_{1} L_{2} \notin L I N$ implies $L^{*} \notin S L I N$ and hence $L^{*} \notin M S L I N$.
- $L_{1}^{*} L_{2}^{*} \in M S L I N \backslash S M L I N$
- Important: $\left(L_{1} L_{2}\right)^{*} \neq L_{1}^{*} L_{2}^{*}$ (check yourself!!)

Rewriting grammar for SLIN

Recall: $L \in S L I N$ iff $L=\left(L_{1}\right)^{*}$
(1) Let $G_{1}=\left(N_{1}, T, S_{1}, P_{1}\right)$ be linear grammar for L_{1}.
(2) A language of SLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=N_{1} \cup\{S\}$
- P includes the conventional LIN rules of P_{1} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda$
- The additional CF rules : $S \rightarrow S S_{1} \mid \lambda$.

Rewriting grammar for MLIN and SMLIN

Recall: $L \in$ MLIN iff $L=L_{1} L_{2} \ldots L_{k}$
(1) Let $G_{i}=\left(N_{i}, T, S_{i}, P_{i}\right)$ be linear grammar for L_{i}.
(2) A language of MLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=\bigcup^{k} N_{i} \cup\left\{S, S_{2}^{\prime}, S_{3}^{\prime}, \ldots S_{k+1}^{\prime}\right\}$
- P includes the conventional LIN rules of P_{i} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda$
- The additional following CF rules.

$$
\begin{aligned}
& S \rightarrow S_{1} S_{2}^{\prime} \\
& S_{i}^{\prime} \rightarrow S_{i} S_{i+1}^{\prime} \text { for } 2 \leq i \leq k \\
& S_{k+1}^{\prime} \rightarrow \lambda
\end{aligned}
$$

Rewriting grammar for MLIN and SMLIN

Recall: $L \in$ MLIN iff $L=L_{1} L_{2} \ldots L_{k}$
(1) Let $G_{i}=\left(N_{i}, T, S_{i}, P_{i}\right)$ be linear grammar for L_{i}.
(2) A language of MLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=\bigcup^{k} N_{i} \cup\left\{S, S_{2}^{\prime}, S_{3}^{\prime}, \ldots S_{k+1}^{\prime}\right\}$
- P includes the conventional LIN rules of P_{i} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda$
- The additional following CF rules.
$S \rightarrow S_{1} S_{2}^{\prime}$
$S_{i}^{\prime} \rightarrow S_{i} S_{i+1}^{\prime}$ for $2 \leq i \leq k$
$S_{k+1}^{\prime} \rightarrow \lambda \mid S_{1} S_{2}^{\prime}$ (Additional rule for SMLIN)

Rewriting grammar for MLIN and SMLIN

Recall: $L \in$ MLIN iff $L=L_{1} L_{2} \ldots L_{k}$
(1) Let $G_{i}=\left(N_{i}, T, S_{i}, P_{i}\right)$ be linear grammar for L_{i}.
(2) A language of MLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=\bigcup^{k} N_{i} \cup\left\{S, S_{2}^{\prime}, S_{3}^{\prime}, \ldots S_{k+1}^{\prime}\right\}$
- P includes the conventional LIN rules of P_{i} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda$
- The additional following CF rules.

$$
\begin{aligned}
& S \rightarrow S_{1} S_{2}^{\prime} \\
& S_{i}^{\prime} \rightarrow S_{i} S_{i+1}^{\prime} \text { for } 2 \leq i \leq k \\
& S_{k+1}^{\prime} \rightarrow \lambda \mid S_{1} S_{2}^{\prime} \text { (Additional rule for SMLIN) }
\end{aligned}
$$

Sample derivation for MLIN is

$$
S \Longrightarrow S_{1} S_{2}^{\prime} \Longrightarrow{ }^{*} L_{1} S_{2}^{\prime} \Longrightarrow L_{1} S_{2} S_{3}^{\prime} \Longrightarrow^{*} L_{1} L_{2} S_{3}^{\prime} \Longrightarrow{ }^{*} L_{1} L_{2} L_{3} S_{4}^{\prime}
$$

Rewriting grammar for MSLIN

Recall: $L \in$ MSLIN iff $L=L_{1}^{*} L_{2}^{*} \ldots L_{k}^{*}$
(1) Let $G_{i}=\left(N_{i}, T, S_{i}, P_{i}\right)$ be linear grammar for L_{i}.
(2) A language of MSLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=\bigcup^{k} N_{i} \cup\left\{S, S_{2}^{\prime}, S_{3}^{\prime}, \ldots S_{k+1}^{\prime}\right\}$ ${ }_{i=1}$
- P includes the conventional LIN rules of P_{i} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda, S_{i} \rightarrow \lambda$
- The additional following CF rules.
$S \rightarrow S_{1} S_{2}^{\prime}$
$S_{i+1}^{\prime} \rightarrow S_{i} S_{i+1}^{\prime} \mid S_{i+1} S_{i+2}^{\prime}$ for $1 \leq i \leq k-1$
The first rule to stay in L_{i} and second rule to pass to L_{i+1}

$$
S_{k+1}^{\prime} \rightarrow \lambda
$$

Rewriting grammar for MSLIN

Recall: $L \in$ MSLIN iff $L=L_{1}^{*} L_{2}^{*} \ldots L_{k}^{*}$
(1) Let $G_{i}=\left(N_{i}, T, S_{i}, P_{i}\right)$ be linear grammar for L_{i}.
(2) A language of MSLIN is generated by a grammar $G=(N, T, S, P)$ where

- $N=\bigcup^{k} N_{i} \cup\left\{S, S_{2}^{\prime}, S_{3}^{\prime}, \ldots S_{k+1}^{\prime}\right\}$ ${ }_{i=1}$
- P includes the conventional LIN rules of P_{i} and $X \rightarrow Y a, X \rightarrow a Y, X \rightarrow \lambda, S_{i} \rightarrow \lambda$
- The additional following CF rules.
$S \rightarrow S_{1} S_{2}^{\prime}$
$S_{i+1}^{\prime} \rightarrow S_{i} S_{i+1}^{\prime} \mid S_{i+1} S_{i+2}^{\prime}$ for $1 \leq i \leq k-1$
The first rule to stay in L_{i} and second rule to pass to L_{i+1} $S_{k+1}^{\prime} \rightarrow \lambda \mid S_{1} S_{2}^{\prime}, \quad S \rightarrow \lambda$ (Additional rule for SMSLIN)

Rewriting grammar for MSMLIN

Recall: $L \in$ MSMLIN iff $L=M_{1} M_{2} \ldots M_{k}$ for each $M_{i} \in S M L I N$.

$$
M_{i}=\left(L_{i, 1} L_{i, 2} \ldots L_{i, t_{i}}\right)^{*} \text { where } L_{i, j} \in \operatorname{LIN} .
$$

(1) Let $G_{i, j}=\left(N_{i, j}, T, S_{i, j}, P_{i, j}\right)$ be linear grammar for $L_{i, j}$.
(2) The grammar rules of MSMLIN include the conventional LIN rules of $P_{i, j}$ and P^{\prime}.

Recalling SMLIN

Rules of P^{\prime} for MSMLIN

$S \rightarrow S_{1} S_{2}^{\prime}$ for $2 \leq j \leq t$ $S_{j}^{\prime} \rightarrow S_{j} S_{j+1}^{\prime}$
$S_{t+1}^{\prime} \rightarrow \lambda \mid S_{1} S_{2}^{\prime}$
$S \rightarrow S_{1,1} S_{1,2}^{\prime}$
For $1 \leq i \leq k$ and $2 \leq j \leq t_{i}$
$S_{i, j}^{\prime} \rightarrow S_{i, j} S_{i, j+1}^{\prime}$
$S_{i, t_{i}+1}^{\prime} \rightarrow S_{i, 1} S_{i, 2}^{\prime}|\underbrace{S_{i+1,1} S_{i+1,2}^{\prime}}_{\text {for } i \neq k}| \underbrace{\lambda}_{i f}$

$\operatorname{LIN} \subsetneq \operatorname{GCID}(3 ; 1,1,0 ; 1,0,0)$

We simulate the rules $p: X \rightarrow Y a, q: X \rightarrow a Y$ and $h: X \rightarrow \lambda$ as:

Component 1

p1.1: $\left(1,(X, p, \lambda)_{\text {ins }}, 3\right)$	Component 2	Component 3
p1.2: $\left(1,(p, a, \lambda)_{\text {ins }}, 2\right)$	$p 2.1:\left(2,\left(p, p^{\prime}, \lambda\right)_{\text {ins }}, 3\right)$	$p 3.1:\left(3,(\lambda, X, \lambda)_{\text {del }}, 1\right)$
p1.3: $\left(1,\left(p^{\prime}, Y, \lambda\right)_{\text {ins }}, 2\right)$	$p 2.2:\left(2,\left(\lambda, p^{\prime}, \lambda\right)_{\text {del }}, 1\right)$	$p 3.2:\left(3,(\lambda, p, \lambda)_{\text {del }}, 1\right)$
$q 1.1:\left(1,(X, q, \lambda)_{\text {ins }}, 3\right)$	$q 2.1:\left(2,(q, a, \lambda)_{\text {ins }}, 3\right)$	$q 3.1:\left(3,(\lambda, X, \lambda)_{\text {del }}, 1\right)$
$q 1.2:\left(1,\left(q, q^{\prime}, \lambda\right)_{\text {ins }}, 2\right)$	$q 2.2:\left(2,\left(\lambda, q^{\prime}, \lambda\right)_{\text {del }}, 1\right)$	$q 3.2:\left(3,(\lambda, q, \lambda)_{\text {del }}, 1\right)$
$q 1.3:\left(1,\left(q^{\prime}, Y, \lambda, \lambda\right)_{\text {ins }}, 2\right)$		

$\operatorname{LIN} \subsetneq G C I D(3 ; 2,1,0 ; 1,0,0)$

We simulate the rules $p: X \rightarrow a Y, q: X \rightarrow Y a, h: X \rightarrow \lambda$ as:

Component 1

```
p1.1 : (1,(X,p,\lambda) ins , 2)
p1.2: (1, (p,aY, \lambda) ins,3)
q1.1 : (1,(X,q, \lambda) ins , 2)
q1.2 : (1, (q, Ya, \lambda)ins,3)
h1.1 : (1, ( }\lambda,X,\lambda),\mp@code{del},1
```


Component 2

$p 2.1$: $\left(2,(\lambda, X, \lambda)_{\text {del }}, 1\right) \quad p 3.1:\left(3,(\lambda, p, \lambda)_{\text {del }}, 1\right)$ q2.1: $\left(2,(\lambda, X, \lambda)_{d e l}, 1\right) \quad q 3.1:\left(3,(\lambda, q, \lambda)_{d e l}, 1\right)$

Simulating Transition rules of MLIN

Recall: $S_{i+1}^{\prime} \rightarrow S_{i+1} S_{i+2}$ for $1 \leq i \leq k-1$ and $S_{k+1}^{\prime} \rightarrow \lambda$ MLIN $\subseteq \operatorname{GCID}(5 ; 2,1,0 ; 1,0,0)$. For each $1 \leq i \leq k$,

Component 2

$p_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)$

Component 3

Component 1
$p_{i} 1.1:\left(1,\left(X_{i}, p_{i}, \lambda\right)_{i n s}, 2\right)$
$p_{i} 1.2:\left(1,\left(p_{i}, a Y_{i}, \lambda\right)_{i n s}, 3\right)$
$q_{i} 1.1:\left(1,\left(X_{i}, q_{i}, \lambda\right)_{i n s}, 2\right)$
$q_{i} 1.2:\left(1,\left(q_{i}, Y_{i} a, \lambda\right)_{i n s}, 3\right)$
$h_{i} 1.1:\left(1,\left(\lambda, X_{i}, \lambda\right)_{\text {del }}, 4\right)$

$q_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)$

$$
p_{i} 3.1:\left(3,\left(\lambda, p_{i}, \lambda\right)_{d e l}, 1\right)
$$

$$
q_{i} 3.1:\left(3,\left(\lambda, q_{i}, \lambda\right)_{d e l}, 1\right)
$$

Component 4

For $i \neq k$
$r_{i} 4.1:\left(4,\left(S_{i+1}^{\prime}, S_{i+1}, \lambda\right)_{i n s}, 5\right)$
$r_{i} 4.2:\left(4,\left(S_{i+1}, S_{i+2}^{\prime}, \lambda\right)_{i n s}, 1\right)$
For $i=k$

Component 5

For $i \neq k$
$r_{i} 5.1:\left(5,\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}, 4\right)$
$r_{i} 4.1:\left(4,\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{d e l}, 1\right)$

Simulating Transition rules of MLIN

Recall: $S_{i+1}^{\prime} \rightarrow S_{i+1} S_{i+2}$ for $1 \leq i \leq k-1$ and $S_{k+1}^{\prime} \rightarrow \lambda$ MLIN $\subseteq \operatorname{GCID}(5 ; 2,1,0 ; 1,0,0)$. For each $1 \leq i \leq k$,

Component 2

$$
p_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)
$$

Component 3

Component 1
$p_{i} 1.1:\left(1,\left(X_{i}, p_{i}, \lambda\right)_{\text {ins }}, 2\right)$
$p_{i} 1.2:\left(1,\left(p_{i}, a Y_{i}, \lambda\right)_{i n s}, 3\right)$
$q_{i} 1.1:\left(1,\left(X_{i}, q_{i}, \lambda\right)_{\text {ins }}, 2\right)$
$q_{i} 1.2:\left(1,\left(q_{i}, Y_{i} a, \lambda\right)_{i n s}, 3\right)$
$h_{i} 1.1:\left(1,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 4\right)$

$q_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)$

$$
p_{i} 3.1:\left(3,\left(\lambda, p_{i}, \lambda\right)_{d e l}, 1\right)
$$

$$
q_{i} 3.1:\left(3,\left(\lambda, q_{i}, \lambda\right)_{d e l}, 1\right)
$$

Component 4

For $i \neq k$
$r_{i} 4.1:\left(4,\left(S_{i+1}^{\prime}, S_{i+1}, \lambda\right)_{\text {ins }}, 5\right)$
$r_{i} 4.2:\left(4,\left(S_{i+1}, S_{i+2}^{\prime}, \lambda\right)_{i n s}, 1\right)$
For $i=k$
$r_{i} 4.1:\left(4,\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}, 1\right)$

$$
\left(S_{1} S_{2}^{\prime}\right)_{1} \Longrightarrow{ }^{*}\left(L_{1} S_{2}^{\prime}\right)_{4} \Longrightarrow\left(L_{1} S_{2}^{\prime} S_{2}\right)_{5} \Longrightarrow\left(L_{1} S_{2}\right)_{4} \Longrightarrow\left(L_{1} S_{2} S_{3}^{\prime}\right)_{1}
$$

MSLIN $\subseteq \operatorname{GCID}(5 ; 2,1,0 ; 1,0,0)$

Recall: $S_{i+1}^{\prime} \rightarrow S_{i+1} S_{i+1}^{\prime} \mid S_{i+1} S_{i+2}^{\prime}$ for $1 \leq i \leq k-1$ and $S_{k+1}^{\prime} \rightarrow \lambda$. For each $1 \leq i \leq k$,

Component 2

$p_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)$
$q_{i} 2.1:\left(2,\left(\lambda, X_{i}, \lambda\right)_{d e l}, 1\right)$

Component 3

Component 1

,

$p_{i} 3.1:\left(3,\left(\lambda, p_{i}, \lambda\right)_{d e l}, 1\right)$
$p_{i} 1.1:\left(1,\left(X_{i}, p_{i}, \lambda\right)_{\text {ins }}, 2\right)$
$p_{i} 1.2:\left(1,\left(p_{i}, a Y_{i}, \lambda\right)_{\text {ins }}, 3\right)$
$q_{i} 1.1:\left(1,\left(X_{i}, q_{i}, \lambda\right)_{\text {ins }}, 2\right)$
$q_{i} 1.2:\left(1,\left(q_{i}, Y_{i} a, \lambda\right)_{i n s}, 3\right)$

Component 4

$q_{i} 3.1:\left(3,\left(\lambda, q_{i}, \lambda\right)_{d e l}, 1\right)$

For $i \neq k$
$r_{i} 4.1:\left(4,\left(S_{i+1}^{\prime}, S_{i+1}, \lambda\right)_{i n s}, 5\right)$
$h_{i} 1.1:\left(1,\left(\lambda, X_{i}, \lambda\right)_{\text {del }}, 4\right)$
$r_{i} 4.2:\left(4,\left(S_{i+1}, S_{i+2}^{\prime}, \lambda\right)_{\text {ins }}, 1\right)$

Component 5

$r_{i} 4.3:\left(4,\left(S_{i+1}, S_{i+1}^{\prime}, \lambda\right)_{i n s}, 1\right) \quad r_{i} 5.1:\left(5,\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}, 4\right)$
For $i=k$
$r_{i} 4.1:\left(4,\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}, 1\right)$

Summary of the results

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- $\operatorname{GCID}(5 ; 2,1,0 ; 1,0,0)$ with tree as a control graph
- $\operatorname{GCID}(5 ; 1,1,0 ; 1,0,0)$ with non-tree as a control graph

Summary of the results

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- $\operatorname{GCID}(5 ; 2,1,0 ; 1,0,0)$ with tree as a control graph
- $\operatorname{GCID}(5 ; 1,1,0 ; 1,0,0)$ with non-tree as a control graph The obtained results can be stated as a general theorem.

