Multi-Island Finite Automata and Their Even Computation

Martin Tomko

paper co-authored with: Dušan Kolář, Alexander Meduna

Faculty of Information Technology, BUT

December 10, 2019

Table of contents

Finite Automata

Bridges and Islands

Islands in Automata

Even Computations

Accepting Power

Finite Automata

Finite Automata: Example, Graphical Representation

The GFA

$$M = (\{s, q, f\}, \{a, b\}, \{sa \rightarrow q, qa \rightarrow q, qb \rightarrow f, fb \rightarrow b\}, s, f)$$

can be represented as:

The language accepted by this automaton is

$$L(M) = \{a^n b^m \mid n, m \ge 1\}.$$

A generalized finite automaton (GFA) is a 5-tuple $M = (Q, \Sigma, R, s, f)$, where

- ► Q a finite set of states,
- $ightharpoonup \Sigma$ a finite, nonempty *input alphabet*,
- ▶ $R \subseteq Q \times \Sigma^* \times Q$ a finite set of *production rules*:
 - ▶ $(p, w, q) \in R$ written as $pw \rightarrow q$,
- $ightharpoonup s \in Q$ the *initial state*,
- $ightharpoonup f \in Q$ the final state.

A generalized finite automaton (GFA) is a 5-tuple $M = (Q, \Sigma, R, s, f)$, where

- ► Q a finite set of states,
- $ightharpoonup \Sigma$ a finite, nonempty *input alphabet*,
- ▶ $R \subseteq Q \times \Sigma^* \times Q$ a finite set of *production rules*:
 - ▶ $(p, w, q) \in R$ written as $pw \rightarrow q$,
- $ightharpoonup s \in Q$ the *initial state*,
- ▶ $f \in Q$ the final state.

Note these peculiarities:

▶ The model is non-deterministic;

A generalized finite automaton (GFA) is a 5-tuple $M = (Q, \Sigma, R, s, f)$, where

- ▶ Q a finite set of states,
- $ightharpoonup \Sigma$ a finite, nonempty *input alphabet*,
- ▶ $R \subseteq Q \times \Sigma^* \times Q$ a finite set of *production rules*:
 - ▶ $(p, w, q) \in R$ written as $pw \rightarrow q$,
- $ightharpoonup s \in Q$ the *initial state*,
- ▶ $f \in Q$ the final state.

Note these peculiarities:

- ► The model is non-deterministic;
- ► The production rules allow reading entire strings;

A generalized finite automaton (GFA) is a 5-tuple $M = (Q, \Sigma, R, s, f)$, where

- ► Q a finite set of states,
- $ightharpoonup \Sigma$ a finite, nonempty *input alphabet*,
- ▶ $R \subseteq Q \times \Sigma^* \times Q$ a finite set of *production rules*:
 - ▶ $(p, w, q) \in R$ written as $pw \rightarrow q$,
- $ightharpoonup s \in Q$ the *initial state*,
- ▶ $f \in Q$ the final state.

Note these peculiarities:

- ► The model is non-deterministic;
- The production rules allow reading entire strings;
- ► There is only a single final state.

$$ightharpoonup V = Q$$
,

- ightharpoonup V = Q,
- $\blacktriangleright E = \{(u, v) \in Q \times Q \mid \exists w \in \Sigma^* : (uw \to v) \in R\},\$

- ightharpoonup V = Q,
- $\blacktriangleright E = \{(u, v) \in Q \times Q \mid \exists w \in \Sigma^* : (uw \to v) \in R\},\$
- $\blacktriangleright W: (u,v) \mapsto \{w \in \Sigma^* \mid (uw \to v) \in R\}.$

- ightharpoonup V = Q,
- $E = \{(u, v) \in Q \times Q \mid \exists w \in \Sigma^* : (uw \to v) \in R\},$
- $\blacktriangleright W: (u,v) \mapsto \{w \in \Sigma^* \mid (uw \to v) \in R\}.$

- $V = \{s, q, f\},\$
- $E = \{(s,q), (q,q), (q,f), (f,f)\},\$
 - $V(s,q) = \{a\},\$
 - $V(q,q) = \{a\},\$
 - $V(q, f) = \{b\},\$
 - $V(f, f) = \{b\}$

Bridges and Islands

Connected graph

Connected graph: Any two nodes are connected by an undirected path.

