Regulated Insertion-Deletion Systems

Dr. Lakshmanan Kuppusamy VIT, Vellore, INDIA.

December 2, 2019

• Can we simulate Type-0 grammars by Type-2 grammars if we regulate the rule applications in some manner?

- Can we simulate Type-0 grammars by Type-2 grammars if we regulate the rule applications in some manner?
- **②** YES !! but with certain regulations on the contexts of application like

- Can we simulate Type-0 grammars by Type-2 grammars if we regulate the rule applications in some manner?
- **②** YES !! but with certain regulations on the contexts of application like
- Semi-Conditional grammars
- Simple Semi-Conditional grammars
- Generalised Forbidding grammars
- Matrix grammars (we did not discuss this)
- Graph-Controlled grammars (we did not discuss this)

Insertion-Deletion Systems

A counterpart of Rewriting Systems

Theoretical meaning of ins-del

- Insertion (Deletion) means appending (removing) a (sub)string to (from) a given string with specific contexts.
- This is not Rewriting and motivation comes from DNA.
- If a string α is inserted between two parts w₁ and w₂ of a string w₁w₂ to get w₁αw₂, the operation is *insertion*.
- Notation: (w_1, α, w_2)

$$(w_1w_2 \Longrightarrow w_1\alpha w_2)$$
 : means $(w_1w_2 \Longrightarrow w_1\alpha w_2)$

Theoretical meaning of ins-del

- Insertion (Deletion) means appending (removing) a (sub)string to (from) a given string with specific contexts.
- This is not Rewriting and motivation comes from DNA.
- If a string α is inserted between two parts w₁ and w₂ of a string w₁w₂ to get w₁αw₂, the operation is *insertion*.
- Notation: $(w_1, \alpha, w_2)_{ins}$: means $(w_1w_2 \Longrightarrow w_1\alpha w_2)$
- If a substring β is deleted from a string $w_1\beta w_2$ to get w_1w_2 , the operation is *deletion*.
- Notation: $|(w_1, \beta, w_2)_{del}|$: means $(w_1\beta w_2 \Longrightarrow w_1w_2)$
- Suffixes of w₁ and prefixes of w₂ are called the left and right context of α or β.
- Starting with axioms and iterating the ins-del operations, we get a set of terminal strings (language of ins-del system).

4 / 52

4 / 52

Definition

An insertion-deletion system is a construct G = (V, T, A, R)

- V is an alphabet, $T \subseteq V$, $A \subseteq V^*$
- *R* is a finite set of *n* rules of the form $(u_i, \alpha_i, v_i)_t$ $t \in \{ins, del\}, 1 \le i \le n, u_i, v_i \in V^*, \alpha_i \in V^+.$

Definition

An insertion-deletion system is a construct G = (V, T, A, R)

- V is an alphabet, $T \subseteq V$, $A \subseteq V^*$
- *R* is a finite set of *n* rules of the form $(u_i, \alpha_i, v_i)_t$ $t \in \{ins, del\}, 1 \le i \le n, u_i, v_i \in V^*, \alpha_i \in V^+.$

Size of an Ins-Del (ID) system

Notation:
$$(n, i', i''; m, j', j'')$$
 where

- n = the maximal length of the insertion string
- **2** i' = maximal length of left contexts used in insertion rules
- i'' = maximal length of right contexts used in insertion rules
- m, j', j'' denote similar maximal lengths among deletion rules.

Can generate more grammars for the same language?

Can generate more grammars for the same language?

6 / 52

$$G_{1} = (\{a, b\}, \{a, b\}, \{ab\}, R)$$

• $r_{1} : (a, ab, b)_{ins}$

Size = (2, 1, 1; 0, 0, 0).

Can generate more grammars for the same language?

$$G_{3} = (\{a, C, b\}, \{a, b\}, \{ab\}, R)$$
• $r_{1} : (a, aC, b)_{ins}$
• $r_{2} : (a, b, C)_{ins}$
• $r_{3} : (b, C, b)_{del}$
Size = (2, 1, 1; 1, 1, 1).

6 / 52

$$G_{1} = (\{a, b\}, \{a, b\}, \{ab\}, R)$$

• $r_{1} : (a, ab, b)_{ins}$

Size = (2, 1, 1; 0, 0, 0).

Can generate more grammars for the same language?

 $G_{2} = (\{a, X, b\}, \{a, b\}, \{ab\}, R)$ • $r_{1} : (a, X, b)_{ins}$ • $r_{2} : (X, ab, b)_{ins}$ • $r_{3} : (\lambda, X, \lambda)_{del}$

$$G_{3} = (\{a, C, b\}, \{a, b\}, \{ab\}, R)$$
• $r_{1} : (a, aC, b)_{ins}$
• $r_{2} : (a, b, C)_{ins}$
• $r_{3} : (b, C, b)_{del}$
Size = $(2, 1, 1; 1, 1, 1)$.

$$G_4 = (\{a, \$, Y, b\}, \{a, b\}, \{ab\}, R)$$

• $r_1 : (a, aY, b)_{ins}$
• $r_2 : (a, b\$, Y)_{ins}$
• $r_3 : (b, \$Y, b)_{del}$
Size = $(2, 1, 1; 2, 1, 1)$.

Size = (2, 1, 1; 1, 0, 0).

$$G_{1} = (\{a, b\}, \{a, b\}, \{ab\}, R)$$

• $r_{1} : (a, ab, b)_{ins}$

 ${\sf Size}=(2,1,1;0,0,0).$

Can generate more grammars for the same language?

 $G_2 = (\{a, X, b\}, \{a, b\}, \{ab\}, R)$

- r₁ : (a, X, b)_{ins}
- r₂ : (X, ab, b)_{ins}
- $r_3: (\lambda, X, \lambda)_{del}$

Size = (2, 1, 1; 1, 0, 0).

$$G_{3} = (\{a, C, b\}, \{a, b\}, \{ab\}, R)$$
• $r_{1} : (a, aC, b)_{ins}$
• $r_{2} : (a, b, C)_{ins}$
• $r_{3} : (b, C, b)_{del}$
Size = $(2, 1, 1; 1, 1, 1)$.

$$G_4 = (\{a, \$, Y, b\}, \{a, b\}, \{ab\}, R)$$

• $r_1 : (a, aY, b)_{ins}$
• $r_2 : (a, b\$, Y)_{ins}$
• $r_3 : (b, \$Y, b)_{del}$
Size = (2, 1, 1; 2, 1, 1).

$${a^nb^n} \in ID(2,1,1;0,0,0).$$

- If $L \in ID(s_1, s_2, s_3; s_4, s_5, s_6)$, then $L \in ID(t_1, t_2, t_3; t_4, t_5, t_6)$ for every $t_i \ge s_i$. Objective: Minimize the s_i 's.
- If $L \in ID(s_1, s_2, s_3; s_4, s_5, s_6)$, then $L^r \in ID(s_1, s_3, s_2; s_4, s_6, s_5)$.
- If \mathcal{L} is a language class that is closed under reversal and $\mathcal{L} = ID(s_1, s_2, s_3; s_4, s_5, s_6)$, then $\mathcal{L} = ID(s_1, s_3, s_2; s_4, s_6, s_5)$.
- Implication: If RE = ID(1, 1, 0; 1, 0, 1) implies RE = ID(1, 0, 1; 1, 1, 0).

7 / 52

With what sizes does an ID system (not known to) characterize RE ?

- (1,1,1;1,1,1)
- (1,1,1;2,0,0)
- (2,0,0;1,1,1)
- (2,0,0;3,0,0)
- (3,0,0;2,0,0)

Classic Result 2017

For $i' + i'', j' + j'' \neq 0$, ID(2, i', i''; 2, j', j'') = RE

 $\mathsf{ID}(2,0,0;2,0,0)\neq \mathrm{RE}$

• (1, 1, 0; 1, 1, 1)

- (1, 1, 0; 2, 0, 0)
- (2,0,0;1,1,0)
- and so on...

Variants of ins-del system

- Ins-del P systems by Krishna and Rama (2001)
- Tissue P systems with ins-del rules by Lakshmanan and Rama (2003)
- Graph-controlled ins-del systems by R Freund et al (2010).
- Matrix ins-del systems by Lakshmanan and Anand Mahendran (2011) and independently by I Petre and S Verlan (2012)
- Semi-conditional and Random Context ins-del systems by S Ivanov and S Verlan (2011)
- Generalized forbidding ins-del systems by S Ivanov and S Verlan (2011)

Variants of ins-del system

- Ins-del P systems by Krishna and Rama (2001)
- Tissue P systems with ins-del rules by Lakshmanan and Rama (2003)
- Graph-controlled ins-del systems by R Freund et al (2010).
- Matrix ins-del systems by Lakshmanan and Anand Mahendran (2011) and independently by I Petre and S Verlan (2012)
- Semi-conditional and Random Context ins-del systems by S Ivanov and S Verlan (2011)
- Generalized forbidding ins-del systems by S Ivanov and S Verlan (2011)

Common objective

To characterize recursively enumerable languages using any of the above regulated system with as minimal size/resource as possible. To do so, we use Special Geffert Normal Form of type-0 grammars.

Special Geffert Normal Form (SGNF)

Definition

A type-0 grammar G = (N, T, P, S) is in SGNF if

- N is partitioned into N = N₁ ∪ N₂, where N₂ = {A, B, C, D} and N₁ contains at least the two non-terminals S and S',
- The rules in P are of the form :

 $\begin{bmatrix} p: X \to bY, q: X \to Yb, h: S' \to \lambda, f: AB \to \lambda, g: CD \to \lambda. \\ X, Y \in N_1, X \neq Y, b \in T \cup N_2 \text{ and } p,q,h,f,g \text{ are labels.} \end{bmatrix}$ where

Special Geffert Normal Form (SGNF)

Definition

A type-0 grammar G = (N, T, P, S) is in SGNF if

- N is partitioned into $N = N_1 \cup N_2$, where $N_2 = \{A, B, C, D\}$ and N_1 contains at least the two non-terminals S and S',
- The rules in P are of the form :

 $\begin{bmatrix} p: X \to bY, q: X \to Yb, h: S' \to \lambda, f: AB \to \lambda, g: CD \to \lambda. \\ X, Y \in N_1, X \neq Y, b \in T \cup N_2 \text{ and } p,q,h,f,g \text{ are labels.} \end{bmatrix}$ where

- In Phase I, the (linear-like) CF rules are applied and completed by applying $S' \rightarrow \lambda$.
- Adv. At any instant of string in the sentential form, there is only ONE variable from N_1 (No confusion of twins!).
- In Phase II, only $AB \rightarrow \lambda$, $CD \rightarrow \lambda$ rules are applied.

Graph-Controlled Insertion-Deletion (GCID)

Definition

- A GCID system is $\Pi = (k, V, T, A, H, i_0, i_f, R)$
- k is the number of components
- V is an alphabet, $T \subseteq V$, A is an axiom set, H is a label set.
- i_0 is the initial component and i_f is the final component.
- A rule in R is of the form ℓ : $(i, (w_1, \alpha, w_2)_t, j)$, $t \in \{I, D\}$.
 - $\ell \in H$ is a label for the ins-del rule,
 - *i*: current component, *j*: target component

Size of GCID

The size of a GCID system is given by (k; n, i', i''; m, j', j'') where

- k : Number of Components ($k \ge 1$)
- *n* : Maximal length of the insertion string
- i': Maximal length of the left context used in insertion rules
- i'': Maximal length of the right context used in insertion rules
- *m* : Maximal length of the deletion string
- j' : Maximal length of the left context used in deletion rules
- j'': Maximal length of the right context used in deletion rules

Size of GCID

The size of a GCID system is given by (k; n, i', i''; m, j', j'') where

- k : Number of Components ($k \ge 1$)
- n : Maximal length of the insertion string
- i': Maximal length of the left context used in insertion rules
- i'': Maximal length of the right context used in insertion rules
- m : Maximal length of the deletion string
- j' : Maximal length of the left context used in deletion rules
- j'': Maximal length of the right context used in deletion rules

Objective

- With what size does a GCID system (with $n + m \in \{2, 3\}$) characterize RE?
- Is the underlying control graph, a path?

Computational completeness of GCID for n = 1, m = 1

No.	Size of the system $(k; 1, i', i''; 1, j', j'')$	No.of	Control
		Comps	graph type
1.	(k; 1, 0, 0; 1, 1, 1) or $(k; 1, 1, 1; 1, 0, 0)$	5	path
2.	(k; 1, 1, 0; 1, 1, 0) or $(k; 1, 0, 1; 1, 0, 1)$	4	Non – tree
		3	Non – tree
		4	path
3.	(k; 1, 1, 0; 1, 0, 1) or $(k; 1, 0, 1; 1, 1, 0)$	4	Non – tree
		3	Non – tree
		4	path
4.	(k; 1, 1, 0; 1, 1, 1) or $(k; 1, 0, 1; 1, 1, 1)$	3	path
5.	(k; 1, 1, 1; 1, 1, 0) or $(k; 1, 1, 1; 1, 0, 1)$	3	path
6.	(k; 1, 1, 1; 1, 1, 1)	1	Null

No.	Size (<i>k</i> ; 1, <i>i</i> '	$i'' \cdot 2 i' i''$	No.	Graph
110.	JIZE (N, 1, 1	, , ,		біаріі
			of	type
			Comps	
1.	(k; 1, 0, 0; 2, 1,	1) or (<i>k</i> ; 2, 1, 1; 1, 0, 0)	5	path
2.	(k; 1, 1, 0; 2, 0,	0) or (<i>k</i> ; 1, 0, 1; 2, 0, 0) or	3	Non – tree
	(k; 1, 1, 0; 2, 1,	0) or $(k; 1, 0, 1; 2, 0, 1)$ or	4	path
	(k; 1, 1, 0; 2, 0,	1) or (<i>k</i> ; 1, 0, 1; 2, 1, 0)		
3.	(k; 2, 0, 0; 1, 1,	0) or (<i>k</i> ; 2, 0, 0; 1, 0, 1)	3	Non – tree
	-		3	path
4.	(k; 2, 1, 0; 1, 1,	0) or (<i>k</i> ; 2, 0, 1; 1, 0, 1) or	3	path
	(k; 2, 1, 0; 1, 0,	1) or (<i>k</i> ; 2, 0, 1; 1, 1, 0) or		
	(k; 2, 1, 1; 1, 1,	0) or (<i>k</i> ; 2, 1, 1; 1, 0, 1) or		
	(k; 1, 1, 0; 2, 1,	1) or $(k; 1, 0, 1; 2, 1, 1)$		
5.	(k; 1, 1, 1; 2, 0,	0) or (<i>k</i> ; 1, 1, 1; 2, 1, 0) or	1	Null
	(k; 1, 1, 1; 2, 0,	1) or $(k; 1, 1, 1; 2, 1, 1)$ or		
	(k; 2, 0, 0; 1, 1,	1) or $(k; 2, 1, 0; 1, 1, 1)$ or		
	(k: 2, 0, 1; 1, 1,	1) or $(k; 2, 1, 1; 1, 1, 1)$		
Lak	shmanan K	Power of Regulated ID 14 / 52	Dece	mber 2, 2019 14 /

 $\mathsf{RE} = \mathsf{GCID}_{P}(3;1,1,0;1,1,1) \quad \mathsf{Axiom} = \kappa S \kappa'$

We simulate $r: X \to Y_1 Y_2$, $f: AB \to \lambda \mid CD \to \lambda$, $h: S' \to \lambda$ as:

Lesson learnt

• More contexts does not imply simple simulation

Component 1

 $\begin{array}{l} r1.1:(1,(X,r,\lambda)_{I},2)\\ r1.2:(1,(r,\Delta,\lambda)_{I},1)\\ r1.3:(1,(r,Y_{2},\lambda)_{I},2)\\ f1.1:(1,(\lambda,f,\lambda)_{I},2)\\ h1.1:(1,(\lambda,S',\lambda)_{D},1)\\ \kappa1.1:(1,(\lambda,\kappa,\lambda)_{D},1)\\ \kappa'1.1:(1,(\lambda,\kappa',\lambda)_{D},1) \end{array}$

Component 2

 $\begin{aligned} & r2.1:(2,(\lambda,X,r)_D,1) \\ & r2.2c:(2,(Y_2,\Delta,c)_D,3),c \neq \Delta \\ & r2.3c':(2,(c',r,Y_1)_D,1) \\ & f2.1:(2,(f,A,B)_D,3) \\ & f2.2:(2,(\lambda,f,\lambda)_D,1) \end{aligned}$

Component 3

 $r3.1: (3, (r, Y_1, \lambda)_I, 2)$ $r3.2: (3, (f, B, \lambda)_D, 2)$

Why we prefer path?

It has applications in Membrane Computing.

16 / 52

- The systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0) are not known to characterize RE (not even CFL) for any k ≥ 1.
- However the systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0) characterize LIN for $k \ge 3$.

- The systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0) are not known to characterize RE (not even CFL) for any k ≥ 1.
- However the systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0) characterize LIN for $k \ge 3$.
- We aim to show that these systems characterize several classes between LIN and CFL for $k \ge 5$.
- To do so, we first introduce/look into some closure classes of LIN and we term them as super-linear languages.

Note: LIN is not closed under Kleene star and concatenation.

- $\mathcal{L}_{op}(LIN) =$ smallest class containing linear languages and is closed under the operation *op* (Kutrib, Malcher (2007))
- *MLIN* := $\mathcal{L}_{\circ}(LIN)$ (Metalinear languages)
- $SLIN := \mathcal{L}_*(LIN)$ (Starlinear languages)
- $SMLIN := \mathcal{L}_*(MLIN) = \mathcal{L}_*(\mathcal{L}_\circ(LIN))$ (containing MLIN...)
- $MSLIN := \mathcal{L}_{\circ}(SLIN) = \mathcal{L}_{\circ}(\mathcal{L}_{*}(LIN))$
- SMSLIN := $\mathcal{L}_*(MSLIN) = \mathcal{L}_*(\mathcal{L}_\circ(\mathcal{L}_*(LIN)))$
- $MSMLIN := \mathcal{L}_{\circ}(SMLIN) = \mathcal{L}_{\circ}(\mathcal{L}_{*}(\mathcal{L}_{\circ}(LIN)))$
- $RATLIN := \mathcal{L}_{\circ,*,\cup}(LIN)$

The smallest class containing LIN and is closed under the 3 regular operations: concatenation, Kleene star and union.

- $L \in MLIN$ iff $L = L_1L_2...L_k$ for some $k \ge 1$ and $L_i \in LIN$.
- $L \in SLIN$ iff $L = L_1^*$ for $L_1 \in LIN$.
- $L \in MSLIN$ iff $L = L_1^*L_2^* \dots L_k^*$ for some $k \ge 1$ and $L_i \in LIN$.
- $L \in SMLIN$ iff $L = (L_1L_2...L_k)^*$ for $k \ge 1$ and $L_i \in LIN$.
- $L \in SMSLIN$ iff $L = (M)^*$ for some $M = L_1^* \dots L_k^* \in MSLIN$.
- $L \in MSMLIN$ iff $L = M_1 M_2 \dots M_k$ for each $M_i \in SMLIN$, $M_i = (L_{i,1}L_{i,2} \dots L_{i,t_i})^*$ where $L_{i,j} \in LIN$.

The classes MLIN, SLIN, MSLIN, SMLIN, MSMLIN and SMSLIN are all closed under reversal.

We use the fact that LIN is closed under reversal

- MLIN: $(L_1L_2...L_k)^R = L_k^R L_{k-1}^R...L_1^R.$
- SLIN: $(L_1^*)^R = (L_1^R)^*$.
- SMLIN: $((L_1L_2...L_k)^*)^R = ((L_1...L_k)^R)^* = (L_k^R...L_2^RL_1^R)^*.$
- MSLIN: $(L_1^*L_2^*\ldots L_k^*)^R = (L_k^R)^*(L_{k-1}^R)^*\ldots (L_2^R)^*(L_1^R)^*$.

Similarly we can extend to MSMLIN and SMSLIN.

Solid arrow from A to B indicates $A \subseteq B$. Dashed line between A and B indicates A and B are incomparable.

- ② MLIN \subseteq MSLIN \cap SMLIN.
- $ISLIN \subseteq MSMLIN \cap SMSLIN.$
- SMLIN \subseteq MSMLIN \cap SMSLIN.
- Incomparable
 - MLIN and SLIN.
 - MSLIN and SMLIN.
 - MSMLIN and SMSLIN.

$\mathrm{MSLIN} \subseteq \mathrm{SMSLIN} \cap \mathrm{MSMLIN}$

 MSLIN ⊆ SMSLIN and since LIN ⊆ MLIN, MSLIN ⊆ MSMLIN.

 MSLIN and SMLIN are incomparable

- Let $L_1 = \{a^n b^n \mid n \ge 0\}$ and $L_2 = \{c^m d^m \mid m \ge 0\}$
- $(L_1L_2)^* \in SMLIN \setminus MSLIN$

• $L = L_1 L_2 \in MLIN$ implies $L^* = (L_1 L_2)^* \in SMLIN$.

- ② $L = L_1L_2 \notin LIN$ implies $L^* \notin SLIN$ and hence $L^* \notin MSLIN$.
- $L_1^*L_2^* \in MSLIN \setminus SMLIN$
- Important: $(L_1L_2)^* \neq L_1^*L_2^*$ (check yourself!!)

Recall: $L \in SLIN$ iff $L = (L_1)^*$

- Let $G_1 = (N_1, T, S_1, P_1)$ be linear grammar for L_1 .
- A language of SLIN is generated by a grammar G = (N, T, S, P) where
 - $N = N_1 \cup \{S\}$
 - P includes the conventional LIN rules of P_1 and $X \rightarrow Y_a, X \rightarrow aY, X \rightarrow \lambda$
 - The additional CF rules : $S \rightarrow SS_1 \mid \lambda$.

Rewriting grammar for MLIN and SMLIN

Recall: $L \in MLIN$ iff $L = L_1L_2...L_k$

- Let $G_i = (N_i, T, S_i, P_i)$ be linear grammar for L_i .
- A language of MLIN is generated by a grammar G = (N, T, S, P) where

•
$$N = \bigcup_{i=1}^{k} N_i \cup \{S, S'_2, S'_3, \dots S'_{k+1}\}$$

- P includes the conventional LIN rules of P_i and $X \rightarrow Ya, X \rightarrow aY, X \rightarrow \lambda$
- The additional following CF rules.

 $\begin{array}{l} S \rightarrow S_1 S_2' \\ S_i' \rightarrow S_i S_{i+1}' \text{ for } 2 \leq i \leq k \\ S_{k+1}' \rightarrow \lambda \end{array}$

Rewriting grammar for MLIN and SMLIN

Recall: $L \in MLIN$ iff $L = L_1L_2...L_k$

- Let $G_i = (N_i, T, S_i, P_i)$ be linear grammar for L_i .
- A language of MLIN is generated by a grammar G = (N, T, S, P) where

•
$$N = \bigcup_{i=1}^{k} N_i \cup \{S, S'_2, S'_3, \dots S'_{k+1}\}$$

- P includes the conventional LIN rules of P_i and $X \rightarrow Ya$, $X \rightarrow aY$, $X \rightarrow \lambda$
- The additional following CF rules. $S \rightarrow S_1 S'_2$ $S'_i \rightarrow S_i S'_{i+1}$ for $2 \le i \le k$ $S'_{k+1} \rightarrow \lambda \mid S_1 S'_2$ (Additional rule for **SMLIN**)

Rewriting grammar for MLIN and SMLIN

Recall: $L \in MLIN$ iff $L = L_1L_2...L_k$

- Let $G_i = (N_i, T, S_i, P_i)$ be linear grammar for L_i .
- A language of MLIN is generated by a grammar G = (N, T, S, P) where

•
$$N = \bigcup_{i=1}^{n} N_i \cup \{S, S'_2, S'_3, \dots S'_{k+1}\}$$

- P includes the conventional LIN rules of P_i and $X \rightarrow Ya$, $X \rightarrow aY$, $X \rightarrow \lambda$
- The additional following CF rules. $S \rightarrow S_1 S'_2$ $S'_i \rightarrow S_i S'_{i+1}$ for $2 \le i \le k$ $S'_{k+1} \rightarrow \lambda \mid S_1 S'_2$ (Additional rule for **SMLIN**)

Sample derivation for MLIN is

$$S \Longrightarrow S_1 S'_2 \Longrightarrow^* L_1 S'_2 \Longrightarrow L_1 S_2 S'_3 \Longrightarrow^* L_1 L_2 S'_3 \Longrightarrow^* L_1 L_2 L_3 S'_4$$

Recall: $L \in MSLIN$ iff $L = L_1^*L_2^* \dots L_k^*$

L

- Let $G_i = (N_i, T, S_i, P_i)$ be linear grammar for L_i .
- A language of MSLIN is generated by a grammar G = (N, T, S, P) where

•
$$N = \bigcup_{i=1}^{n} N_i \cup \{S, S'_2, S'_3, \dots S'_{k+1}\}$$

- P includes the conventional LIN rules of P_i and $X \rightarrow Ya$, $X \rightarrow aY$, $X \rightarrow \lambda$, $S_i \rightarrow \lambda$
- The additional following CF rules. $S \rightarrow S_1 S'_2$ $S'_{i+1} \rightarrow S_i S'_{i+1} \mid S_{i+1} S'_{i+2}$ for $1 \le i \le k-1$ The first rule to stay in L_i and second rule to pass to L_{i+1} $S'_{k+1} \rightarrow \lambda$

Recall: $L \in MSLIN$ iff $L = L_1^*L_2^* \dots L_k^*$

L

- Let $G_i = (N_i, T, S_i, P_i)$ be linear grammar for L_i .
- A language of MSLIN is generated by a grammar G = (N, T, S, P) where

•
$$N = \bigcup_{i=1}^{n} N_i \cup \{S, S'_2, S'_3, \dots S'_{k+1}\}$$

- P includes the conventional LIN rules of P_i and $X \rightarrow Ya$, $X \rightarrow aY$, $X \rightarrow \lambda$, $S_i \rightarrow \lambda$
- The additional following CF rules. $S \rightarrow S_1 S'_2$ $S'_{i+1} \rightarrow S_i S'_{i+1} \mid S_{i+1} S'_{i+2}$ for $1 \le i \le k-1$ The first rule to stay in L_i and second rule to pass to L_{i+1} $S'_{k+1} \rightarrow \lambda \mid S_1 S'_2, S \rightarrow \lambda$ (Additional rule for SMSLIN)

Recall: $L \in MSMLIN$ iff $L = M_1 M_2 \dots M_k$ for each $M_i \in SMLIN$. $M_i = (L_{i,1}L_{i,2} \dots L_{i,t_i})^*$ where $L_{i,j} \in LIN$.

• Let $G_{i,j} = (N_{i,j}, T, S_{i,j}, P_{i,j})$ be linear grammar for $L_{i,j}$.

The grammar rules of MSMLIN include the conventional LIN rules of P_{i,j} and P'.

Desalling CMI IN	Rules of <i>P</i> ′ for MSMLIN
Recalling SMLIN	$S \rightarrow S_{1,1}S'_{1,2}$
$S ightarrow S_1 S_2'$	For $1 \leq i \leq k$ and $2 \leq j \leq t_i$
for $2 \le j \le t$	$S'_{i,j} ightarrow S_{i,j} S'_{i,j+1}$
$S'_{j} \rightarrow S_{j}S'_{j+1}$ $S'_{t+1} \rightarrow \lambda \mid S_{1}S'_{2}$	$S'_{i,t_{i}+1} \rightarrow S_{i,1}S'_{i,2} \mid S_{i+1,1}S'_{i+1,2} \mid \lambda$
$S'_{t+1} \to \lambda \mid S_1 S'_2$	$\int_{i} f_{i} f_{i} + 1 \qquad \qquad$
	TOF T∓K

$\textit{LIN} \subsetneq \textit{GCID}(3; 1, 1, 0; 1, 0, 0)$

We simulate the rules $p: X \to Ya$, $q: X \to aY$ and $h: X \to \lambda$ as:

Component 1		
$p1.1: (1, (X, p, \lambda)_{ins}, 3)$	Component 2	Component 3
p1.2: $(1, (p, a, \lambda)_{ins}, 2)$ p1.3: $(1, (p', Y, \lambda)_{ins}, 2)$	$p2.1:(2,(p,p',\lambda)_{ins},3)$	$p3.1:(3,(\lambda,X,\lambda)_{del},1)$
$q1.1: (1, (X, q, \lambda)_{ins}, 3)$	$p2.2:(2,(\lambda,p',\lambda)_{del},1)$	$p3.2:(3,(\lambda,p,\lambda)_{del},1)$
$q1.2:(1,(q,q',\lambda)_{ins},2)$	$q2.1: (2, (q, a, \lambda)_{ins}, 3)$ $q2.2: (2, (\lambda, q', \lambda)_{del}, 1)$	$\begin{array}{l} q3.1:(3,(\lambda,X,\lambda)_{del},1)\\ q3.2:(3,(\lambda,q,\lambda)_{del},1) \end{array}$
$q1.3:(1,(q',Y,\lambda)_{ins},2)$	$qz.z.(z,(\Lambda,q,\Lambda)del,1)$	$(3, (7, 4, 7)_{del}, 1)$
$h1.1:(1,(\lambda,X,\lambda)_{ins},1)$		

$\textit{LIN} \subsetneq \textit{GCID}(3; 2, 1, 0; 1, 0, 0)$

We simulate the rules $p: X \to aY$, $q: X \to Ya$, $h: X \to \lambda$ as:

Component 1		
$p1.1: (1, (X, p, \lambda)_{ins}, 2)$	Component 2	Component 3
p1.2: $(1, (p, aY, \lambda)_{ins}, 3)$ q1.1: $(1, (X, q, \lambda)_{ins}, 2)$	$p2.1:(2,(\lambda,X,\lambda)_{del},1)$	$p3.1:(3,(\lambda,p,\lambda)_{del},1)$
$q1.2:(1,(q,Ya,\lambda)_{ins},3)$	$q2.1:(2,(\lambda,X,\lambda)_{del},1)$	$q3.1:(3,(\lambda,q,\lambda)_{del},1)$
$h1.1:(1,(\lambda,X,\lambda)_{del},1)$		

Simulating Transition rules of MLIN

Recall: $S'_{i+1} \rightarrow S_{i+1}S_{i+2}$ for $1 \le i \le k-1$ and $S'_{k+1} \rightarrow \lambda$ $MLIN \subseteq GCID(5; 2, 1, 0; 1, 0, 0)$. For each $1 \le i \le k$,

	Component 2	
	$p_i 2.1: (2, (\lambda, X_i, \lambda)_{del}, 1)$	Component 3
Component 1	$q_i 2.1: (2, (\lambda, X_i, \lambda)_{del}, 1)$	$p_i 3.1: (3, (\lambda, p_i, \lambda)_{del}, 1)$
$p_i 1.1 : (1, (X_i, p_i, \lambda)_{ins}, 2)$		q_i 3.1 : (3, $(\lambda, q_i, \lambda)_{del}, 1)$
$p_{i1.2:}(1, (p_{i}, aY_{i}, \lambda)_{ins}, 3)$ $q_{i1.1:}(1, (X_{i}, q_{i}, \lambda)_{ins}, 2)$ $q_{i1.2:}(1, (q_{i}, Y_{ia}, \lambda)_{ins}, 3)$ $h_{i1.1:}(1, (\lambda, X_{i}, \lambda)_{del}, 4)$	Component 4	
	For $i \neq k$ r_i 4.1 : (4, ($S'_{i+1}, S_{i+1}, \lambda$) _{ins} , 5) r_i 4.2 : (4, ($S_{i+1}, S'_{i+2}, \lambda$) _{ins} , 1) For $i = k$	Component 5
		For $i \neq k$ $r_i 5.1 : (5, (\lambda, S'_{i+1}, \lambda)_{del}, 4)$
	r_i 4.1 : (4, ($\lambda, S'_{i+1}, \lambda$) _{del} , 1)	

Simulating Transition rules of MLIN

Recall: $S'_{i+1} \rightarrow S_{i+1}S_{i+2}$ for $1 \le i \le k-1$ and $S'_{k+1} \rightarrow \lambda$ $MLIN \subseteq GCID(5; 2, 1, 0; 1, 0, 0)$. For each $1 \le i \le k$,

	Component 2	
	$p_i 2.1: (2, (\lambda, X_i, \lambda)_{del}, 1)$	Component 3
Component 1	$q_i 2.1: (2, (\lambda, X_i, \lambda)_{del}, 1)$	$p_i 3.1: (3, (\lambda, p_i, \lambda)_{del}, 1)$
$p_i 1.1 : (1, (X_i, p_i, \lambda)_{ins}, 2)$		$q_i 3.1: (3, (\lambda, q_i, \lambda)_{del}, 1)$
$p_i 1.2: (1, (p_i, aY_i, \lambda)_{ins}, 3) \ q_i 1.1: (1, (X_i, q_i, \lambda)_{ins}, 2)$	Component 4	
	For $i \neq k$	Component 5
$\begin{array}{l} q_{i}1.1:(1,(X_{i},q_{i},\lambda)_{ins},2)\\ q_{i}1.2:(1,(q_{i},Y_{i}a,\lambda)_{ins},3)\\ h_{i}1.1:(1,(\lambda,X_{i},\lambda)_{del},4) \end{array}$	For $i \neq k$ $r_i 4.1 : (4, (S'_{i+1}, S_{i+1}, \lambda)_{ins}, 5)$ $r_i 4.2 : (4, (S_{i+1}, S'_{i+2}, \lambda)_{ins}, 1)$ For $i = k$	Component 5 For $i \neq k$ $r_i 5.1 : (5, (\lambda, S'_{i+1}, \lambda)_{del}, 4)$

 $(S_1S_2')_1 \Longrightarrow^* (L_1S_2')_4 \Longrightarrow (L_1S_2'S_2)_5 \Longrightarrow (L_1S_2)_4 \Longrightarrow (L_1S_2S_3')_1$

$MSLIN \subseteq GCID(5; 2, 1, 0; 1, 0, 0)$

 $\begin{array}{ll} \text{Recall:} \ S'_{i+1} \to S_{i+1}S'_{i+1} \mid S_{i+1}S'_{i+2} \ \text{for} \ 1 \leq i \leq k-1 \ \text{and} \ S'_{k+1} \to \lambda. \\ \text{For each} \ 1 \leq i \leq k, \end{array}$

	Component 2	
	$p_i 2.1 : (2, (\lambda, X_i, \lambda)_{del}, 1)$ $q_i 2.1 : (2, (\lambda, X_i, \lambda)_{del}, 1)$	Component 3
Component 1	(2, 1, 1, 1)	$p_i 3.1: (3, (\lambda, p_i, \lambda)_{del}, 1)$
$p_i 1.1 : (1, (X_i, p_i, \lambda)_{ins}, 2)$ $p_i 1.2 : (1, (p_i, aY_i, \lambda)_{ins}, 3)$	Component 4	$q_i 3.1: (3, (\lambda, q_i, \lambda)_{del}, 1)$
$q_{i}1.1:(1,(X_{i},q_{i},\lambda)_{ins},2)$ $q_{i}1.2:(1,(q_{i},Y_{i}a,\lambda)_{ins},3)$	For $i \neq k$ $r_i 4.1 : (4, (S'_{i+1}, S_{i+1}, \lambda)_{ins}, 5)$	Component 5
$h_i^{(1,2)}$ (1, (4, 7), $\lambda_i^{(1,2)}$, (1, (4, 7), (1, (4, 7), \lambda_i^{(1,2)}), (1, (4, 7), (1, (4, 7), \lambda_i^{(1,2)})), (1, (4, (4, (4, (4, (4, (4, (4, (4, (4, (4	$r_{i}4.2: (4, (S_{i+1}, S'_{i+2}, \lambda)_{ins}, 1)$ $r_{i}4.3: (4, (S_{i+1}, S'_{i+2}, \lambda)_{ins}, 1)$ For $i = k$	For $i \neq k$
		$r_i 5.1: (5, (\lambda, S'_{i+1}, \lambda)_{del}, 4)$

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- GCID(5;2,1,0;1,0,0) with tree as a control graph
- GCID(5;1,1,0;1,0,0) with non-tree as a control graph

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- GCID(5;2,1,0;1,0,0) with tree as a control graph
- GCID(5;1,1,0;1,0,0) with non-tree as a control graph

The obtained results can be stated as a general theorem.

Generic Theorem

For integers $t, n, m \ge 1$ and $i', i'', j', j'' \ge 0$ with $i' + i'' \ge 1$ and $X \in \{NTr, Tr\}$, if LIN \subseteq GCID_X(t; n, i', i''; m, j', j''), then F \subseteq GCID_X(t + 2; n, i', i''; m, j', j'') where F $\in \{$ SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN $\}$.

RATLIN: smallest family containing LIN and closed under union, concatenation and Kleene star.

- Let $L = (L_1 L_2)^* L_3^* L_4 L_5^*$
- Continuation points

• Assumption: $i + 1 \in cont(i)$

RATLIN: smallest family containing LIN and closed under union, concatenation and Kleene star.

- Let $L = (L_1 L_2)^* L_3^* L_4 L_5^*$
- Continuation points

• Assumption: $i + 1 \in cont(i)$

Transition rules: Axiom = S'_1

$$egin{array}{ll} S_i' o S_i S_c' & ext{ for all } c \in cont(i) ext{ and } 1 \leq i \leq k \ S_{k+1}' o \lambda \end{array}$$

Matrix Ins-del system

Definition

A matrix insertion-deletion system is a construct $\Gamma = (V, T, A, R)$

- V is an alphabet, $T \subseteq V$, A is a finite language over V
- *R* is a finite set of matrices $\{m_1, m_2, \ldots, m_l\}$
- $| m_i = [(u_1, \alpha_1, v_1)_{t_1}, (u_2, \alpha_2, v_2)_{t_2}, \dots, (u_k, \alpha_k, v_k)_{t_k}]$

Notes to remember:

• On choosing a matrix m_i , all rules in m_i are applied in order.

• If a rule in m_i cannot be applied, then m_i itself is not applied.

Matrix Ins-del system

Definition

A matrix insertion-deletion system is a construct $\Gamma = (V, T, A, R)$

- V is an alphabet, $T \subseteq V$, A is a finite language over V
- *R* is a finite set of matrices $\{m_1, m_2, \ldots, m_l\}$
- $| m_i = [(u_1, \alpha_1, v_1)_{t_1}, (u_2, \alpha_2, v_2)_{t_2}, \dots, (u_k, \alpha_k, v_k)_{t_k}]$

Notes to remember:

• On choosing a matrix m_i , all rules in m_i are applied in order.

• If a rule in *m_i* cannot be applied, then *m_i* itself is not applied.

Language generated by the following matrix ins-del systems?

Axiom: #\$

$$\begin{aligned} \mathsf{r1} &= [(\#, a, \lambda)_{ins}, (\$, a, \lambda)_{ins}] \\ \mathsf{r2} &= [(\#, b, \lambda)_{ins}, (\$, b, \lambda)_{ins}] \\ \mathsf{r3} &= [(\lambda, \#, \lambda)_{del}, (\lambda, \$, \lambda)_{del}] \end{aligned}$$

Language generated by the following matrix ins-del systems?

Axiom: #\$

$$r1 = [(\#, a, \lambda)_{ins}, (\$, a, \lambda)_{ins}]$$

$$r2 = [(\#, b, \lambda)_{ins}, (\$, b, \lambda)_{ins}]$$

$$r3 = [(\lambda, \#, \lambda)_{del}, (\lambda, \$, \lambda)_{del}]$$

Language = { $ww | w \in \{a, b\}^*$ } Size of the system is (2; 1, 1, 0; 1, 0, 0).

Language generated by the following matrix ins-del systems?

Axiom: #\$

$$\begin{aligned} \mathsf{r1} &= [(\#, a, \lambda)_{ins}, (\$, a, \lambda)_{ins}] \\ \mathsf{r2} &= [(\#, b, \lambda)_{ins}, (\$, b, \lambda)_{ins}] \\ \mathsf{r3} &= [(\lambda, \#, \lambda)_{del}, (\lambda, \$, \lambda)_{del}] \end{aligned}$$

Language = $\{ww | w \in \{a, b\}^*\}$ Size of the system is (2; 1, 1, 0; 1, 0, 0).

Axiom:

$$r1 = [(\lambda, a, \#)_{ins}, (\#, b, \lambda)_{ins}]$$

$$r2 = [(\lambda, \#, \lambda)_{del}]$$

Language generated by the following matrix ins-del systems?

Axiom: #\$	$Language = \{ww \mid w \in \{a, b\}^*\}$
$ \begin{aligned} r1 &= [(\#, a, \lambda)_{ins}, (\$, a, \lambda)_{ins}] \\ r2 &= [(\#, b, \lambda)_{ins}, (\$, b, \lambda)_{ins}] \\ r3 &= [(\lambda, \#, \lambda)_{del}, (\lambda, \$, \lambda)_{del}] \end{aligned} $	Size of the system is (2; 1, 1, 0; 1, 0, 0).
Axiom: #	$Language = \{a^n b^n \mid n \ge 0\}$
$\begin{aligned} r1 &= [(\lambda, \textbf{\textit{a}}, \#)_{\textit{ins}}, (\#, \textbf{\textit{b}}, \lambda)_{\textit{ins}}] \\ r2 &= [(\lambda, \#, \lambda)_{\textit{del}}] \end{aligned}$	Size of the system is (2; 1, 1, 1; 1, 0, 0).

Language generated by the following matrix ins-del systems?

Axiom: #\$	$Language = \{ww \mid w \in \{a, b\}^*\}$
$ \begin{aligned} r1 &= [(\#, a, \lambda)_{ins}, (\$, a, \lambda)_{ins}] \\ r2 &= [(\#, b, \lambda)_{ins}, (\$, b, \lambda)_{ins}] \\ r3 &= [(\lambda, \#, \lambda)_{del}, (\lambda, \$, \lambda)_{del}] \end{aligned} $	Size of the system is (2; 1, 1, 0; 1, 0, 0).
Axiom: #	Language = $\{a^n b^n \mid n \ge 0\}$
$\begin{aligned} r1 &= [(\lambda, a, \#)_{\mathit{ins}}, (\#, b, \lambda)_{\mathit{ins}}] \\ r2 &= [(\lambda, \#, \lambda)_{\mathit{del}}] \end{aligned}$	Size of the system is (2; 1, 1, 1; 1, 0, 0).
Helpful Results	

- $MAT(k; n, i', i''; m, j', j'') = [MAT(k; n, i'', i'; m, j'', j')]^R$
- Since RE is closed under reversal, MAT(k; n, i', i''; m, j', j'') = RE = MAT(k; n, i'', i'; m, j'', j').

Exhaustive Analysis for n = |Ins| = 1, m = |Del| = 1

Size $(k; 1, i', i''; 1, j', j'');$	Reference	k	Language
$i', i'', j', j'' \in \{0, 1\}$			Family Rela-
			tion
(k; 1, 0, 0; 1, 0, 0)	S.Verlan 2007	1	$\subset REG$
(k; 1, 0, 0; 1, 1, 0), (k; 1, 0, 0; 1, 0, 1)		≥ 1	OPEN
(k; 1, 0, 0; 1, 1, 1)	HLI 2018	3	= RE
	HLI 2019	2	= RE
(k; 1, 1, 0; 1, 0, 0), (k; 1, 0, 0; 1, 0, 0)	HLI 2019	3	$\supset \mathcal{L}_{reg}(LIN)$
(k; 1, 1, 1; 1, 0, 0)	HLI 2018	3	= RE
	HLI 2019	2	$\supset \mathcal{L}_{reg}(LIN)$
(k; 1, 1, 0; 1, 1, 0), (k; 1, 1, 0; 1, 0, 1)	S.Verlan 2012	3	= RE
(k; 1, 0, 1; 1, 0, 1), (k; 1, 0, 1; 1, 1, 0)	HLI 2019	2	= RE
(k; 1, 1, 0; 1, 1, 1), (k; 1, 0, 1; 1, 1, 1)	HLI 2018	2	= RE
(k; 1, 1, 1; 1, 1, 0), (k; 1, 1, 1; 1, 0, 1)	HLI 2018	2	= RE
(k; 1, 1, 1; 1, 1, 1)	Takahari 2003	1	= RE
) events are affective (1, 1, 1, 1/1, 1, 1/1, 1/1)	Λ		

Power of MID systems of size (k; 1, i', i''; 1, j', j'')

HLI 2018: H Fernau, Lakshmanan, Indhumathi, Investigations on the Power of Matrix Insertion-Deletion Systems of Small Sizes, Natural Computing, 2018, 17(2), 249 - 269. HLI 2019: -do-, On Matrix Ins-Del Systems of Small Sum-Norm, SOFSEM 2019, LNCS 11376, 192-205.

Lakshmanan K

Size $(k; 1, i', i''; 2, j', j''); i', i'', j', j'' \in \{0, 1\}$	Reference	k	Language
or $(k; 2, i', i''; 1, j', j''); i', i'', j', j'' \in \{0, 1\}$			Family Rela-
			tion
(k; 1, 0, 0; 2, 0, 0), (k; 2, 0, 0; 1, 0, 0)	Verlan 2007	1	$\subset REG$
(k; 1, 0, 0; 2, 1, 0), (k; 1, 0, 0; 2, 0, 1)		≥ 1	OPEN
(k; 1, 1, 0; 2, 0, 0), (k; 1, 1, 0; 2, 1, 0), (k; 1, 1, 0; 2, 0, 1)	Verlan 2012	2	= RE
(k; 2, 0, 0; 1, 1, 0), (k; 2, 1, 0; 1, 1, 0), (k; 2, 0, 1; 1, 1, 0)			
(<i>k</i> ; 1, 0, 0; 2, 1, 1), (<i>k</i> ; 2, 1, 1; 1, 0, 0)	HLI 2018	3	= RE
(k; 1, 1, 0; 2, 1, 1), (k; 1, 0, 1; 2, 0, 0), (k; 1, 0, 1; 2, 1, 1)	HLI 2018	2	= RE
(k; 1, 0, 1; 2, 1, 0), (k; 1, 0, 1; 2, 0, 1)			
(k; 2, 0, 0; 1, 0, 1), (k; 2, 1, 0; 1, 0, 1), (k; 2, 0, 1; 1, 0, 1)	HLI 2018	2	= RE
(k; 2, 1, 1; 1, 1, 0), (k; 2, 1, 1; 1, 0, 1)			
(k; 2, 1, 0; 1, 0, 0), (k; 2, 0, 1; 1, 0, 0)	HLI 2019	2	$\supset \mathcal{L}_{reg}(LIN)$
(k; 2, 0, 0; 1, 1, 1), (k; 2, 1, 0; 1, 1, 1), (k; 2, 0, 1; 1, 1, 1)	Krassovitskiy 2008	1	= RE
(k; 1, 1, 1; 2, 0, 0), (k; 1, 1, 1; 2, 1, 0), (k; 1, 1, 1; 2, 0, 1)	Paun 1998	1	= RE
(k; 1, 1, 1; 2, 1, 1), (k; 2, 1, 1; 1, 1, 1)	Takahari 2003	1	= RE
wer of MID systems of size $(k \cdot 1 \ i' \ i'' \cdot 2 \ i' \ i'')$ or ($k \cdot 2 i' i'' \cdot 1 i' i''$		

Power of MID systems of size (k; 1, i', i''; 2, j', j'') or (k; 2, i', i''; 1, j', j'')

MAT(3;1,0,0;1,1,1) = RE

Consider a type-0 grammar G = (N, T, P, S) in SGNF.

Simulating $p: X \rightarrow bY$

MAT(3;1,0,0;1,1,1) = RE

Consider a type-0 grammar G = (N, T, P, S) in SGNF.

Simulating $p: X \rightarrow bY$

$$\begin{array}{l} p1 = [(\lambda, p, \lambda)_{ins}, \ (\lambda, p', \lambda)_{ins}, (p', X, p)_{del}] \\ p2 = [(\lambda, b, \lambda)_{ins}, (\lambda, Y, \lambda)_{ins}, \ (b, p, Y)_{del}] \\ p3 = [(\lambda, p', b)_{del}] \ (\text{right context is required to ensure p3 is applied after p2} \end{array}$$

Simulating $q: X \rightarrow Yb$

$$\begin{array}{l} q1 = [(\lambda, q, \lambda)_{ins}, \ (\lambda, q', \lambda)_{ins}, (q', X, q)_{del}] \\ q2 = [(\lambda, b, \lambda)_{ins}, (\lambda, Y, \lambda)_{ins}, \ (Y, q', b)_{del}] \\ q3 = [(b, q, \lambda)_{del}] \ (\text{left context is required to ensure p3 is applied after p2}) \end{array}$$

MAT(3;1,0,0;1,1,1) = RE

Consider a type-0 grammar G = (N, T, P, S) in SGNF.

Simulating $p: X \rightarrow bY$

$$\begin{array}{l} p1 = [(\lambda, p, \lambda)_{ins}, \ (\lambda, p', \lambda)_{ins}, (p', X, p)_{del}] \\ p2 = [(\lambda, b, \lambda)_{ins}, (\lambda, Y, \lambda)_{ins}, \ (b, p, Y)_{del}] \\ p3 = [(\lambda, p', b)_{del}] \ (\text{right context is required to ensure p3 is applied after p2}) \end{array}$$

Simulating $q: X \rightarrow Yb$

$$\begin{array}{l} q1 = [(\lambda, q, \lambda)_{ins}, \ (\lambda, q', \lambda)_{ins}, (q', X, q)_{del}] \\ q2 = [(\lambda, b, \lambda)_{ins}, (\lambda, Y, \lambda)_{ins}, \ (Y, q', b)_{del}] \\ q3 = [(b, q, \lambda)_{del}] \ (\text{left context is required to ensure p3 is applied after p2}) \end{array}$$

Simulating $f: AB \rightarrow \lambda$

$$f1 = [(\lambda, f, \lambda)_{ins}, (\lambda, f', \lambda)_{ins}, (f, A, B)_{del}]$$

$$f2 = [(f, B, f')_{del}, (\lambda, f', \lambda)_{del}, (\lambda, f, \lambda)_{del}]$$

MAT(2;1,1,0;1,1,1) = RE

Simulating p: $X \rightarrow bY$: Axiom = S

Simulating $f: AB \rightarrow \lambda$

$$\begin{aligned} f1 &= \left[(B, f, \lambda)_{ins}, \ (\#, f', \lambda)_{ins} \right] \\ f2 &= \left[(\lambda, B, f)_{del}, \ (\lambda, A, f)_{del} \right] \\ f3 &= \left[(\lambda, f, \lambda)_{del}, \ (\#, f', \$)_{del} \right] \end{aligned}$$

 $f1' = [(B, f, \lambda)_{ins}]$ $f2' = [(\lambda, B, f)_{del}, (\lambda, A, f)_{del}]$ $f3' = [(\lambda, f, \lambda)_{del}]$

Malicious derivation for $f : AB \rightarrow \lambda$

 $AAB\delta B \# \$ \Rightarrow^2_{f1'} AABf\delta Bf \# \$ \Rightarrow^2_{f2'}$ $AABf \delta Bf \# f'f' \$ = f \delta f \# \$ \Rightarrow_{f3'} \delta \# \$$

Note: $[(\lambda, \#, \lambda), (\lambda, \$, \lambda)]$ is applied at the end of the derivation.

MAT(2;1,1,0;1,1,0) = RE

Simulating $p: X \to bY$

$$p4 = [(p', b, \lambda)_{ins}, (b, p'', \lambda)_{del}]$$

$$p5 = [(\lambda, p', \lambda)_{del}]$$

MAT(2;1,1,0;1,1,0) = RE

Simulating $p: X \rightarrow bY$

$$p4 = [(p', b, \lambda)_{ins}, (b, p'', \lambda)_{del}]$$

$$p5 = [(\lambda, p', \lambda)_{del}]$$

Applying p1 twice??

$$\begin{array}{l} X \Rightarrow_{p1} p' X p p \dots p' \Rightarrow_{p2} p' p'' p p \dots p' \Rightarrow_{p3} p' p'' Y p \dots p' \Rightarrow_{p4} \\ p' b Y p \dots p' \Rightarrow_{p5}^2 b Y p \end{array} \quad \text{Cannot reapply p3 to get rid of the second } p. \end{array}$$

Simulating $f: AB \rightarrow \lambda$

A new idea of moving in a Z.

$$\begin{aligned} h1 &= [(\lambda, S', \lambda)_{del}, \ (\lambda, Z, \lambda)_{ins}] \\ f1 &= [(Z, A, \lambda)_{del}, \ (Z, B, \lambda)_{del}] \end{aligned}$$

 $\begin{array}{l} \textit{moveZ} = \ [(\lambda, Z, \lambda)_{\textit{del}}, \ (\lambda, Z, \lambda)_{\textit{ins}}] \\ \textit{delZ} = \ [(\lambda, Z, \lambda)_{\textit{del}}] \end{array}$

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- MAT(3;1,1,0;1,0,0)
- MAT(2;2,1,0;1,0,0)
- MAT(2;1,1,1;1,0,0)

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of each of the following.

- MAT(3;1,1,0;1,0,0)
- MAT(2;2,1,0;1,0,0)
- MAT(2;1,1,1;1,0,0)

Generic Theorem

For integers $t, n, m \ge 1$ and $i', i'', j', j'' \ge 0$ with $i' + i'' \ge 1$, if $\text{LIN} \subseteq \text{MAT}(t; n, i', i''; m, j', j'')$, then $F \subseteq \text{MAT}(t; n, i', i''; m, j', j'')$ where $F \in \{\text{SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN, RATLIN}\}$.

Simulation of MLIN

Recall: Apart from the usual LIN rules, the transition rules in MLIN are $S'_{i+1} \rightarrow S_{i+1}S_{i+2}$ for $1 \le i \le k - 1$ and $S'_{k+1} \rightarrow \lambda$, for each $1 \le i \le k$,

$MLIN \subseteq MAT(3; 1, 1, 0; 1, 0, 0)$: Axiom = $S_1S'_2$

 $\begin{aligned} p1 &= [(X_i, p_i, \lambda)_{ins}, (p_i, p'_i, \lambda)_{ins}, (\lambda, X_i, \lambda)_{del}] \\ p2 &= [(p_i, a_i, \lambda)_{ins}, (p'_i, Y_i, \lambda)_{ins}, (\lambda, p_i, \lambda)_{del}] \\ p3 &= [(\lambda, p'_i, \lambda)_{del}] \\ p4 &= [(S'_{i+1}, S'_{i+2}, \lambda)_{ins}, (S'_{i+1}, S_{i+1}, \lambda)_{ins}, (\lambda, S'_{i+1}, \lambda)_{del}] \text{ (for each } 1 \leq i \leq k-1) \\ p5 &= [(\lambda, S'_{k+1}, \lambda)_{del}] \end{aligned}$

Simulation of MLIN

Recall: Apart from the usual LIN rules, the transition rules in MLIN are $S'_{i+1} \rightarrow S_{i+1}S_{i+2}$ for $1 \le i \le k - 1$ and $S'_{k+1} \rightarrow \lambda$, for each $1 \le i \le k$,

MLIN \subseteq MAT(3; 1, 1, 0; 1, 0, 0): Axiom = $S_1S'_2$

$$\begin{aligned} p1 &= [(X_i, p_i, \lambda)_{ins}, (p_i, p'_i, \lambda)_{ins}, (\lambda, X_i, \lambda)_{del}] \\ p2 &= [(p_i, a_i, \lambda)_{ins}, (p'_i, Y_i, \lambda)_{ins}, (\lambda, p_i, \lambda)_{del}] \\ p3 &= [(\lambda, p'_i, \lambda)_{del}] \\ p4 &= [(S'_{i+1}, S'_{i+2}, \lambda)_{ins}, (S'_{i+1}, S_{i+1}, \lambda)_{ins}, (\lambda, S'_{i+1}, \lambda)_{del}] \text{ (for each } 1 \leq i \leq k-1) \\ p5 &= [(\lambda, S'_{k+1}, \lambda)_{del}] \end{aligned}$$

$MLIN \subseteq MAT(2; 1, 1, 1; 1, 0, 0)$: Axiom = S_1S_2'

 $\begin{aligned} p1 &= [(X_i, p_i, \lambda)_{ins}, (\lambda, X_i, \lambda)_{del}] \\ p2 &= [(p_i, p'_i, \lambda)_{ins}, (p_i, a_i, p'_i)_{ins}] \text{ (cannot reuse due to second rule)} \\ p3 &= [(a_i, Y_i, p'_i)_{ins}, (\lambda, p_i, \lambda)_{del}] \\ p4 &= [(\lambda, p'_i, \lambda)_{del}] \\ p5 &= [(S'_{i+1}, S'_{i+2}, \lambda)_{ins}, (S'_{i+1}, S_{i+1}, S'_{i+2})_{ins}] \text{ (for each } 1 \le i \le k-1) \\ p5 &= [(\lambda, S'_{i+1}, \lambda)_{del}](\text{for each } 1 \le i \le k) \end{aligned}$

Definition

A semi-conditional ins-del system (SCID) of degree (i, j) is G = (V, T, A, P), where P is a finite set of rules of the form $((u, x, v)_t, \alpha, \beta)$, where

- $(u, x, v)_t$ is an ins-del rule, $t \in \{ins, del\}$,
- $\alpha, \beta = \phi$ or $\alpha, \beta \subset (N \cup T)^*$ (finite languages) and
- $|\alpha_r| \leq i \text{ for } \alpha_r \in \alpha$, and $|\beta_s| \leq j \text{ for } \beta_s \in \beta$.

Definition

A semi-conditional ins-del system (SCID) of degree (i, j) is G = (V, T, A, P), where P is a finite set of rules of the form $((u, x, v)_t, \alpha, \beta)$, where

- $(u, x, v)_t$ is an ins-del rule, $t \in \{ins, del\}$,
- $\alpha, \beta = \phi$ or $\alpha, \beta \subset (N \cup T)^*$ (finite languages) and
- $|\alpha_r| \leq i \text{ for } \alpha_r \in \alpha$, and $|\beta_s| \leq j \text{ for } \beta_s \in \beta$.

Rule application in derivation

 $((u, x, v)_t, \alpha, \beta)$ is applied to a string w iff every string in

- [Permitting set] α (when $\alpha \neq \phi$) is a substring of w and
- [Forbidding set] β (when $\beta \neq \phi$) is not a substring of w.
- If $\alpha=\phi,\ \beta=\phi,$ the rule is applied without any restriction.

SSCID and an Example

Variants

A semi-conditional grammar is called

- Random Context: if degree (i, j) = (1, 1).
- Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of *P*.

Example: $L_1 = \{a^n b^n c^n \mid n \ge 1\} \notin CF$

Consider $G_1 = (\{a, b, c, A, B\}, \{a, b, c\}, abc, R)$ where R is

- [(a, aAb, b)_{ins}, Ø, B]
- $[(b, Bc, c)_{ins}, A, \emptyset]$
- $[(\lambda, A, \lambda)_{del}, B, \emptyset]$
- $[(\lambda, B, \lambda)_{del}, \emptyset, A]$

SSCID and an Example

Variants

A semi-conditional grammar is called

- Random Context: if degree (i, j) = (1, 1).
- Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of *P*.

Example: $L_1 = \{a^n b^n c^n \mid n \ge 1\} \notin CF$

Consider $G_1 = (\{a, b, c, A, B\}, \{a, b, c\}, abc, R)$ where R is

- [(a, aAb, b)_{ins}, Ø, B]
- $[(b, Bc, c)_{ins}, A, \emptyset]$
- $[(\lambda, A, \lambda)_{del}, B, \emptyset]$
- $[(\lambda, B, \lambda)_{del}, \emptyset, A]$
- Simple and Random Context
- Size = (3, 1, 1; 1, 0, 0)
- Degree = (1, 1)

43 / 52

Semi-conditional Ins-del systems of following sizes (do not) describe the class of RE languages

Existing Results (S.Ivanov, S.Verlan, Fund.Inf., 2012)

- SCID_{2,2}(1,0,0;1,0,0)
- SCID_{1,1}(2,0,0;1,1,0)
- SCID_{1,1}(1,1,0;1,1,1)
- SCID_{1,1}(1,1,0;2,0,0)
- None is simple

Results of UCNC 2018

- $SSCID_{2,1}(2,0,0;2,0,0)$
- SSCID_{3,1}(1,1,0;1,1,0)
- SSCID_{2,1}(1, 1, 0; 1, 1, 1)
- SSCID_{2,1}(1,1,0;2,0,0)
- All are simple

Simulation of $f : AB \to \lambda$ by $(\lambda, AB, \lambda, \phi, \phi)$ is direct.

Simulation of
$$f : AB \to \lambda$$
 by $(\lambda, AB, \lambda, \phi, \phi)$ is direct.

Simulations of $p: X \to bY$ and $q: X \to Yb$ are similar.

Simulating $\overline{q:X o Yb}$

$$\begin{array}{l} q1: [(\lambda, qq', \lambda)_{ins}, \emptyset, \{q, q', q'', q'''\}] \\ q2: [(\lambda, q'X, \lambda)_{del}, \{qq'\}, \emptyset] \\ q3: [(\lambda, q''b, \lambda)_{ins}, \emptyset, \{q', q'', q'''\}] \\ q4: [(\lambda, q'''Y, \lambda)_{ins}, \emptyset, N' \cup \{q', q'''\}] \\ q5: [(\lambda, q''', \lambda)_{del}, \{q''q'''\}, \emptyset] \\ q6: [(\lambda, qq'', \lambda)_{del}, \{Yb\}, \emptyset] \end{array}$$

Simulation of
$$igg[f:AB o \lambda$$
 by $(\lambda,AB,\lambda,\phi,\phi)igg]$ is direct.

Simulations of $p: X \to bY$ and $q: X \to Yb$ are similar.

Simulating $q: X \rightarrow Yb$

$$\begin{array}{ll} q1: [(\lambda, qq', \lambda)_{ins}, \emptyset, \{q, q', q'', q'''\}] & q1: | \\ q2: [(\lambda, q'X, \lambda)_{del}, \{qq'\}, \emptyset] & q2: | \\ q3: [(\lambda, q''b, \lambda)_{ins}, \emptyset, \{q', q'', q'''\}] & q3: | \\ q4: [(\lambda, q'''Y, \lambda)_{ins}, \emptyset, N' \cup \{q', q'''\}] & q4: | \\ q5: [(\lambda, q''', \lambda)_{del}, \{q''q'''\}, \emptyset] & q5: | \\ q6: [(\lambda, qq'', \lambda)_{del}, \{Yb\}, \emptyset] & q6: | \\ \end{array}$$

Another simulation?

$$\begin{array}{l} q1: [(\lambda, qq', \lambda)_{ins}, \emptyset, \{q, q'', q'''\}] \\ q2: [(\lambda, q'X, \lambda)_{del}, \{qq'\}, \emptyset] \\ q3: [(\lambda, Yq'', \lambda)_{ins}, \emptyset, N' \cup \{q'', q'''\}] \\ q4: [(\lambda, bq''', \lambda)_{ins}, \emptyset, N' \cup \{q', q'''\}] \\ q5: [(\lambda, q''q, \lambda)_{del}, \{q'''q''\}, \emptyset] \\ q6: [(\lambda, q''', \lambda)_{del}, \emptyset, \{q, q''\}] \end{array}$$

Simulation of
$$f: AB
ightarrow \lambda$$
 by $(\lambda, AB, \lambda, \phi, \phi)$ is direct.

Simulations of $p: X \to bY$ and $q: X \to Yb$ are similar.

Simulating $\overline{q:X ightarrow Yb}$

$$\begin{array}{l} q1: [(\lambda, qq', \lambda)_{ins}, \emptyset, \{q, q', q'', q'''\}] \\ q2: [(\lambda, q'X, \lambda)_{del}, \{qq'\}, \emptyset] \\ q3: [(\lambda, q''b, \lambda)_{ins}, \emptyset, \{q', q'', q'''\}] \\ q4: [(\lambda, q'''b, \lambda)_{ins}, \emptyset, N' \cup \{q', q'''\}] \\ q5: [(\lambda, q''', \lambda)_{del}, \{q''q'''\}, \emptyset] \\ q6: [(\lambda, qq'', \lambda)_{del}, \{Yb\}, \emptyset] \end{array}$$

$$\begin{array}{l} q1: [(\lambda, qq', \lambda)_{ins}, \emptyset, \{q, q'', q'''\}] \\ q2: [(\lambda, q'X, \lambda)_{del}, \{qq'\}, \emptyset] \\ q3: [(\lambda, Yq'', \lambda)_{ins}, \emptyset, N' \cup \{q'', q'''\}] \\ q4: [(\lambda, bq''', \lambda)_{ins}, \emptyset, N' \cup \{q', q'''\}] \\ q5: [(\lambda, q''q, \lambda)_{del}, \{q'''q''\}, \emptyset] \\ q6: [(\lambda, q''', \lambda)_{del}, \emptyset, \{q, q''\}] \end{array}$$

Suppose we have a terminal string α ,

 $\begin{array}{l} \alpha \Rightarrow_{\hat{q}4} \alpha b q''' \Rightarrow_{\hat{q}6} \alpha b = \alpha' \in \mathcal{T}^* \\ \text{We get another terminal string without any reason.} \\ (\text{ERROR with right side rules!!}) \end{array}$

Definition

A forbidding ins-del system (FID) of degree k is G = (V, T, A, P), where P is a finite set of rules of the form $((u, x, v)_t, F)$, where

- $(u, x, v)_t$ is an ins-del rule, $t \in \{ins, del\}$,
- $F = \phi$ or $F \subset (N \cup T)^*$ (finite languages) and

•
$$|f_r| \leq k$$
 for $f_r \in F$.

Definition

A forbidding ins-del system (FID) of degree k is G = (V, T, A, P), where P is a finite set of rules of the form $((u, x, v)_t, F)$, where

- $(u, x, v)_t$ is an ins-del rule, $t \in \{ins, del\}$,
- $F = \phi$ or $F \subset (N \cup T)^*$ (finite languages) and

•
$$|f_r| \leq k$$
 for $f_r \in F$.

Points to note

- ((u, x, v)t, F) is applied to a string w iff every string in [Forbidding set] F (≠ φ) is not a substring of w.
- If F = φ, then the rule ((u, x, v)_t, φ) can be applied without any restriction.
- (S)SCID_{0,k}(s)=FID_k(s).

Recall: (S)SCID results (= RE)

- SSCID_{2,1}(2,0,0;2,0,0)
- $SSCID_{2,1}(1, 1, 0; 2, 0, 0)$
- SSCID_{2,1}(1,1,0;1,1,1)
- SSCID_{3,1}(1,1,0;1,1,0)
- SSCID_{3,1}(1,1,0;1,0,1)

Following systems = RE

- FID₂(2,0,0;2,0,0)
- $FID_2(1, 1, 0; 2, 0, 0),$ $FID_2(1, 0, 1; 2, 0, 0)$
- $FID_2(2,0,0;1,1,0),$ $FID_2(2,0,0;1,0,1)$
- $FID_2(1, 1, 0; 1, 1, 0),$ $FID_2(1, 0, 1; 1, 0, 1)$
- $FID_2(1, 1, 0; 1, 0, 1)$, $FID_2(1, 0, 1; 1, 1, 0)$

Simulating $X \rightarrow Yb$ by $FID_2(2,0,0;2,0,0)$

$$\begin{array}{l} q1 = [(qq')_{ins}, \{\mathcal{M} \cup (N' \setminus \{X\})\}] \\ q2 = [(q'X)_{del}, \{\mathcal{M} \setminus \{q, q'\} \cup (N' \setminus \{X\})\}] \\ q3 = [(q''b)_{ins}, \{\mathcal{M} \setminus \{q\} \cup N'\}] \\ q4 = [(q'''Y)_{ins}, (\mathcal{M} \setminus \{q, q''\}) \cup N' \cup \{Zq'' \mid Z \neq q\} \cup \{qZ \mid Z \neq q''\}] \\ q5 = [(q^{iv}q^{v})_{ins}, (\mathcal{M} \setminus \{q, q'', q'''\}) \cup (N' \setminus \{Y\}) \cup \{q''b\} \cup \{qZ \mid Z \neq q''\}] \\ q6 = [(q'''q^{iv})_{del}, \{\mathcal{M}\{q, q'', q''', q^{iv}, q^{v}\} \cup (N' \setminus \{Y\}) \cup \{q'''Y, q''b\} \cup \{Zq''' \mid Z \neq q''\}] \\ q7 = [(q'')_{del}, \{\mathcal{M}\{q, q'', q^{v}\} \cup (N' \setminus \{Y\}) \cup \{q'''Y, q''b\} \cup \{q''Z \mid Z \neq q^{v}\}] \\ q8 = [(qq^{v})_{del}, \{\mathcal{M}\{q, q^{v}\} \cup (N' \setminus \{Y\})] \end{array}$$

Simulating $X \rightarrow Yb$ by $FID_2(2,0,0;2,0,0)$

$$\begin{aligned} q1 &= [(qq')_{ins}, \{\mathcal{M} \cup (N' \setminus \{X\})\}] \\ q2 &= [(q'X)_{del}, \{\mathcal{M} \setminus \{q, q'\} \cup (N' \setminus \{X\})\}] \\ q3 &= [(q''b)_{ins}, \{\mathcal{M} \setminus \{q\} \cup N'\}] \\ q4 &= [(q'''Y)_{ins}, (\mathcal{M} \setminus \{q, q''\}) \cup N' \cup \{Zq'' \mid Z \neq q\} \cup \{qZ \mid Z \neq q''\}] \\ q5 &= [(q^{iv}q^{v})_{ins}, (\mathcal{M} \setminus \{q, q'', q'''\}) \cup (N' \setminus \{Y\}) \cup \{q''b\} \cup \{qZ \mid Z \neq q''\}] \\ q6 &= [(q'''q^{iv})_{del}, \{\mathcal{M}\{q, q'', q''', q^{iv}, q^{v}\} \cup (N' \setminus \{Y\}) \cup \{q'''Y, q''b\} \cup \{Zq''' \mid Z \neq q''\}] \\ q7 &= [(q'')_{del}, \{\mathcal{M}\{q, q'', q^{v}\} \cup (N' \setminus \{Y\}) \cup \{q'''Y, q''b\} \cup \{q'''Z \mid Z \neq q^{v}\}] \\ q8 &= [(qq^{v})_{del}, \{\mathcal{M}\{q, q^{v}\} \cup (N' \setminus \{Y\})] \end{aligned}$$

 $\begin{array}{l} X \Rightarrow_{q1} qq'X \Rightarrow_{q2} q \Rightarrow_{q3} qq''b \Rightarrow_{q4} qq''q'''Yb \Rightarrow_{q5} qq''q'''q^{iv}q^{v}Yb \Rightarrow_{q6} \\ qq''q^{v}Yb \Rightarrow_{q7} qq^{v}Yb \Rightarrow_{q8} Yb \end{array}$

$\textit{FID}_2(1,1,0;1,0,1)=\textit{RE}$

Simulating $X \rightarrow bY$ by $FID_2(1, 1, 0; 1, 0, 1)$

$$p1 = [(X, p, \lambda)_{ins}, \mathcal{M} \cup (\mathcal{N} \setminus \{X\})]$$

$$p2 = [(\lambda, X, p)_{del}, (\mathcal{M} \setminus \{p\}) \cup (\mathcal{N} \setminus \{X\})]$$

$$p3 = [(p, Y, \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup \mathcal{N}']$$

$$p4 = [(p, p', \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup (\mathcal{N}' \setminus \{Y\}) \cup (\{pZ \mid Z \neq Y\})]$$

$$p5 = [(p', b, \lambda)_{ins}, (\mathcal{M} \setminus \{p, p'\}) \cup (\mathcal{N}' \setminus \{Y\}) \cup (\{p'Z \mid Z \neq Y\})]$$

$$p6 = [(\lambda, p, p')_{del}, \{p'Y\}]$$

$$p7 = [(\lambda, p', \lambda)_{del}, \{p\}]$$

$\textit{FID}_2(1,1,0;1,0,1)=\textit{RE}$

Simulating $X \rightarrow bY$ by $FID_2(1, 1, 0; 1, 0, 1)$

$$\begin{aligned} p1 &= [(X, p, \lambda)_{ins}, \mathcal{M} \cup (\mathcal{N} \setminus \{X\})] \\ p2 &= [(\lambda, X, p)_{del}, (\mathcal{M} \setminus \{p\}) \cup (\mathcal{N}' \setminus \{X\})] \\ p3 &= [(p, Y, \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup \mathcal{N}'] \\ p4 &= [(p, p', \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup (\mathcal{N}' \setminus \{Y\}) \cup (\{pZ \mid Z \neq Y\})] \\ p5 &= [(p', b, \lambda)_{ins}, (\mathcal{M} \setminus \{p, p'\}) \cup (\mathcal{N}' \setminus \{Y\}) \cup (\{p'Z \mid Z \neq Y\})] \\ p6 &= [(\lambda, p, p')_{del}, \{p'Y\}] \\ p7 &= [(\lambda, p', \lambda)_{del}, \{p\}] \end{aligned}$$

Optimizing the rules - Does the following work?? WHY??

$$p1 = [(X, p, \lambda)_{ins}, \mathcal{M} \cup (N' \setminus \{X\})]$$

$$p2 = [(\lambda, X, p)_{del}, (\mathcal{M} \setminus \{p\}) \cup (N' \setminus \{X\})]$$

$$p3 = [(p, Y, \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup N']$$

$$p5 = [(p, b, \lambda)_{ins}, (\mathcal{M} \setminus \{p\}) \cup (N' \setminus \{Y\}) \cup (\{pZ \mid Z \neq Y\})]$$

$$p7 = [(\lambda, p, \lambda)_{del}, \{\alpha Y \mid \alpha \neq b\}]$$

Outcome of the talk

- Defined Insertion-Deletion systems
- Variants of Ins-del systems
 - Matrix
 - Graph-Controlled
 - (Simple) Semi-conditional
 - 4 Forbidding
- Showed how these systems can simulate RE with certain sizes.

References

EATCS Monographs on Theoretical Computer Science W Braver G. Rozenberg A Salomaa (Eds.)

J.DASSOW G.PÅUN

Regulated Rewriting in Formal Language Theory

H. Fernau, Lakshmanan and Indhumathi

- On path-controlled insertion-deletion systems. Accepted with Acta Informatica, 2017.
- Investigations on the power of matrix insertion-deletion systems with small sizes.Natural Computing, 17(2):249–269, 2018.
- On the computational completeness of graph-controlled insertion-deletion systems with binary sizes, Theoretical Computer Science, 682, 100–121 (2017). Special Issue on Languages and Combinatorics in Theory and Nature : Dedication to J. Dasssow

THANK YOU