Generic Theorem

For integers $t, n, m \geq 1$ and $i^{\prime}, i^{\prime \prime}, j^{\prime}, j^{\prime \prime} \geq 0$ with $i^{\prime}+i^{\prime \prime} \geq 1$ and $X \in\{N T r, \operatorname{Tr}\}$, if $\operatorname{LIN} \subseteq \operatorname{GCID}_{X}\left(t ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$, then $\mathrm{F} \subseteq \mathrm{GCID}_{X}\left(t+2 ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where $\mathrm{F} \in\{$ SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN $\}$.

Extending the results

RATLIN: smallest family containing LIN and closed under union, concatenation and Kleene star.

- Let $L=\left(L_{1} L_{2}\right)^{*} L_{3}^{*} L_{4} L_{5}^{*}$
- Continuation points

$i=$	1	2	3	4	5
$\operatorname{cont}(i)$	2	$1,3,4$	3,4	5	5,6

- Assumption: $i+1 \in \operatorname{cont}(i)$

Extending the results

RATLIN: smallest family containing LIN and closed under union, concatenation and Kleene star.

- Let $L=\left(L_{1} L_{2}\right)^{*} L_{3}^{*} L_{4} L_{5}^{*}$
- Continuation points

$i=$	1	2	3	4	5
$\operatorname{cont}(i)$	2	$1,3,4$	3,4	5	5,6

- Assumption: $i+1 \in \operatorname{cont}(i)$

Transition rules: Axiom $=S_{1}^{\prime}$

$S_{i}^{\prime} \rightarrow S_{i} S_{c}^{\prime} \quad$ for all $c \in \operatorname{cont}(i)$ and $1 \leq i \leq k$
$S_{k+1}^{\prime} \rightarrow \lambda$

Matrix Ins-del system

Definition

A matrix insertion-deletion system is a construct $\Gamma=(V, T, A, R)$

- V is an alphabet, $T \subseteq V, A$ is a finite language over V
- R is a finite set of matrices $\left\{m_{1}, m_{2}, \ldots m_{l}\right\}$
- $m_{i}=\left[\left(u_{1}, \alpha_{1}, v_{1}\right)_{t_{1}},\left(u_{2}, \alpha_{2}, v_{2}\right)_{t_{2}}, \ldots,\left(u_{k}, \alpha_{k}, v_{k}\right)_{t_{k}}\right]$

Notes to remember:

- On choosing a matrix m_{i}, all rules in m_{i} are applied in order.
- If a rule in m_{i} cannot be applied, then m_{i} itself is not applied.

Matrix Ins-del system

Definition

A matrix insertion-deletion system is a construct $\Gamma=(V, T, A, R)$

- V is an alphabet, $T \subseteq V, A$ is a finite language over V
- R is a finite set of matrices $\left\{m_{1}, m_{2}, \ldots m_{l}\right\}$
- $m_{i}=\left[\left(u_{1}, \alpha_{1}, v_{1}\right)_{t_{1}},\left(u_{2}, \alpha_{2}, v_{2}\right)_{t_{2}}, \ldots,\left(u_{k}, \alpha_{k}, v_{k}\right)_{t_{k}}\right]$

Notes to remember:

- On choosing a matrix m_{i}, all rules in m_{i} are applied in order.
- If a rule in m_{i} cannot be applied, then m_{i} itself is not applied.

Size

Size of a matrix ins-del system is $\left(k ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where k : Maximum number of ins-del rules in a matrix
$n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}$ are same as in ID size.

Examples

Language generated by the following matrix ins-del systems?

Axiom: \#\$
$\mathrm{r} 1=\left[(\#, a, \lambda)_{\text {ins }},(\$, a, \lambda)_{\text {ins }}\right]$
$\mathrm{r} 2=\left[(\#, b, \lambda)_{\text {ins }},(\$, b, \lambda)_{\text {ins }}\right]$
$\mathrm{r} 3=\left[(\lambda, \#, \lambda)_{d e l},(\lambda, \$, \lambda)_{d e l}\right]$

Examples

Language generated by the following matrix ins-del systems?

Axiom: \#\$	Language $=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
$\mathrm{r} 1=\left[(\#, a, \lambda)_{\text {ins }},(\$, a, \lambda)_{\text {ins }}\right]$	Size of the system is
$\mathrm{r} 2=\left[(\#, b, \lambda)_{\text {ins }},(\$, b, \lambda)_{\text {ins }}\right]$	$(2 ; 1,1,0 ; 1,0,0)$.
$\mathrm{r} 3=\left[(\lambda, \#, \lambda)_{\text {del }},(\lambda, \$, \lambda)_{\text {del }}\right]$	

Examples

Language generated by the following matrix ins-del systems?

| Axiom: $\# \$$ | Language $=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ |
| :--- | :--- | :--- |
| $r 1=\left[(\#, a, \lambda)_{\text {ins }},(\$, a, \lambda)_{\text {ins }}\right]$ | Size of the system is |
| $\mathrm{r} 2=\left[(\#, b, \lambda)_{\text {ins }},(\$, b, \lambda)_{\text {ins }}\right]$ | $(2 ; 1,1,0 ; 1,0,0)$. |
| $\mathrm{r} 3=\left[(\lambda, \#, \lambda)_{\text {del }},(\lambda, \$, \lambda)_{\text {del }}\right]$ | |

Axiom: \#

$\mathrm{r} 1=\left[(\lambda, a, \#)_{\text {ins }},(\#, b, \lambda)_{\text {ins }}\right]$
$\mathrm{r} 2=\left[(\lambda, \#, \lambda)_{d e l}\right]$

Examples

Language generated by the following matrix ins-del systems?

Axiom: $\# \$$	Language $=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
$\mathrm{r} 1=\left[(\#, a, \lambda)_{\text {ins }},(\$, a, \lambda)_{\text {ins }}\right]$	Size of the system is
$\mathrm{r} 2=\left[(\#, b, \lambda)_{\text {ins }},(\$, b, \lambda)_{\text {ins }}\right]$	$(2 ; 1,1,0 ; 1,0,0)$.
$\mathrm{r} 3=\left[(\lambda, \#, \lambda)_{\text {del }},(\lambda, \$, \lambda)_{\text {del }}\right]$	

Axiom: \#

$\mathrm{r} 1=\left[(\lambda, a, \#)_{\text {ins }},(\#, b, \lambda)_{\text {ins }}\right]$
$\mathrm{r} 2=\left[(\lambda, \#, \lambda)_{d e l}\right]$

Language $=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
Size of the system is
($2 ; 1,1,1 ; 1,0,0$).

Examples

Language generated by the following matrix ins-del systems?

Axiom: \#\$

$$
\begin{aligned}
\mathrm{r} 1 & =\left[(\#, a, \lambda)_{\text {ins }},(\$, a, \lambda)_{\text {ins }}\right] \\
\mathrm{r} 2 & =\left[(\#, b, \lambda)_{\text {ins }},(\$, b, \lambda)_{\text {ins }}\right] \\
\mathrm{r} 3 & =\left[(\lambda, \#, \lambda)_{\text {del }},(\lambda, \$, \lambda)_{\text {del }}\right]
\end{aligned}
$$

Language $=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
Size of the system is
($2 ; 1,1,0 ; 1,0,0$).

Axiom: \#

$$
\begin{aligned}
\mathrm{r} 1 & =\left[(\lambda, a, \#)_{i n s},(\#, b, \lambda)_{i n s}\right] \\
\mathrm{r} 2 & =\left[(\lambda, \#, \lambda)_{d e l}\right]
\end{aligned}
$$

Language $=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
Size of the system is
($2 ; 1,1,1 ; 1,0,0$).

Helpful Results

- MAT $\left(k ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)=\left[\operatorname{MAT}\left(k ; n, i^{\prime \prime}, i^{\prime} ; m, j^{\prime \prime}, j^{\prime}\right)\right]^{R}$
- Since RE is closed under reversal, $\operatorname{MAT}\left(k ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)=R E=\operatorname{MAT}\left(k ; n, i^{\prime \prime}, i^{\prime} ; m, j^{\prime \prime}, j^{\prime}\right)$.