Disconnected graph

Connected graph: Any two nodes are connected by an undirected path.

Bridge

Bridge: an edge such that when it is removed, the graph is no longer connected.

Island

A $\it bridgeless island = a maximal bridgeless connected component$

Every node and edge is either a bridge or contained in exactly one bridgeless island.

Islands in Automata

Islands in Automata: The Structure

- ▶ A state is *useful* if it occurs on some path from *s* to *f*;
- Otherwise, it is useless;

Islands in Automata: The Structure

- ▶ A state is *useful* if it occurs on some path from *s* to *f*;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_n$$

Islands in Automata: The Structure

- ▶ A state is *useful* if it occurs on some path from *s* to *f*;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_n$$

- Sketch of Proof:
 - 1. Think of an "island graph" the nodes are islands, the edges are bridges;
 - 2. This graph is necessarily a tree;
 - 3. There must be exactly one path between I_s and I_f ;
 - 4. All states are useful, so all islands must lie on this path.

► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;

- ► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;
- ► Idea of proof:
 - Redundant states and transitions can merge existing islands and create new ones;

- ► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;
- ► Idea of proof:
 - Redundant states and transitions can merge existing islands and create new ones;
- ▶ a k-bridge island in G:
 - a maximal connected subgraph of G containing exactly k bridges
 - lacktriangle the merging of k+1 bridgeless islands and their connecting bridges

- ► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;
- ► Idea of proof:
 - Redundant states and transitions can merge existing islands and create new ones;
- ▶ a k-bridge island in G:
 - a maximal connected subgraph of G containing exactly k bridges
 - ▶ the merging of k + 1 bridgeless islands and their connecting bridges
- ▶ We can explicitly specify which islands we want:
 - a) Explicitly describe which states form which islands,

- ► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;
- ► Idea of proof:
 - Redundant states and transitions can merge existing islands and create new ones;
- ▶ a k-bridge island in G:
 - a maximal connected subgraph of G containing exactly k bridges
 - ▶ the merging of k + 1 bridgeless islands and their connecting bridges
- ▶ We can explicitly specify which islands we want:
 - a) Explicitly describe which states form which islands,
 - b) Select the bridges that will actually divide islands;

- ► For any integers *m*, *n*, a GFA with *m* bridges can be converted into an equivalent GFA with *n* bridges;
- ► Idea of proof:
 - Redundant states and transitions can merge existing islands and create new ones;
- ▶ a k-bridge island in G:
 - a maximal connected subgraph of G containing exactly k bridges
 - bridges the merging of k + 1 bridgeless islands and their connecting bridges
- ▶ We can explicitly specify which islands we want:
 - a) Explicitly describe which states form which islands,
 - b) Select the bridges that will actually divide islands;
 - (a_{n-1}^b) ways to select *n* islands in a GFA with *b* bridges.

n-Island GFA

- ► An *n*-island GFA (*n*-IGFA) is:
 - ▶ A GFA M (with at least n-1 bridges),
 - Along with a set Γ of selected bridges;

n-Island GFA

- ► An *n*-island GFA (*n*-IGFA) is:
 - ▶ A GFA M (with at least n-1 bridges),
 - Along with a set Γ of selected bridges;
- ▶ Let L(GFA_n) denote the class of languages accepted by n-IGFA;
- ▶ $\mathcal{L}(\mathbf{GFA}_n) = \mathbf{REG}$ for any $n \ge 1$;

n-Island GFA

- An n-island GFA (n-IGFA) is:
 - ▶ A GFA M (with at least n-1 bridges),
 - Along with a set Γ of selected bridges;
- ▶ Let L(GFA_n) denote the class of languages accepted by n-IGFA;
- ▶ $\mathcal{L}(\mathbf{GFA}_n) = \mathbf{REG}$ for any $n \ge 1$;
- Sketch of proof:
 - 1. *n*-IGFA are special cases of GFA;
 - 2. A GFA along with $\Gamma = \emptyset$ is a 1-IGFA;
 - 3. An *n*-IGFA can be transformed into an equivalent *m*-IGFA.

► An *n*-IGFA accepts the same language as the underlying GFA...

- ► An *n*-IGFA accepts the same language as the underlying GFA...
- ...unless we add an additional constraint to their computation:

- ➤ An n-IGFA accepts the same language as the underlying GFA...
- ... unless we add an additional constraint to their computation:
- A computation of an n-IGFA is even if the same number of steps is taken in each island.

Even Computations: Example (1/2)

Note: ε denotes the *empty string*;

Even Computations: Example (1/2)

- Note: ε denotes the *empty string*;
- ▶ The language accepted by this automaton is

$$L(M) = \{a^i b^j c^k \mid i, j, k \ge 0\};$$

Even Computations: Example (1/2)

- Note: ε denotes the *empty string*;
- Let us consider islands defined by the bridges $\Gamma = \{(s, q), (q, f)\}$:

Even Computations: Example (1/2)

- Note: ε denotes the *empty string*;
- Let us consider islands defined by the bridges $\Gamma = \{(s, q), (q, f)\}$:
- The language accepted by this automaton by even computations with regard to Γ is

$$L_e(M,\Gamma) = \{a^n b^n c^n \mid n \ge 0\};$$

▶ $L_e(M,\Gamma) \in \mathbf{CS} \setminus \mathbf{CF}$.

Accepting Power: *n*-PRLG

▶ Let $\mathcal{L}_e(\mathbf{GFA}_n)$ denote the class of languages accepted by $n\text{-}\mathsf{IGFA}$ by even computations;

Accepting Power: *n*-PRLG

- ▶ Let L_e(**GFA**_n) denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to n-parallel right linear grammars (n-PRLG):
 - \triangleright $(N, \Sigma, P, S);$
 - P contains rules of the forms:
 - a) $S \to x$, where $x \in \Sigma^*$,
 - b) $S \rightarrow A_1 \cdots A_n$, where $A_i \in N$,
 - c) $A \rightarrow xB$, where $A, B \in N \setminus \{S\}, x \in \Sigma^*$,
 - d) $A \rightarrow x$, where $A \in N \setminus \{S\}, x \in \Sigma^*$;
 - All nonterminals rewritten at once;

Accepting Power: *n*-PRLG

- ▶ Let L_e(**GFA**_n) denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to n-parallel right linear grammars (n-PRLG):
 - \triangleright $(N, \Sigma, P, S);$
 - P contains rules of the forms:
 - a) $S \to x$, where $x \in \Sigma^*$,
 - b) $S \rightarrow A_1 \cdots A_n$, where $A_i \in N$,
 - c) $A \rightarrow xB$, where $A, B \in N \setminus \{S\}, x \in \Sigma^*$,
 - d) $A \rightarrow x$, where $A \in N \setminus \{S\}, x \in \Sigma^*$;
 - ► All nonterminals rewritten at once;
- We denote the class of languages generated by n-PRLGs by PRL_n.

n-PRLG: Example

- $ightharpoonup G = (\{S, A, B\}, \{a, b\}, P, S),$
- P contains the following rules:
 - \triangleright $S \rightarrow AB \mid BA$,
 - ightharpoonup $A o aA \mid \varepsilon$,
 - ▶ $B \rightarrow bB \mid \varepsilon$;

n-PRLG: Example

- $ightharpoonup G = (\{S, A, B\}, \{a, b\}, P, S),$
- P contains the following rules:
 - $ightharpoonup S
 ightharpoonup AB \mid BA$,
 - $ightharpoonup A
 ightharpoonup aA \mid \varepsilon$,
 - ▶ $B \rightarrow bB \mid \varepsilon$;
- G is a 2-PRLG;

n-PRLG: Example

- $ightharpoonup G = (\{S, A, B\}, \{a, b\}, P, S),$
- P contains the following rules:
 - \triangleright $S \rightarrow AB \mid BA$,
 - $ightharpoonup A
 ightharpoonup aA \mid \varepsilon$,
 - ▶ $B \rightarrow bB \mid \varepsilon$;
- G is a 2-PRLG;
- ► $L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$

Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - $ightharpoonup Q_i$ denote its set of states,
 - s_i its entry state, and
 - f_j its exit state;

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - $ightharpoonup Q_i$ denote its set of states,
 - s_i its entry state, and
 - f_j its exit state;
- ► Construct the grammar $G = (Q \cup \{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P = P_s \cup P_i \cup P_f$ where:

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - $ightharpoonup Q_i$ denote its set of states,
 - s_j its entry state, and
 - f_j its exit state;
- ► Construct the grammar $G = (Q \cup \{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P = P_s \cup P_i \cup P_f$ where:
 - $P_s = \{S \to s_1 \cdots s_n\},\$

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - Q_j denote its set of states,
 - s_j its entry state, and
 - f_j its exit state;
- ► Construct the grammar $G = (Q \cup \{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P = P_s \cup P_i \cup P_f$ where:
 - $P_s = \{S \to s_1 \cdots s_n\},\$
 - $P_i = \{p \to xq \mid (px \to q) \in R \text{ and } p, q \in Q_j \text{ for some } 1 \le j \le n\},$

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - $ightharpoonup Q_i$ denote its set of states,
 - s_j its entry state, and
 - f_j its exit state;
- ► Construct the grammar $G = (Q \cup \{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P = P_s \cup P_i \cup P_f$ where:
 - $P_s = \{S \to s_1 \cdots s_n\},\$
 - ▶ $P_i = \{p \rightarrow xq \mid (px \rightarrow q) \in R \text{ and } p, q \in Q_j \text{ for some } 1 \leq j \leq n\},$
 - $P_f = \{f_j \to x | (f_j x \to s_{j+1}) \in R \text{ for some } 1 \le j < n\} \cup \{f \to \varepsilon\};$

- Let $M = (Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
 - Q_i denote its set of states,
 - s_j its entry state, and
 - f_j its exit state;
- ► Construct the grammar $G = (Q \cup \{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P = P_s \cup P_i \cup P_f$ where:
 - $P_s = \{S \to s_1 \cdots s_n\},\$
 - ▶ $P_i = \{p \rightarrow xq \mid (px \rightarrow q) \in R \text{ and } p, q \in Q_j \text{ for some } 1 \leq j \leq n\},$
 - $P_f = \{f_j \to x | (f_j x \to s_{j+1}) \in R \text{ for some } 1 \le j < n\} \cup \{f \to \varepsilon\};$
- $ightharpoonup L(G) = L_e(M, \Gamma).$

➤ The converse direction is considerably harder to prove; consider the grammar from before:

- ➤ The converse direction is considerably harder to prove; consider the grammar from before:
- \triangleright $G = (\{S, A, B\}, \{a, b\}, P, S),$
- ▶ *P* contains the following rules:
 - \triangleright $S \rightarrow AB \mid BA$
 - ightharpoonup $A o aA \mid \varepsilon$
 - ▶ $B \rightarrow bB \mid \varepsilon$
- ► $L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$

- ➤ The converse direction is considerably harder to prove; consider the grammar from before:
- $ightharpoonup G = (\{S, A, B\}, \{a, b\}, P, S),$
- P contains the following rules:
 - $ightharpoonup S
 ightarrow AB \mid BA$
 - $ightharpoonup A
 ightharpoonup aA \mid \varepsilon$
 - ▶ $B \rightarrow bB \mid \varepsilon$
- $L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$
- ▶ We can easily form components to accept substrings of the forms aⁿ or bⁿ in each island, and even computations will ensure equal length;

- ➤ The converse direction is considerably harder to prove; consider the grammar from before:
- \triangleright $G = (\{S, A, B\}, \{a, b\}, P, S),$
- P contains the following rules:
 - $ightharpoonup S
 ightarrow AB \mid BA$
 - $ightharpoonup A
 ightharpoonup aA \mid \varepsilon$
 - ▶ $B \rightarrow bB \mid \varepsilon$
- $L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$
- ▶ We can easily form components to accept substrings of the forms aⁿ or bⁿ in each island, and even computations will ensure equal length;
- ► How do we ensure that the aⁿ component in the first island will only work with the bⁿ component in the second island and vice versa?

- ➤ The converse direction is considerably harder to prove; consider the grammar from before:
- \triangleright $G = (\{S, A, B\}, \{a, b\}, P, S),$
- ▶ *P* contains the following rules:
 - $ightharpoonup S
 ightarrow AB \mid BA$
 - $ightharpoonup A
 ightharpoonup aA \mid \varepsilon$
 - ▶ $B \rightarrow bB \mid \varepsilon$
- $L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$
- ▶ We can easily form components to accept substrings of the forms aⁿ or bⁿ in each island, and even computations will ensure equal length;
- ► How do we ensure that the aⁿ component in the first island will only work with the bⁿ component in the second island and vice versa?
- ▶ In general, how do we deal with different initial rules of an n-PRI G?

Proof: $\mathbf{PRL}_n \subseteq \mathcal{L}_e(\mathbf{GFA}_n)$ – An Example Solution

► The trick is to encode the form of the accepted string in the number of steps in each island;

Proof: $\mathbf{PRL}_n \subseteq \mathcal{L}_e(\mathbf{GFA}_n)$ – An Example Solution

- ► The trick is to encode the form of the accepted string in the number of steps in each island;
- For example, an odd number for the form $a^n b^n$, and an even number for the form $b^n a^n$:

Proof: $\mathbf{PRL}_n \subseteq \mathcal{L}_e(\mathbf{GFA}_n)$ – An Example Solution

- ► The trick is to encode the form of the accepted string in the number of steps in each island;
- For example, an odd number for the form $a^n b^n$, and an even number for the form $b^n a^n$:

Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$;

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$:
- ► The automaton constructed will contain the following kinds of rules:

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$;
- ► The automaton constructed will contain the following kinds of rules:
 - ▶ Rules to generate a remainder (at the start of each island),

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$;
- ► The automaton constructed will contain the following kinds of rules:
 - Rules to generate a remainder (at the start of each island),
 - Rules to pair a given remainder with the corresponding computation within each island,

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$;
- ► The automaton constructed will contain the following kinds of rules:
 - Rules to generate a remainder (at the start of each island),
 - Rules to pair a given remainder with the corresponding computation within each island,
 - ▶ Rules to simulate grammar rules of the form $A \to xB$ and $A \to x$, $A, B \in N$, $x \in \Sigma^*$, along with ε -rules ensuring that each rule is simulated in exactly m+1 steps,

- Let m be the number of starting production rules of the input grammar of the form $S \to A_1 \cdots A_n$;
- Associate each of these starting rules with a remainder modulo m+1 with the remainder 0 reserved for starting rules of the form $S \to x$, $x \in \Sigma^*$;
- ► The automaton constructed will contain the following kinds of rules:
 - Rules to generate a remainder (at the start of each island),
 - Rules to pair a given remainder with the corresponding computation within each island,
 - ▶ Rules to simulate grammar rules of the form $A \to xB$ and $A \to x$, $A, B \in N$, $x \in \Sigma^*$, along with ε -rules ensuring that each rule is simulated in exactly m+1 steps,
 - Bridge rules.

Corollary: $PRL_n = \mathcal{L}_e(GFA_n)$

- ightharpoonup PRL_n = $\mathcal{L}_e(\mathbf{GFA}_n)$
- ► Proof: See previous slides

► The following is known about the accepting power of n-PRLGs:

- The following is known about the accepting power of n-PRLGs:
- ▶ $REG = PRL_1 \subset PRL_k \subset PRL_{k+1} \subset CS$ for any k > 1;
- ▶ $PRL_2 \subset CF$;
- ▶ $PRL_n \not\subseteq CF$, $CF \not\subseteq PRL_n$, $n \ge 3$;

- The following is known about the accepting power of n-PRLGs:
- ▶ $REG = PRL_1 \subset PRL_k \subset PRL_{k+1} \subset CS$ for any k > 1;
- ▶ $PRL_2 \subset CF$;
- ▶ $PRL_n \not\subseteq CF$, $CF \not\subseteq PRL_n$, $n \ge 3$;
- ▶ Finally, $\mathbf{PRL}_n = \mathcal{L}_e(\mathbf{GFA}_n)$ for all $n \geq 1$.

Accepting Power: Summary

- \triangleright $\mathcal{L}_e(\mathbf{GFA}_n)$ equivalent to languages generated by n-PRLGs:
 - An infinite hierarchy between REG and CS;
 - For $n \ge 3$ incomparable with **CF**.
- ► For compactness, \mathbf{EI}_n will denote $\mathcal{L}_e(\mathbf{GFA}_n)$ in the following diagram:

