Multi-Island Finite Automata and Their Even Computation

Martin Tomko
paper co-authored with:
Dušan Kolář, Alexander Meduna
Faculty of Information Technology, BUT

December 10, 2019

Table of contents

Finite Automata

Bridges and Islands

Islands in Automata

Even Computations

Accepting Power

Finite Automata

Finite Automata: Example, Graphical Representation

The GFA

$$
M=(\{s, q, f\},\{a, b\},\{s a \rightarrow q, q a \rightarrow q, q b \rightarrow f, f b \rightarrow b\}, s, f)
$$

can be represented as:

The language accepted by this automaton is

$$
L(M)=\left\{a^{n} b^{m} \mid n, m \geq 1\right\}
$$

Finite Automata: Definition

A generalized finite automaton (GFA) is a 5-tuple $M=(Q, \Sigma, R, s, f)$, where

- Q - a finite set of states,
- Σ-a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^{*} \times Q$ - a finite set of production rules:
- $(p, w, q) \in R$ written as $p w \rightarrow q$,
- $s \in Q$ - the initial state,
- $f \in Q$ - the final state.

Finite Automata: Definition

A generalized finite automaton (GFA) is a 5-tuple $M=(Q, \Sigma, R, s, f)$, where

- Q - a finite set of states,
- Σ-a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^{*} \times Q$ - a finite set of production rules:
- $(p, w, q) \in R$ written as $p w \rightarrow q$,
- $s \in Q$ - the initial state,
- $f \in Q$ - the final state.

Note these peculiarities:

- The model is non-deterministic;

Finite Automata: Definition

A generalized finite automaton (GFA) is a 5-tuple $M=(Q, \Sigma, R, s, f)$, where

- Q - a finite set of states,
- Σ-a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^{*} \times Q$ - a finite set of production rules:
- $(p, w, q) \in R$ written as $p w \rightarrow q$,
- $s \in Q$ - the initial state,
- $f \in Q$ - the final state.

Note these peculiarities:

- The model is non-deterministic;
- The production rules allow reading entire strings;

Finite Automata: Definition

A generalized finite automaton (GFA) is a 5-tuple $M=(Q, \Sigma, R, s, f)$, where

- Q - a finite set of states,
- Σ - a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^{*} \times Q$ - a finite set of production rules:
- $(p, w, q) \in R$ written as $p w \rightarrow q$,
- $s \in Q$ - the initial state,
- $f \in Q$ - the final state.

Note these peculiarities:

- The model is non-deterministic;
- The production rules allow reading entire strings;
- There is only a single final state.

Transition Graph of a GFA

An edge-labelled directed graph $G=(V, E, W)$, where:

- $V=Q$,

Transition Graph of a GFA

An edge-labelled directed graph $G=(V, E, W)$, where:

- $V=Q$,
- $E=\left\{(u, v) \in Q \times Q \mid \exists w \in \Sigma^{*}:(u w \rightarrow v) \in R\right\}$,

Transition Graph of a GFA

An edge-labelled directed graph $G=(V, E, W)$, where:

- $V=Q$,
- $E=\left\{(u, v) \in Q \times Q \mid \exists w \in \Sigma^{*}:(u w \rightarrow v) \in R\right\}$,
- $W:(u, v) \mapsto\left\{w \in \Sigma^{*} \mid(u w \rightarrow v) \in R\right\}$.

Transition Graph of a GFA

An edge-labelled directed graph $G=(V, E, W)$, where:

- $V=Q$,
- $E=\left\{(u, v) \in Q \times Q \mid \exists w \in \Sigma^{*}:(u w \rightarrow v) \in R\right\}$,
- $W:(u, v) \mapsto\left\{w \in \Sigma^{*} \mid(u w \rightarrow v) \in R\right\}$.

- $V=\{s, q, f\}$,
- $E=\{(s, q),(q, q),(q, f),(f, f)\}$,
- $W(s, q)=\{a\}$,
- $W(q, q)=\{a\}$,
- $W(q, f)=\{b\}$,
- $W(f, f)=\{b\}$

Bridges and Islands

Connected graph

Connected graph: Any two nodes are connected by an undirected path.

Disconnected graph

Connected graph: Any two nodes are connected by an undirected path.

Bridge
Bridge: an edge such that when it is removed, the graph is no longer connected.

Island

A bridgeless island $=$ a maximal bridgeless connected component

Every node and edge is either a bridge or contained in exactly one bridgeless island.

Islands in Automata

Islands in Automata: The Structure

- A state is useful if it occurs on some path from s to f;
- Otherwise, it is useless;

Islands in Automata: The Structure

- A state is useful if it occurs on some path from s to f;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$
I_{1} \longrightarrow I_{2} \longrightarrow \cdots \longrightarrow I_{n}
$$

Islands in Automata: The Structure

- A state is useful if it occurs on some path from s to f;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$
I_{1} \longrightarrow I_{2} \longrightarrow \cdots \longrightarrow I_{n}
$$

- Sketch of Proof:

1. Think of an "island graph" - the nodes are islands, the edges are bridges;
2. This graph is necessarily a tree;
3. There must be exactly one path between I_{s} and I_{f};
4. All states are useful, so all islands must lie on this path.

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
- Redundant states and transitions can merge existing islands and create new ones;

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
- Redundant states and transitions can merge existing islands and create new ones;
- a k-bridge island in G :
- a maximal connected subgraph of G containing exactly k bridges
- the merging of $k+1$ bridgeless islands and their connecting bridges

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
- Redundant states and transitions can merge existing islands and create new ones;
- a k-bridge island in G :
- a maximal connected subgraph of G containing exactly k bridges
- the merging of $k+1$ bridgeless islands and their connecting bridges
- We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
- Redundant states and transitions can merge existing islands and create new ones;
- a k-bridge island in G :
- a maximal connected subgraph of G containing exactly k bridges
- the merging of $k+1$ bridgeless islands and their connecting bridges
- We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,
b) Select the bridges that will actually divide islands;

Islands in Automata: Modifications

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
- Redundant states and transitions can merge existing islands and create new ones;
- a k-bridge island in G :
- a maximal connected subgraph of G containing exactly k bridges
- the merging of $k+1$ bridgeless islands and their connecting bridges
- We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,
b) Select the bridges that will actually divide islands;
- ($\left.\begin{array}{c}b \\ n-1\end{array}\right)$ ways to select n islands in a GFA with b bridges.

n-Island GFA

- An n-island GFA (n-IGFA) is:
- A GFA M (with at least $n-1$ bridges),
- Along with a set Γ of selected bridges;

n-Island GFA

- An n-island GFA (n-IGFA) is:
- A GFA M (with at least $n-1$ bridges),
- Along with a set Γ of selected bridges;
- Let $\mathcal{L}\left(G F A_{n}\right)$ denote the class of languages accepted by n-IGFA;
- $\mathcal{L}\left(\mathbf{G F A}_{n}\right)=$ REG for any $n \geq 1$;

n-Island GFA

- An n-island GFA (n-IGFA) is:
- A GFA M (with at least $n-1$ bridges),
- Along with a set Γ of selected bridges;
- Let $\mathcal{L}\left(G F A_{n}\right)$ denote the class of languages accepted by n-IGFA;
- $\mathcal{L}\left(\mathbf{G F A}_{n}\right)=$ REG for any $n \geq 1$;
- Sketch of proof:

1. n-IGFA are special cases of GFA;
2. A GFA along with $\Gamma=\emptyset$ is a 1-IGFA;
3. An n-IGFA can be transformed into an equivalent m-IGFA.

Even Computations

Even Computations

- An n-IGFA accepts the same language as the underlying GFA. . .

Even Computations

- An n-IGFA accepts the same language as the underlying GFA. . .
- ... unless we add an additional constraint to their computation:

Even Computations

- An n-IGFA accepts the same language as the underlying GFA. . .
- . . . unless we add an additional constraint to their computation:
- A computation of an n-IGFA is even if the same number of steps is taken in each island.

Even Computations: Example (1/2)

- Note: ε denotes the empty string;

Even Computations: Example (1/2)

- Note: ε denotes the empty string;
- The language accepted by this automaton is

$$
L(M)=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right\}
$$

Even Computations: Example (1/2)

- Note: ε denotes the empty string;
- Let us consider islands defined by the bridges $\Gamma=\{(s, q),(q, f)\}:$

Even Computations: Example (1/2)

- Note: ε denotes the empty string;
- Let us consider islands defined by the bridges $\Gamma=\{(s, q),(q, f)\}$:
- The language accepted by this automaton by even computations with regard to Γ is

$$
L_{e}(M, \Gamma)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- $L_{e}(M, \Gamma) \in \mathbf{C S} \backslash \mathbf{C F}$.

Accepting Power

Accepting Power: n-PRLG

- Let $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ denote the class of languages accepted by n-IGFA by even computations;

Accepting Power: n-PRLG

- Let $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to n-parallel right linear grammars (n-PRLG):
- (N, Σ, P, S);
- P contains rules of the forms:
a) $S \rightarrow x$, where $x \in \Sigma^{*}$,
b) $S \rightarrow A_{1} \cdots A_{n}$, where $A_{i} \in N$,
c) $A \rightarrow x B$, where $A, B \in N \backslash\{S\}, x \in \Sigma^{*}$,
d) $A \rightarrow x$, where $A \in N \backslash\{S\}, x \in \Sigma^{*}$;
- All nonterminals rewritten at once;

Accepting Power: n-PRLG

- Let $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to n-parallel right linear grammars (n-PRLG):
- (N, Σ, P, S);
- P contains rules of the forms:
a) $S \rightarrow x$, where $x \in \Sigma^{*}$,
b) $S \rightarrow A_{1} \cdots A_{n}$, where $A_{i} \in N$,
c) $A \rightarrow x B$, where $A, B \in N \backslash\{S\}, x \in \Sigma^{*}$,
d) $A \rightarrow x$, where $A \in N \backslash\{S\}, x \in \Sigma^{*}$;
- All nonterminals rewritten at once;
- We denote the class of languages generated by n-PRLGs by $\mathbf{P R L}_{n}$.

n-PRLG: Example

- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$,
- $A \rightarrow a A \mid \varepsilon$,
- $B \rightarrow b B \mid \varepsilon$;

n-PRLG: Example

- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$,
- $A \rightarrow a A \mid \varepsilon$,
- $B \rightarrow b B \mid \varepsilon$;
- G is a 2-PRLG;

n-PRLG: Example

- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$,
- $A \rightarrow a A \mid \varepsilon$,
- $B \rightarrow b B \mid \varepsilon$;
- G is a 2-PRLG;
- $L(G)=\left\{a^{n} b^{n}, b^{n} a^{n} \mid n \geq 0\right\}$

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P} \mathbf{R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;
- Construct the grammar $G=(Q \cup\{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P=P_{s} \cup P_{i} \cup P_{f}$ where:

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P} \mathbf{R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;
- Construct the grammar $G=(Q \cup\{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P=P_{s} \cup P_{i} \cup P_{f}$ where:
- $P_{s}=\left\{S \rightarrow s_{1} \cdots s_{n}\right\}$,

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P} \mathbf{R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;
- Construct the grammar $G=(Q \cup\{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P=P_{s} \cup P_{i} \cup P_{f}$ where:
- $P_{s}=\left\{S \rightarrow s_{1} \cdots s_{n}\right\}$,
- $P_{i}=\left\{p \rightarrow x q \mid(p x \rightarrow q) \in R\right.$ and $p, q \in Q_{j}$ for some $1 \leq j \leq$ $n\}$,

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P} \mathbf{R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;
- Construct the grammar $G=(Q \cup\{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P=P_{s} \cup P_{i} \cup P_{f}$ where:
- $P_{s}=\left\{S \rightarrow s_{1} \cdots s_{n}\right\}$,
- $P_{i}=\left\{p \rightarrow x q \mid(p x \rightarrow q) \in R\right.$ and $p, q \in Q_{j}$ for some $1 \leq j \leq$ $n\}$,
- $P_{f}=\left\{f_{j} \rightarrow x \mid\left(f_{j} x \rightarrow s_{j+1}\right) \in R\right.$ for some $\left.1 \leq j<n\right\} \cup\{f \rightarrow \varepsilon\} ;$

Proof: $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right) \subseteq \mathbf{P} \mathbf{R L}_{n}$

- Let $M=(Q, \Sigma, R, s, f)$ be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
- Q_{j} denote its set of states,
- s_{j} its entry state, and
- f_{j} its exit state;
- Construct the grammar $G=(Q \cup\{S\}, \Sigma, P, S)$ where $S \notin Q \cup \Sigma$ and $P=P_{s} \cup P_{i} \cup P_{f}$ where:
- $P_{s}=\left\{S \rightarrow s_{1} \cdots s_{n}\right\}$,
- $P_{i}=\left\{p \rightarrow x q \mid(p x \rightarrow q) \in R\right.$ and $p, q \in Q_{j}$ for some $1 \leq j \leq$ $n\}$,
- $P_{f}=\left\{f_{j} \rightarrow x \mid\left(f_{j} x \rightarrow s_{j+1}\right) \in R\right.$ for some $\left.1 \leq j<n\right\} \cup\{f \rightarrow \varepsilon\} ;$
- $L(G)=L_{e}(M, \Gamma)$.

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - The Problem

- The converse direction is considerably harder to prove; consider the grammar from before:

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - The Problem

- The converse direction is considerably harder to prove; consider the grammar from before:
- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$
- $A \rightarrow a A \mid \varepsilon$
- $B \rightarrow b B \mid \varepsilon$
- $L(G)=\left\{a^{n} b^{n}, b^{n} a^{n} \mid n \geq 0\right\}$

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - The Problem

- The converse direction is considerably harder to prove; consider the grammar from before:
- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$
- $A \rightarrow a A \mid \varepsilon$
- $B \rightarrow b B \mid \varepsilon$
- $L(G)=\left\{a^{n} b^{n}, b^{n} a^{n} \mid n \geq 0\right\}$
- We can easily form components to accept substrings of the forms a^{n} or b^{n} in each island, and even computations will ensure equal length;

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - The Problem

- The converse direction is considerably harder to prove; consider the grammar from before:
- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$
- $A \rightarrow a A \mid \varepsilon$
- $B \rightarrow b B \mid \varepsilon$
- $L(G)=\left\{a^{n} b^{n}, b^{n} a^{n} \mid n \geq 0\right\}$
- We can easily form components to accept substrings of the forms a^{n} or b^{n} in each island, and even computations will ensure equal length;
- How do we ensure that the a^{n} component in the first island will only work with the b^{n} component in the second island and vice versa?

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - The Problem

- The converse direction is considerably harder to prove; consider the grammar from before:
- $G=(\{S, A, B\},\{a, b\}, P, S)$,
- P contains the following rules:
- $S \rightarrow A B \mid B A$
- $A \rightarrow a A \mid \varepsilon$
- $B \rightarrow b B \mid \varepsilon$
- $L(G)=\left\{a^{n} b^{n}, b^{n} a^{n} \mid n \geq 0\right\}$
- We can easily form components to accept substrings of the forms a^{n} or b^{n} in each island, and even computations will ensure equal length;
- How do we ensure that the a^{n} component in the first island will only work with the b^{n} component in the second island and vice versa?
- In general, how do we deal with different initial rules of an n-PRLG?