Exhaustive Analysis for $n=\mid$ ns $|=1, m=|$ Del $\mid=1$

$\begin{aligned} & \text { Size }\left(k ; 1, i^{\prime}, i^{\prime \prime} ; 1, j^{\prime}, j^{\prime \prime}\right) ; \\ & \quad i^{\prime}, i^{\prime \prime}, j^{\prime}, j^{\prime \prime} \in\{0,1\} \end{aligned}$	Reference	k	Language Family Relation
($k ; 1,0,0 ; 1,0,0$)	S.Verlan 2007	1	\subset REG
$(k ; 1,0,0 ; 1,1,0),(k ; 1,0,0 ; 1,0,1)$		≥ 1	OPEN
($k ; 1,0,0 ; 1,1,1$)	HLI 2018	3	$=\mathrm{RE}$
	HLI 2019	2	$=\mathrm{RE}$
($k ; 1,1,0 ; 1,0,0$), ($k ; 1,0,0 ; 1,0,0$)	HLI 2019	3	$\supset \mathcal{L}_{\text {reg }}(\mathrm{LIN})$
(k; $1,1,1 ; 1,0,0$)	HLI 2018	3	$=\mathrm{RE}$
	HLI 2019	2	$\supset \mathcal{L}_{\text {reg }}(\mathrm{LIN})$
($k ; 1,1,0 ; 1,1,0),(k ; 1,1,0 ; 1,0,1)$	S.Verlan 2012	3	$=\mathrm{RE}$
($k ; 1,0,1 ; 1,0,1),(k ; 1,0,1 ; 1,1,0)$	HLI 2019	2	$=\mathrm{RE}$
($k ; 1,1,0 ; 1,1,1),(k ; 1,0,1 ; 1,1,1)$	HLI 2018	2	$=\mathrm{RE}$
($k ; 1,1,1 ; 1,1,0),(k ; 1,1,1 ; 1,0,1)$	HLI 2018	2	$=\mathrm{RE}$
$(k ; 1,1,1 ; 1,1,1)$	Takahari 2003	1	$=\mathrm{RE}$

Power of MID systems of size $\left(k ; 1, i^{\prime}, i^{\prime \prime} ; 1, j^{\prime}, j^{\prime \prime}\right)$

HLI 2018: H Fernau, Lakshmanan, Indhumathi, Investigations on the Power of Matrix Insertion-Deletion Systems of Small Sizes, Natural Computing, 2018, 17(2), 249-269.
HLI 2019: -do-, On Matrix Ins-Del Systems of Small Sum-Norm, SOFSEM 2019, LNCS 11376, 192-205.

Exhaustive Analysis for $n+m=3$

Size ($\left.k ; 1, i^{\prime}, i^{\prime \prime} ; 2, j^{\prime}, j^{\prime \prime}\right) ; i^{\prime}, i^{\prime \prime}, j^{\prime}, j^{\prime \prime} \in\{0,1\}$ or ($\left.k ; 2, i^{\prime}, i^{\prime \prime} ; 1, j^{\prime}, j^{\prime \prime}\right) ; i^{\prime}, i^{\prime \prime}, j^{\prime}, j^{\prime \prime} \in\{0,1\}$	Reference	k	Language Family Relation
$(k ; 1,0,0 ; 2,0,0),(k ; 2,0,0 ; 1,0,0)$	Verlan 2007	1	\subset REG
$(k ; 1,0,0 ; 2,1,0),(k ; 1,0,0 ; 2,0,1)$		≥ 1	OPEN
$\begin{aligned} & (k ; 1,1,0 ; 2,0,0), \\ & (k ; 1,1,0 ; 2,1,0), \\ & (k ; 2,0,0 ; 1,1,0),(k ; 2,1,0 ; 1,0 ; 2,0,1) \\ & \hline \end{aligned}$	Verlan 2012	2	$=\mathrm{RE}$
($k ; 1,0,0 ; 2,1,1$), (k;2, 1, 1; 1, 0, 0$)$	HLI 2018	3	$=\mathrm{RE}$
$\begin{gathered} (k ; 1,1,0 ; 2,1,1),(k ; 1,0,1 ; 2,0,0),(k ; 1,0,1 ; 2,1,1) \\ (k ; 1,0,1 ; 2,1,0),(k ; 1,0,1 ; 2,0,1) \\ \hline \end{gathered}$	HLI 2018	2	$=\mathrm{RE}$
$\begin{gathered} (k ; 2,0,0 ; 1,0,1),(k ; 2,1,0 ; 1,0,1),(k ; 2,0,1 ; 1,0,1) \\ (k ; 2,1,1 ; 1,1,0),(k ; 2,1,1 ; 1,0,1) \\ \hline \end{gathered}$	HLI 2018	2	$=\mathrm{RE}$
$(k ; 2,1,0 ; 1,0,0),(k ; 2,0,1 ; 1,0,0)$	HLI 2019	2	$\supset \mathcal{L}_{\text {reg }}($ LIN $)$
(k;2, 0, 0; 1, 1, 1), (k;2, 1, $0 ; 1,1,1),(k ; 2,0,1 ; 1,1,1)$	Krassovitskiy 2008	1	$=\mathrm{RE}$
(k;1,1,1;2,0,0), (k; 1, 1, 1;2,1,0), (k;1, 1, 1; 2, 0, 1)	Paun 1998	1	$=\mathrm{RE}$
(k; $1,1,1 ; 2,1,1$), (k; $2,1,1 ; 1,1,1)$	Takahari 2003	1	$=\mathrm{RE}$

Power of MID systems of size $\left(k ; 1, i^{\prime}, i^{\prime \prime} ; 2, j^{\prime}, j^{\prime \prime}\right)$ or $\left(k ; 2, i^{\prime}, i^{\prime \prime} ; 1, j^{\prime}, j^{\prime \prime}\right)$

$\operatorname{MAT}(3 ; 1,0,0 ; 1,1,1)=\operatorname{RE}$

Consider a type-0 grammar $G=(N, T, P, S)$ in SGNF.

Simulating $p: X \rightarrow b Y$

$p 1=\left[(\lambda, p, \lambda)_{\text {ins }},\left(\lambda, p^{\prime}, \lambda\right)_{\text {ins }},\left(p^{\prime}, X, p\right)_{d e l}\right]$
$p 2=\left[(\lambda, b, \lambda)_{i n s},(\lambda, Y, \lambda)_{\text {ins }},(b, p, Y)_{d e l}\right]$
$p 3=\left[\left(\lambda, p^{\prime}, b\right)_{d e l}\right]$ (right context is required to ensure p 3 is applied after p2)

$\operatorname{MAT}(3 ; 1,0,0 ; 1,1,1)=\operatorname{RE}$

Consider a type-0 grammar $G=(N, T, P, S)$ in SGNF.
Simulating $p: X \rightarrow b Y$
$p 1=\left[(\lambda, p, \lambda)_{\text {ins }},\left(\lambda, p^{\prime}, \lambda\right)_{\text {ins }},\left(p^{\prime}, X, p\right)_{\text {del }}\right]$
$p 2=\left[(\lambda, b, \lambda)_{\text {ins }},(\lambda, Y, \lambda)_{\text {ins }},(b, p, Y)_{\text {del }}\right]$
$p 3=\left[\left(\lambda, p^{\prime}, b\right)_{\text {del }}\right]$ (right context is required to ensure p 3 is applied after p2)

Simulating $q: X \rightarrow Y b$

$$
\begin{aligned}
& q 1=\left[(\lambda, q, \lambda)_{i n s},\left(\lambda, q^{\prime}, \lambda\right)_{i n s},\left(q^{\prime}, X, q\right)_{d e l}\right] \\
& q 2=\left[(\lambda, b, \lambda)_{i n s},(\lambda, Y, \lambda)_{i n s},\left(Y, q^{\prime}, b\right)_{d e l}\right] \\
& q 3=\left[(b, q, \lambda)_{d e l}\right] \text { (left context is required to ensure p3 is applied after p2) }
\end{aligned}
$$

$\operatorname{MAT}(3 ; 1,0,0 ; 1,1,1)=\operatorname{RE}$

Consider a type-0 grammar $G=(N, T, P, S)$ in SGNF.
Simulating $p: X \rightarrow b Y$
$p 1=\left[(\lambda, p, \lambda)_{\text {ins }},\left(\lambda, p^{\prime}, \lambda\right)_{\text {ins }},\left(p^{\prime}, X, p\right)_{\text {del }}\right]$
$p 2=\left[(\lambda, b, \lambda)_{\text {ins }},(\lambda, Y, \lambda)_{\text {ins }},(b, p, Y)_{\text {del }}\right]$
$p 3=\left[\left(\lambda, p^{\prime}, b\right)_{d e l}\right]$ (right context is required to ensure p 3 is applied after p2)

Simulating $q: X \rightarrow Y b$

$q 1=\left[(\lambda, q, \lambda)_{i n s},\left(\lambda, q^{\prime}, \lambda\right)_{i n s},\left(q^{\prime}, X, q\right)_{d e l}\right]$
$q 2=\left[(\lambda, b, \lambda)_{i n s},(\lambda, Y, \lambda)_{i n s},\left(Y, q^{\prime}, b\right)_{d e l}\right]$
$q 3=\left[(b, q, \lambda)_{d e l}\right]$ (eft context is required to ensure p 3 is applied after p 2)

Simulating $f: A B \rightarrow \lambda$

$$
\begin{aligned}
& f 1=\left[(\lambda, f, \lambda)_{\text {ins }},\left(\lambda, f^{\prime}, \lambda\right)_{\text {ins }},(f, A, B)_{d e l}\right] \\
& f 2=\left[\left(f, B, f^{\prime}\right)_{d e l},\left(\lambda, f^{\prime}, \lambda\right)_{\text {del }},(\lambda, f, \lambda)_{d e l}\right]
\end{aligned}
$$

$\operatorname{MAT}(2 ; 1,1,0 ; 1,1,1)=\operatorname{RE}$

Simulating $p: X \rightarrow b Y:$ Axiom $=S \# \$$

$$
\begin{aligned}
& p 1=\left[(X, p, \lambda)_{\text {ins }},\left(\#, p^{\prime}, \lambda\right)_{\text {ins }}\right] \quad p 4=\left[(p, b, \lambda)_{\text {ins }},\left(p^{\prime \prime \prime}, p^{\prime \prime}, p^{\prime}\right)_{d e l}\right] \\
& p 2=\left[(\lambda, X, p)_{d e l},\left(\#, p^{\prime \prime}, \lambda\right)_{i n s}\right] \quad p 5=\left[(\lambda, p, b)_{d e l},\left(p^{\prime \prime \prime}, p^{\prime}, \$\right)_{d e l}\right] \\
& p 3=\left[(p, Y, \lambda)_{\text {ins }},\left(\#, p^{\prime \prime \prime}, \lambda\right)_{\text {ins }}\right] \quad p 6=\left[\left(\#, p^{\prime \prime \prime}, \$\right)_{\text {del }}\right]
\end{aligned}
$$

Simulating $f: A B \rightarrow \lambda$

$$
\begin{array}{ll}
f 1=\left[(B, f, \lambda)_{\text {ins }},\left(\#, f^{\prime}, \lambda\right)_{\text {ins }}\right] & f 1^{\prime}=\left[(B, f, \lambda)_{\text {ins }}\right] \\
f 2=\left[(\lambda, B, f)_{\text {del }},(\lambda, A, f)_{\text {del }}\right] & f 2^{\prime}=\left[(\lambda, B, f)_{\text {del }},(\lambda, A, f)_{\text {del }}\right] \\
f 3=\left[(\lambda, f, \lambda)_{\text {del }},\left(\#, f^{\prime}, \$\right)_{\text {del }}\right] & f 3^{\prime}=\left[(\lambda, f, \lambda)_{\text {del }}\right]
\end{array}
$$

Malicious derivation for $f: A B \rightarrow \lambda$

$$
\begin{aligned}
& A A B \delta B \# \$ \Rightarrow_{f 1^{\prime}}^{2} A A B f \delta B f \# \$ \Rightarrow_{f 2^{\prime}}^{2} \\
& \underline{A A B} f \delta \underline{B} f \# f^{\prime} f^{\prime} \$=f \delta f \# \$ \Rightarrow_{f 3^{\prime}} \delta \# \$ \$
\end{aligned}
$$

Note: $[(\lambda, \#, \lambda),(\lambda, \$, \lambda)]$ is applied at the end of the derivation.

$\operatorname{MAT}(2 ; 1,1,0 ; 1,1,0)=$ RE

Simulating $p: X \rightarrow b Y$

$$
\begin{array}{ll}
p 1=\left[(X, p, \lambda)_{\text {ins }},\left(\lambda, p^{\prime}, \lambda\right)_{\text {ins }}\right] & p 4=\left[\left(p^{\prime}, b, \lambda\right)_{\text {ins }},\left(b, p^{\prime \prime}, \lambda\right)_{d e l}\right] \\
p 2=\left[\left(p^{\prime}, X, \lambda\right)_{d e l},\left(p^{\prime}, p^{\prime \prime}, \lambda\right)_{\text {ins }}\right] & p 5=\left[\left(\lambda, p^{\prime}, \lambda\right)_{d e l}\right] \\
p 3=\left[\left(p^{\prime \prime}, p, \lambda\right)_{d e l},\left(p^{\prime \prime}, Y, \lambda\right)_{\text {ins }}\right] &
\end{array}
$$

MAT $(2 ; 1,1,0 ; 1,1,0)=$ RE

Simulating $p: X \rightarrow b Y$

$$
\begin{array}{ll}
p 1=\left[(X, p, \lambda)_{\text {ins }},\left(\lambda, p^{\prime}, \lambda\right)_{\text {ins }}\right] & p 4=\left[\left(p^{\prime}, b, \lambda\right)_{\text {ins }},\left(b, p^{\prime \prime}, \lambda\right)_{d e l}\right] \\
p 2=\left[\left(p^{\prime}, X, \lambda\right)_{\text {del }},\left(p^{\prime}, p^{\prime \prime}, \lambda\right)_{\text {ins }}\right] & p 5=\left[\left(\lambda, p^{\prime}, \lambda\right)_{d e l}\right]
\end{array}
$$

$$
p 3=\left[\left(p^{\prime \prime}, p, \lambda\right)_{d e l},\left(p^{\prime \prime}, Y, \lambda\right)_{i n s}\right]
$$

Applying p1 twice??

$X \Rightarrow_{p 1} p^{\prime} X p p \ldots p^{\prime} \Rightarrow_{p 2} p^{\prime} p^{\prime \prime} p p \ldots p^{\prime} \Rightarrow_{p 3} p^{\prime} p^{\prime \prime} Y p \ldots p^{\prime} \Rightarrow_{p 4}$ $p^{\prime} b Y p \ldots p^{\prime} \Rightarrow_{p 5}^{2} b Y p$. Cannot reapply p 3 to get rid of the second p.

Simulating $f: A B \rightarrow \lambda$

A new idea of moving in a Z.

$$
\begin{array}{ll}
h 1=\left[\left(\lambda, S^{\prime}, \lambda\right)_{\text {del }},(\lambda, Z, \lambda)_{\text {ins }}\right] & \text { move } Z=\left[(\lambda, Z, \lambda)_{\text {del }},(\lambda, Z, \lambda)_{\text {ins }}\right] \\
f 1=\left[(Z, A, \lambda)_{\text {del }},(Z, B, \lambda)_{\text {del }}\right] & \text { del } Z=\left[(\lambda, Z, \lambda)_{\text {del }}\right]
\end{array}
$$

MAT rules for Super-linear grammars

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- MAT(3;1,1,0;1,0,0)
- MAT(2;2,1,0;1,0,0)
- MAT $(2 ; 1,1,1 ; 1,0,0)$

MAT rules for Super-linear grammars

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- MAT(3;1,1,0;1,0,0)
- MAT(2;2,1,0;1,0,0)
- MAT(2;1,1,1;1,0,0)

Generic Theorem

For integers $t, n, m \geq 1$ and $i^{\prime}, i^{\prime \prime}, j^{\prime}, j^{\prime \prime} \geq 0$ with $i^{\prime}+i^{\prime \prime} \geq 1$, if $\operatorname{LIN} \subseteq \operatorname{MAT}\left(t ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$, then $\mathrm{F} \subseteq \operatorname{MAT}\left(t ; n, i^{\prime}, i^{\prime \prime} ; m, j^{\prime}, j^{\prime \prime}\right)$ where $F \in\{S L I N, ~ M L I N, ~ S M L I N, ~ M S L I N, ~ S M S L I N, ~ M S M L I N, ~ R A T L I N ~\} . ~$

Simulation of MLIN

Recall: Apart from the usual LIN rules, the transition rules in MLIN are $S_{i+1}^{\prime} \rightarrow S_{i+1} S_{i+2}$ for $1 \leq i \leq k-1$ and $S_{k+1}^{\prime} \rightarrow \lambda$, for each $1 \leq i \leq k$,

$$
\begin{aligned}
& \text { MLIN } \subseteq \operatorname{MAT}(3 ; 1,1,0 ; 1,0,0): \text { Axiom }=S_{1} S_{2}^{\prime} \\
& p 1=\left[\left(X_{i}, p_{i}, \lambda\right)_{\text {ins }},\left(p_{i}, p_{i}^{\prime}, \lambda\right)_{\text {ins }},\left(\lambda, X_{i}, \lambda\right)_{\text {del }}\right] \\
& p 2=\left[\left(p_{i}, a_{i}, \lambda\right)_{\text {ins }},\left(p_{i}^{\prime}, Y_{i}, \lambda\right)_{\text {ins }},\left(\lambda, p_{i}, \lambda\right)_{\text {del }}\right] \\
& p 3=\left[\left(\lambda, p_{i}^{\prime}, \lambda\right)_{d e l}\right] \\
& p 4=\left[\left(S_{i+1}^{\prime}, S_{i+2}^{\prime}, \lambda\right)_{\text {ins }},\left(S_{i+1}^{\prime}, S_{i+1}, \lambda\right)_{\text {ins }},\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}\right](\text { for each } 1 \leq i \leq k-1) \\
& p 5=\left[\left(\lambda, S_{k+1}^{\prime}, \lambda\right)_{\text {del }}\right]
\end{aligned}
$$

Simulation of MLIN

Recall: Apart from the usual LIN rules, the transition rules in MLIN are $S_{i+1}^{\prime} \rightarrow S_{i+1} S_{i+2}$ for $1 \leq i \leq k-1$ and $S_{k+1}^{\prime} \rightarrow \lambda$, for each $1 \leq i \leq k$,

```
MLIN \(\subseteq \operatorname{MAT}(3 ; 1,1,0 ; 1,0,0):\) Axiom \(=S_{1} S_{2}^{\prime}\)
\(p 1=\left[\left(X_{i}, p_{i}, \lambda\right)_{\text {ins }},\left(p_{i}, p_{i}^{\prime}, \lambda\right)_{\text {ins }},\left(\lambda, X_{i}, \lambda\right)_{\text {del }}\right]\)
\(p 2=\left[\left(p_{i}, a_{i}, \lambda\right)_{\text {ins }},\left(p_{i}^{\prime}, Y_{i}, \lambda\right)_{\text {ins }},\left(\lambda, p_{i}, \lambda\right)_{\text {del }}\right]\)
\(p 3=\left[\left(\lambda, p_{i}^{\prime}, \lambda\right)_{\text {del }}\right]\)
\(p 4=\left[\left(S_{i+1}^{\prime}, S_{i+2}^{\prime}, \lambda\right)_{\text {ins }},\left(S_{i+1}^{\prime}, S_{i+1}, \lambda\right)_{\text {ins }},\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}\right](\) for each \(1 \leq i \leq k-1)\)
\(p 5=\left[\left(\lambda, S_{k+1}^{\prime}, \lambda\right)_{d e l}\right]\)
```

MLIN \subseteq MAT $(2 ; 1,1,1 ; 1,0,0):$ Axiom $=S_{1} S_{2}^{\prime}$
$p 1=\left[\left(X_{i}, p_{i}, \lambda\right)_{\text {ins }},\left(\lambda, X_{i}, \lambda\right)_{\text {del }}\right]$
$p 2=\left[\left(p_{i}, p_{i}^{\prime}, \lambda\right)_{\text {ins }},\left(p_{i}, a_{i}, p_{i}^{\prime}\right)_{\text {ins }}\right]$ (cannot reuse due to second rule)
$p 3=\left[\left(a_{i}, Y_{i}, p_{i}^{\prime}\right)_{\text {ins }},\left(\lambda, p_{i}, \lambda\right)_{\text {dee }}\right]$
$p 4=\left[\left(\lambda, p_{i}^{\prime}, \lambda\right)_{d e l}\right]$
$p 5=\left[\left(S_{i+1}^{\prime}, S_{i+2}^{\prime}, \lambda\right)_{\text {ins }},\left(S_{i+1}^{\prime}, S_{i+1}, S_{i+2}^{\prime}\right)_{\text {ins }}\right]$ (for each $1 \leq i \leq k-1$)
$p 5=\left[\left(\lambda, S_{i+1}^{\prime}, \lambda\right)_{\text {del }}\right]($ for each $1 \leq i \leq k)$

Semi-conditional ins-del system

Definition

A semi-conditional ins-del system (SCID) of degree (i, j) is $G=(V, T, A, P)$, where P is a finite set of rules of the form $\left((u, x, v)_{t}, \alpha, \beta\right)$, where

- $(u, x, v)_{t}$ is an ins-del rule, $t \in\{$ ins, del $\}$,
- $\alpha, \beta=\phi$ or $\alpha, \beta \subset(N \cup T)^{*}$ (finite languages) and
- $\left|\alpha_{r}\right| \leq i$ for $\alpha_{r} \in \alpha$, and $\left|\beta_{s}\right| \leq j$ for $\beta_{s} \in \beta$.

Semi-conditional ins-del system

Definition

A semi-conditional ins-del system (SCID) of degree (i, j) is $G=(V, T, A, P)$, where P is a finite set of rules of the form $\left((u, x, v)_{t}, \alpha, \beta\right)$, where

- $(u, x, v)_{t}$ is an ins-del rule, $t \in\{$ ins, del $\}$,
- $\alpha, \beta=\phi$ or $\alpha, \beta \subset(N \cup T)^{*}$ (finite languages) and
- $\left|\alpha_{r}\right| \leq i$ for $\alpha_{r} \in \alpha$, and $\left|\beta_{s}\right| \leq j$ for $\beta_{s} \in \beta$.

Rule application in derivation

$\left((u, x, v)_{t}, \alpha, \beta\right)$ is applied to a string w iff every string in

- [Permitting set] α (when $\alpha \neq \phi$) is a substring of w and
- [Forbidding set] β (when $\beta \neq \phi$) is not a substring of w.
- If $\alpha=\phi, \beta=\phi$, the rule is applied without any restriction.

SSCID and an Example

Variants

A semi-conditional grammar is called

- Random Context: if degree $(i, j)=(1,1)$.
- Simple: If either $\alpha=\phi$ or $\beta=\phi$ in every rule of P.

Example: $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} \notin C F$

Consider $G_{1}=(\{a, b, c, A, B\},\{a, b, c\}, a b c, R)$ where R is

- [(a, aAb, b) ins, $\emptyset, B]$
- $\left[(b, B c, c)_{i n s}, A, \emptyset\right]$
- $\left[(\lambda, A, \lambda)_{d e l}, B, \emptyset\right]$
- $\left[(\lambda, B, \lambda)_{\text {del }}, \emptyset, A\right]$

SSCID and an Example

Variants

A semi-conditional grammar is called

- Random Context: if degree $(i, j)=(1,1)$.
- Simple: If either $\alpha=\phi$ or $\beta=\phi$ in every rule of P.

Example: $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} \notin C F$

Consider $G_{1}=(\{a, b, c, A, B\},\{a, b, c\}, a b c, R)$ where R is

- [($\left.a, a A b, b)_{\text {ins }}, \emptyset, B\right]$
- $\left[(b, B c, c)_{\text {ins }}, A, \emptyset\right]$
- $\left[(\lambda, A, \lambda)_{d e l}, B, \emptyset\right]$
- $\left[(\lambda, B, \lambda)_{d e l}, \emptyset, A\right]$
- Simple and Random Context
- Size $=(3,1,1 ; 1,0,0)$
- Degree $=(1,1)$

Existing vs Our Results

Semi-conditional Ins-del systems of following sizes (do not) describe the class of RE languages

Existing Results (S.Ivanov,
S.Verlan, Fund.Inf., 2012)

- $S C I D_{2,2}(1,0,0 ; 1,0,0)$
- $S C I D_{1,1}(2,0,0 ; 1,1,0)$
- SCID $_{1,1}(1,1,0 ; 1,1,1)$
- $S C I D_{1,1}(1,1,0 ; 2,0,0)$
- None is simple

Results of UCNC 2018

- $\operatorname{SSCID}_{2,1}(2,0,0 ; 2,0,0)$
- SSCID $_{3,1}(1,1,0 ; 1,1,0)$
- $\operatorname{SSCID}_{2,1}(1,1,0 ; 1,1,1)$
- SSCID $_{2,1}(1,1,0 ; 2,0,0)$
- All are simple

$\operatorname{SSCID}_{2,1}(2,0,0 ; 2,0,0)=R E$

Simulation of $f: A B \rightarrow \lambda$ by $(\lambda, A B, \lambda, \phi, \phi)$ is direct.

$\operatorname{SSCID}_{2,1}(2,0,0 ; 2,0,0)=R E$

Simulation of $f: A B \rightarrow \lambda$ by $(\lambda, A B, \lambda, \phi, \phi)$ is direct.
Simulations of $p: X \rightarrow b Y$ and $q: X \rightarrow Y b$ are similar.

Simulating $q: X \rightarrow Y b$

$q 1:\left[\left(\lambda, q q^{\prime}, \lambda\right)_{\text {ins }}, \emptyset,\left\{q, q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 2:\left[\left(\lambda, q^{\prime} X, \lambda\right)_{d e l},\left\{q q^{\prime}\right\}, \emptyset\right]$
$q 3:\left[\left(\lambda, q^{\prime \prime} b, \lambda\right)_{i n s}, \emptyset,\left\{q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 4:\left[\left(\lambda, q^{\prime \prime \prime} Y, \lambda\right)_{i n s}, \emptyset, N^{\prime} \cup\left\{q^{\prime}, q^{\prime \prime \prime}\right\}\right]$
$q 5:\left[\left(\lambda, q^{\prime \prime \prime}, \lambda\right)_{\text {del }},\left\{q^{\prime \prime} q^{\prime \prime \prime}\right\}, \emptyset\right]$
$q 6:\left[\left(\lambda, q q^{\prime \prime}, \lambda\right)_{d e l},\{Y b\}, \emptyset\right]$

$\mathrm{SSCID}_{2,1}(2,0,0 ; 2,0,0)=\mathrm{RE}$

Simulation of $f: A B \rightarrow \lambda$ by $(\lambda, A B, \lambda, \phi, \phi)$ is direct.
Simulations of $p: X \rightarrow b Y$ and $q: X \rightarrow Y b$ are similar.

Simulating $q: X \rightarrow Y b$

$q 1:\left[\left(\lambda, q q^{\prime}, \lambda\right)_{\text {ins }}, \emptyset,\left\{q, q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 2:\left[\left(\lambda, q^{\prime} X, \lambda\right)_{d e l},\left\{q q^{\prime}\right\}, \emptyset\right]$
$q 3:\left[\left(\lambda, q^{\prime \prime} b, \lambda\right)_{i n s}, \emptyset,\left\{q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 4:\left[\left(\lambda, q^{\prime \prime \prime} Y, \lambda\right)_{i n s}, \emptyset, N^{\prime} \cup\left\{q^{\prime}, q^{\prime \prime \prime}\right\}\right]$
$q 5:\left[\left(\lambda, q^{\prime \prime \prime}, \lambda\right)_{\text {del }},\left\{q^{\prime \prime} q^{\prime \prime \prime}\right\}, \emptyset\right]$
$q 6:\left[\left(\lambda, q q^{\prime \prime}, \lambda\right)_{d e l},\{Y b\}, \emptyset\right]$

Another simulation?

$q 1:\left[\left(\lambda, q q^{\prime}, \lambda\right)_{\text {ins }}, \emptyset,\left\{q, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 2:\left[\left(\lambda, q^{\prime} X, \lambda\right)_{d e l},\left\{q q^{\prime}\right\}, \emptyset\right]$
$\hat{q 3}:\left[\left(\lambda, Y q^{\prime \prime}, \lambda\right)_{i n s}, \emptyset, N^{\prime} \cup\left\{q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$\hat{q 4}:\left[\left(\lambda, b q^{\prime \prime \prime}, \lambda\right)_{i n s}, \emptyset, N^{\prime} \cup\left\{q^{\prime}, q^{\prime \prime \prime}\right\}\right]$
$\hat{q 5}:\left[\left(\lambda, q^{\prime \prime} q, \lambda\right)_{d e l},\left\{q^{\prime \prime \prime} q^{\prime \prime}\right\}, \emptyset\right]$
$\hat{q 6}:\left[\left(\lambda, q^{\prime \prime \prime}, \lambda\right)_{d e l}, \emptyset,\left\{q, q^{\prime \prime}\right\}\right]$

$\mathrm{SSCID}_{2,1}(2,0,0 ; 2,0,0)=\mathrm{RE}$

Simulation of $f: A B \rightarrow \lambda$ by $(\lambda, A B, \lambda, \phi, \phi)$ is direct.
Simulations of $p: X \rightarrow b Y$ and $q: X \rightarrow Y b$ are similar.

Simulating $q: X \rightarrow Y b$

$q 1:\left[\left(\lambda, q q^{\prime}, \lambda\right)_{\text {ins }}, \emptyset,\left\{q, q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 2:\left[\left(\lambda, q^{\prime} X, \lambda\right)_{\text {del }},\left\{q q^{\prime}\right\}, \varnothing\right]$
$q 3:\left[\left(\lambda, q^{\prime \prime} b, \lambda\right)_{\text {ins },}, \emptyset,\left\{q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 4:\left[\left(\lambda, q^{\prime \prime \prime} Y, \lambda\right)_{\text {ins }}, \emptyset, N^{\prime} \cup\left\{q^{\prime}, q^{\prime \prime \prime}\right\}\right]$
$q 5:\left[\left(\lambda, q^{\prime \prime \prime}, \lambda\right)_{\text {del }},\left\{q^{\prime \prime} q^{\prime \prime \prime}\right\}, \emptyset\right]$
$q 6:\left[\left(\lambda, q q^{\prime \prime}, \lambda\right)_{d e l},\{Y b\}, \emptyset\right]$

Another simulation?

$q 1:\left[\left(\lambda, q q^{\prime}, \lambda\right)_{\text {ins }}, \emptyset,\left\{q, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$q 2:\left[\left(\lambda, q^{\prime} X, \lambda\right)_{\text {del }},\left\{q q^{\prime}\right\}, \emptyset\right]$
$\hat{q 3}:\left[\left(\lambda, Y q^{\prime \prime}, \lambda\right)_{\text {ins }}, \emptyset, N^{\prime} \cup\left\{q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right]$
$\hat{q 4}:\left[\left(\lambda, b q^{\prime \prime \prime}, \lambda\right)_{\text {ins }}, \emptyset, N^{\prime} \cup\left\{q^{\prime}, q^{\prime \prime \prime}\right\}\right]$
q5: $\left[\left(\lambda, q^{\prime \prime} q, \lambda\right)_{d e l},\left\{q^{\prime \prime \prime} q^{\prime \prime}\right\}, \emptyset\right]$
$\hat{q 6}:\left[\left(\lambda, q^{\prime \prime \prime}, \lambda\right)_{d e l}, \emptyset,\left\{q, q^{\prime \prime}\right\}\right]$

Suppose we have a terminal string α,
$\alpha \Rightarrow \hat{q} 4 \alpha b q^{\prime \prime \prime} \Rightarrow{ }_{\hat{q} \hat{6}} \alpha b=\alpha^{\prime} \in T^{*}$
We get another terminal string without any reason.
(ERROR with right side rules!!)

Forbidding Ins-del systems

Definition

A forbidding ins-del system (FID) of degree k is $G=(V, T, A, P)$, where P is a finite set of rules of the form $\left((u, x, v)_{t}, F\right)$, where

- $(u, x, v)_{t}$ is an ins-del rule, $t \in\{$ ins, del $\}$,
- $F=\phi$ or $F \subset(N \cup T)^{*}$ (finite languages) and
- $\left|f_{r}\right| \leq k$ for $f_{r} \in F$.

Forbidding Ins-del systems

Definition

A forbidding ins-del system (FID) of degree k is $G=(V, T, A, P)$, where P is a finite set of rules of the form $\left((u, x, v)_{t}, F\right)$, where

- $(u, x, v)_{t}$ is an ins-del rule, $t \in\{$ ins, del $\}$,
- $F=\phi$ or $F \subset(N \cup T)^{*}$ (finite languages) and
- $\left|f_{r}\right| \leq k$ for $f_{r} \in F$.

Points to note

- $\left((u, x, v)_{t}, F\right)$ is applied to a string w iff every string in [Forbidding set] $F(\neq \phi)$ is not a substring of w.
- If $F=\phi$, then the rule $\left((u, x, v)_{t}, \phi\right)$ can be applied without any restriction.
- (S)SCID $0, k(s)=\operatorname{FID}_{k}(s)$.

Computational Completeness

Following systems $=$ RE

Recall: (S)SCID results ($=$ RE)

- $S S C I D_{2,1}(2,0,0 ; 2,0,0)$
- $S S C I D_{2,1}(1,1,0 ; 2,0,0)$
- $\operatorname{SSCID}_{2,1}(1,1,0 ; 1,1,1)$
- $\operatorname{SSCID}_{3,1}(1,1,0 ; 1,1,0)$
- $\operatorname{SSCID}_{3,1}(1,1,0 ; 1,0,1)$
- $F I D_{2}(2,0,0 ; 2,0,0)$
- FID $_{2}(1,1,0 ; 2,0,0)$, $\operatorname{FID}_{2}(1,0,1 ; 2,0,0)$
- $\operatorname{FID}_{2}(2,0,0 ; 1,1,0)$, FID $2(2,0,0 ; 1,0,1)$
- $\operatorname{FID}_{2}(1,1,0 ; 1,1,0)$, $\operatorname{FID}_{2}(1,0,1 ; 1,0,1)$
- $F_{I}(1,1,0 ; 1,0,1)$, $\operatorname{FID}_{2}(1,0,1 ; 1,1,0)$

$\mathrm{FID}_{2}(2,0,0 ; 2,0,0)=\mathrm{RE}$

$$
\begin{aligned}
& \text { Simulating } X \rightarrow Y b \text { by FID } 2(2,0,0 ; 2,0,0) \\
& q 1=\left[\left(q q^{\prime}\right)_{\text {ins }},\left\{\mathcal{M} \cup\left(N^{\prime} \backslash\{X\}\right)\right\}\right] \\
& q 2=\left[\left(q^{\prime} X\right)_{\text {del }},\left\{\mathcal{M} \backslash\left\{q, q^{\prime}\right\} \cup\left(N^{\prime} \backslash\{X\}\right)\right\}\right] \\
& q 3=\left[\left(q^{\prime \prime} b\right)_{\text {ins }},\left\{\mathcal{M} \backslash\{q\} \cup N^{\prime}\right\}\right] \\
& q 4=\left[\left(q^{\prime \prime \prime} Y\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{q, q^{\prime \prime}\right\}\right) \cup N^{\prime} \cup\left\{Z q^{\prime \prime} \mid Z \neq q\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 5=\left[\left(q^{i v} q^{v}\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{q, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left\{q^{\prime \prime} b\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 6=\left[\left(q^{\prime \prime \prime \prime} q^{i v}\right)_{\text {del }},\left\{\mathcal { M } \{ q , q ^ { \prime \prime } , q ^ { \prime \prime \prime } , q ^ { i v } , q ^ { v } \} \cup (N ^ { \prime } \backslash \{ Y \}) \cup \{ q ^ { \prime \prime \prime } Y , q ^ { \prime \prime } b \} \cup \left\{Z q^{\prime \prime \prime} \mid\right.\right.\right. \\
& \left.\left.Z \neq q^{\prime \prime}\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 7=\left[\left(q^{\prime \prime}\right)_{\text {del }},\left\{\mathcal{M}\left\{q, q^{\prime \prime}, q^{v}\right\} \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left\{q^{\prime \prime \prime} Y, q^{\prime \prime} b\right\} \cup\left\{q^{\prime \prime} Z \mid Z \neq q^{v}\right\}\right]\right. \\
& q 8=\left[\left(q q^{\vee}\right)_{\text {del }},\left\{\mathcal{M}\left\{q, q^{v}\right\} \cup\left(N^{\prime} \backslash\{Y\}\right)\right]\right.
\end{aligned}
$$

$\mathrm{FID}_{2}(2,0,0 ; 2,0,0)=\mathrm{RE}$

$$
\begin{aligned}
& \text { Simulating } X \rightarrow Y b \text { by FID } 2(2,0,0 ; 2,0,0) \\
& q 1=\left[\left(q q^{\prime}\right)_{\text {ins }},\left\{\mathcal{M} \cup\left(N^{\prime} \backslash\{X\}\right)\right\}\right] \\
& q 2=\left[\left(q^{\prime} X\right)_{\text {del }},\left\{\mathcal{M} \backslash\left\{q, q^{\prime}\right\} \cup\left(N^{\prime} \backslash\{X\}\right)\right\}\right] \\
& q 3=\left[\left(q^{\prime \prime} b\right)_{\text {ins }},\left\{\mathcal{M} \backslash\{q\} \cup N^{\prime}\right\}\right] \\
& q 4=\left[\left(q^{\prime \prime \prime} Y\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{q, q^{\prime \prime}\right\}\right) \cup N^{\prime} \cup\left\{Z q^{\prime \prime} \mid Z \neq q\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 5=\left[\left(q^{i v} q^{v}\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{q, q^{\prime \prime}, q^{\prime \prime \prime}\right\}\right) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left\{q^{\prime \prime} b\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 6=\left[\left(q^{\prime \prime \prime \prime} q^{i v}\right)_{\text {del }},\left\{\mathcal { M } \{ q , q ^ { \prime \prime } , q ^ { \prime \prime \prime } , q ^ { i v } , q ^ { v } \} \cup (N ^ { \prime } \backslash \{ Y \}) \cup \{ q ^ { \prime \prime \prime } Y , q ^ { \prime \prime } b \} \cup \left\{Z q^{\prime \prime \prime} \mid\right.\right.\right. \\
& \left.\left.Z \neq q^{\prime \prime}\right\} \cup\left\{q Z \mid Z \neq q^{\prime \prime}\right\}\right] \\
& q 7=\left[\left(q^{\prime \prime}\right)_{\text {del }},\left\{\mathcal{M}\left\{q, q^{\prime \prime}, q^{v}\right\} \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left\{q^{\prime \prime \prime} Y, q^{\prime \prime} b\right\} \cup\left\{q^{\prime \prime} Z \mid Z \neq q^{v}\right\}\right]\right. \\
& q 8=\left[\left(q q^{\vee}\right)_{\text {del }},\left\{\mathcal{M}\left\{q, q^{v}\right\} \cup\left(N^{\prime} \backslash\{Y\}\right)\right]\right.
\end{aligned}
$$

$X \Rightarrow{ }_{q 1} q q^{\prime} X \Rightarrow{ }_{q 2} q \Rightarrow_{q 3} q q^{\prime \prime} b \Rightarrow_{q 4} q q^{\prime \prime} q^{\prime \prime \prime} Y b \Rightarrow{ }_{q 5} q q^{\prime \prime} q^{\prime \prime \prime} q^{i v} q^{\vee} Y b \Rightarrow{ }_{q 6}$ $q q^{\prime \prime} q^{\vee} Y b \Rightarrow_{q 7} q q^{\vee} Y b \Rightarrow_{q 8} Y b$

$\operatorname{FID}_{2}(1,1,0 ; 1,0,1)=R E$

Simulating $X \rightarrow b Y$ by $\operatorname{FID}_{2}(1,1,0 ; 1,0,1)$

$$
p 1=\left[(X, p, \lambda)_{\text {ins }}, \mathcal{M} \cup\left(N^{\prime} \backslash\{X\}\right)\right]
$$

$$
p 2=\left[(\lambda, X, p)_{\text {del }},(\mathcal{M} \backslash\{p\}) \cup\left(N^{\prime} \backslash\{X\}\right)\right]
$$

$$
p 3=\left[(p, Y, \lambda)_{\text {ins }},(\mathcal{M} \backslash\{p\}) \cup N^{\prime}\right]
$$

$$
p 4=\left[\left(p, p^{\prime}, \lambda\right)_{\text {ins }},(\mathcal{M} \backslash\{p\}) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup(\{p Z \mid Z \neq Y\})\right]
$$

$$
p 5=\left[\left(p^{\prime}, b, \lambda\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{p, p^{\prime}\right\}\right) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left(\left\{p^{\prime} Z \mid Z \neq Y\right\}\right)\right]
$$

$$
p 6=\left[\left(\lambda, p, p^{\prime}\right)_{d e l},\left\{p^{\prime} Y\right\}\right]
$$

$$
p 7=\left[\left(\lambda, p^{\prime}, \lambda\right)_{d e l},\{p\}\right]
$$

$\operatorname{FID}_{2}(1,1,0 ; 1,0,1)=R E$

Simulating $X \rightarrow b Y$ by $\operatorname{FID}_{2}(1,1,0 ; 1,0,1)$

$$
\begin{aligned}
& p 1=\left[(X, p, \lambda)_{\text {ins }}, \mathcal{M} \cup\left(N^{\prime} \backslash\{X\}\right)\right] \\
& p 2=\left[(\lambda, X, p)_{\text {del }},(\mathcal{M} \backslash\{p\}) \cup\left(N^{\prime} \backslash\{X\}\right)\right] \\
& p 3=\left[(p, Y, \lambda)_{\text {ins }},(\mathcal{M} \backslash\{p\}) \cup N^{\prime}\right] \\
& p 4=\left[\left(p, p^{\prime}, \lambda\right)_{\text {ins }},(\mathcal{M} \backslash\{p\}) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup(\{p Z \mid Z \neq Y\})\right] \\
& p 5=\left[\left(p^{\prime}, b, \lambda\right)_{\text {ins }},\left(\mathcal{M} \backslash\left\{p, p^{\prime}\right\}\right) \cup\left(N^{\prime} \backslash\{Y\}\right) \cup\left(\left\{p^{\prime} Z \mid Z \neq Y\right\}\right)\right] \\
& p 6=\left[\left(\lambda, p, p^{\prime}\right)_{\text {del }},\left\{p^{\prime} Y\right\}\right] \\
& p 7=\left[\left(\lambda, p^{\prime}, \lambda\right)_{\text {del }},\{p\}\right]
\end{aligned}
$$

Optimizing the rules - Does the following work?? WHY??

```
p1=[(X,p,\lambda) ins,}\mathcal{M}\cup(\mp@subsup{N}{}{\prime}\{X})
```



```
p3 = [(p,Y,\lambda) ins, (\mathcal{M \{p})\cupN']}]
```



```
p7 = [(\lambda,p,\lambda)del, {\alphaY|\alpha\not= b}]
```


Summary

Outcome of the talk

- Defined Insertion-Deletion systems
- Variants of Ins-del systems
(1) Matrix
(2) Graph-Controlled
(3) (Simple) Semi-conditional
(c) Forbidding
- Showed how these systems can simulate RE with certain sizes.

References

H. Fernau, Lakshmanan and Indhumathi

- On path-controlled insertion-deletion systems. Accepted with Acta Informatica, 2017.
- Investigations on the power of matrix insertion-deletion systems with small sizes.Natural Computing, 17(2):249-269, 2018.
- On the computational completeness of graph-controlled insertion-deletion systems with binary sizes, Theoretical Computer Science, 682, 100-121 (2017). Special Issue on Languages and Combinatorics in Theory and Nature : Dedication to J. Dasssow

THANK YOU