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - An Example Solution

- The trick is to encode the form of the accepted string in the number of steps in each island;

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - An Example Solution

- The trick is to encode the form of the accepted string in the number of steps in each island;
- For example, an odd number for the form $a^{n} b^{n}$, and an even number for the form $b^{n} a^{n}$:

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - An Example Solution

- The trick is to encode the form of the accepted string in the number of steps in each island;
- For example, an odd number for the form $a^{n} b^{n}$, and an even number for the form $b^{n} a^{n}$:

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;
- The automaton constructed will contain the following kinds of rules:

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;
- The automaton constructed will contain the following kinds of rules:
- Rules to generate a remainder (at the start of each island),

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;
- The automaton constructed will contain the following kinds of rules:
- Rules to generate a remainder (at the start of each island),
- Rules to pair a given remainder with the corresponding computation within each island,

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;
- The automaton constructed will contain the following kinds of rules:
- Rules to generate a remainder (at the start of each island),
- Rules to pair a given remainder with the corresponding computation within each island,
- Rules to simulate grammar rules of the form $A \rightarrow x B$ and $A \rightarrow x, A, B \in N, x \in \Sigma^{*}$, along with ε-rules ensuring that each rule is simulated in exactly $m+1$ steps,

Proof: $\mathbf{P R L}_{n} \subseteq \mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ - A Sketch of the General Case

- Let m be the number of starting production rules of the input grammar of the form $S \rightarrow A_{1} \cdots A_{n}$;
- Associate each of these starting rules with a remainder modulo $m+1$ with the remainder 0 reserved for starting rules of the form $S \rightarrow x, x \in \Sigma^{*}$;
- The automaton constructed will contain the following kinds of rules:
- Rules to generate a remainder (at the start of each island),
- Rules to pair a given remainder with the corresponding computation within each island,
- Rules to simulate grammar rules of the form $A \rightarrow x B$ and $A \rightarrow x, A, B \in N, x \in \Sigma^{*}$, along with ε-rules ensuring that each rule is simulated in exactly $m+1$ steps,
- Bridge rules.

Corollary: $\mathbf{P R L}_{n}=\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$

- $\mathbf{P R L}_{n}=\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$
- Proof: See previous slides

Accepting Power

- The following is known about the accepting power of n-PRLGs:

Accepting Power

- The following is known about the accepting power of n-PRLGs:
$-\mathbf{R E G}=\mathbf{P} \mathbf{R L}_{1} \subset \mathbf{P R L}_{k} \subset \mathbf{P R L}_{k+1} \subset \mathbf{C S}$ for any $k>1$;
- $\mathrm{PRL}_{2} \subset \mathbf{C F}$;
- $\mathbf{P R L}_{n} \nsubseteq \mathbf{C F}, \mathbf{C F} \nsubseteq \mathbf{P R L}_{n}, n \geq 3$;

Accepting Power

- The following is known about the accepting power of n-PRLGs:
- $\mathbf{R E G}=\mathbf{P} \mathbf{R L}_{1} \subset \mathbf{P R L}_{k} \subset \mathbf{P} \mathbf{R L}_{k+1} \subset \mathbf{C S}$ for any $k>1$;
- $\mathrm{PRL}_{2} \subset \mathrm{CF}$;
- $\mathbf{P R L}_{n} \nsubseteq \mathbf{C F}, \mathbf{C F} \nsubseteq \mathbf{P R L}_{n}, n \geq 3$;
- Finally, $\mathbf{P R L}_{n}=\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ for all $n \geq 1$.

Accepting Power: Summary

$-\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ equivalent to languages generated by n-PRLGs:

- An infinite hierarchy between REG and CS;
- For $n \geq 3$ incomparable with CF.
- For compactness, $\mathbf{E I}_{n}$ will denote $\mathcal{L}_{e}\left(\mathbf{G F A}_{n}\right)$ in the following diagram:

