Commutative Grammars and Permutation Grammars

Martin Tomko

Faculty of Information Technology, BUT
December 9, 2019

Table of contents

Motivation: Jumping Automata

Basic Terminology

Commutative Grammars: Definition

Permutation Grammars

Motivation: Jumping Automata

Jumping Finite Automata

- $M=(Q, \Sigma, R, s, F)$ - all with the same meaning as an ordinary finite automaton;
- The jumping relation:

$$
x p a z \curvearrowright M x^{\prime} q z^{\prime}
$$

where $p a \rightarrow q \in R$ and $x z=x^{\prime} z^{\prime}$;

- $L(M)=\left\{u v \mid u, v \in \Sigma^{*}, u s v \curvearrowright_{M}^{*} f, f \in F\right\}$;
- The order of symbols in the input string essentially does not matter. ${ }^{1}$

[^0]Basic Terminology

Bags

- Informally: unordered strings;
- Formally, a bag over an alphabet V is a finite multiset of elements in V;
- The set of all bags over V is denoted by ${ }^{*} V$;
- The empty bag is denoted by $\varepsilon,{ }^{+} V={ }^{*} V \backslash\{\varepsilon\}$
- ${ }^{*} V$ can be defined as the free commutative monoid generated by V;
- Let $V=\left\{a_{1}, \ldots, a_{k}\right\}$. Any $w \in{ }^{*} V$ can be written as

$$
w=a_{1}^{i_{1}} \cdots a_{k}^{i_{k}}
$$

where $i_{j} \in \mathbb{N}_{0}$ for $1 \leq j \leq k$

Parikh Mapping

- A function that maps a string to the number of occurences of each symbol;
- Let $V=\left\{a_{1}, \ldots, a_{k}\right\}$, where $k=|V|$:
- $\Psi_{V}: V^{*} \rightarrow \mathbb{N}_{0}^{k}$
- $\Psi_{V}(w)=\left(\# a_{a_{1}}(w), \ldots, \#_{a_{k}}(w)\right)$
- The subscript V can be omitted when not necessary.
- Can also be defined for bags: $\Psi\left(a_{1}^{i_{1}} \cdots a_{k}^{i_{k}}\right)=\left(i_{1}, \ldots, i_{k}\right)^{2}$
- Can be generalized to sets of strings / bags
- Can also be defined as $\Psi: V^{*} \rightarrow^{*} V$

[^1]Commutative Grammars: Definition

Commutative Grammars

- A commutative grammar is a 4-tuple $G^{c}=\left(N, T, S, P^{c}\right)$ where
- N, T are disjoint finite alphabets, $V=N \cup T$,
- $S \in N$ is a start symbol,
- $P^{c} \subseteq{ }^{+} N \times^{*} V$ is a finite set of production rules;
- $L\left(G^{c}\right)=\left\{w \in{ }^{*} T \mid S \Rightarrow_{G^{c}}^{*} w\right\}$
- A commutative grammar G^{c} is
- of type 0 with no additional restrictions on P^{c},
- context-sensitive if $\alpha \rightarrow \beta \in P^{c}$ implies $|\alpha| \leq|\beta|$,
- context-free if $P^{c} \subseteq N \times{ }^{*} V$,
- regular if $P^{c} \subseteq N \times{ }^{*} T(N \cup\{\varepsilon\})$.

Comparing bags and strings: Ψ-equivalence

- Let G be a phrase-structure grammar and G^{c} a commutative grammar;
- G and G^{c} are ψ-equivalent iff

$$
\Psi(L(G))=\Psi\left(L\left(G^{c}\right)\right)
$$

- Given $G=(N, T, S, P)$ and $G^{c}=\left(N, T, S, P^{c}\right)$, and for each $\alpha \rightarrow \beta \in P^{c}$ a rule $u \rightarrow v \in P$ such that $\Psi(\alpha)=\Psi(u)$ and $\Psi(\beta)=\Psi(v)$ does not imply that the grammars are Ψ-equivalent;
- Counterexample: Consider the rules $\{S \rightarrow B a C, B C \rightarrow b\}$
- The implication does hold for context-free grammars.

Related models: Petri nets

- Petri nets - a bag can represent the marking of a Petri net:
- Each nonterminal represents a place
- Each production rule represents a transition

Image source: Wikimedia Commons

Related models: vector addition systems

- An n-dimensional vector addition system is a pair (r, W), where
- $r \in \mathbb{N}_{0}^{n}$ is a vector of nonnegative integers,
- $W \subseteq \mathbb{Z}^{n}$ is a finite set of integer vectors.
- The set $R(r, W)$ of reachable states:
- Vectors of the form $r+\sum_{i=1}^{q} c_{i}, c_{i} \in W$, such that
$-r+\sum_{i=1}^{k} c_{i} \in \mathbb{N}_{0}^{n}$ for all $1 \leq k \leq q$

Relation to Matrix Grammars

- For any commutative grammar G^{c}, there exists a ψ-equivalent matrix grammar G, and conversely.

Permutation Grammars

Permutation Grammars: Definition

- A permutation grammar is a grammar $G=(N, \Sigma, P, S)$, where for each $r \in P$:
a) r is a context-free rule $r: A \rightarrow \gamma$,
b) r is a permutation rule $r: \alpha \rightarrow \beta$ where $\Psi(\alpha)=\Psi(\beta), \alpha \neq \beta$;
- $\mathrm{L}(\mathrm{G})$ is called a permutation language;
- The class of all permutation languages is denoted by Perm;
- Clearly, CF \subseteq Perm $\subseteq \mathbf{C S}$.

Basis Language

- Let $G=(N, \Sigma, P \cup R, S)$ be a permutation grammar, where
- P only contains context-free rules,
- R only contains permutation rules;
- Let $L=L(G), G^{\prime}=(N, \Sigma, P, S)$;
- Then $L^{B}=L\left(G^{\prime}\right)$ is a basis language of L wrt. G;
- The languages L and L^{B} are Ψ-equivalent.

Permutation languages: Example

- $L_{1}=\left(w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\# c(w)\right)$
- $L_{1}=L\left(G_{1}\right)$, where $G_{1}=\left(\{S, A, B, C, X\},\{a, b, c\}, P_{1}, S\right)$, and P_{1} contains:
- $S \rightarrow \varepsilon \mid X$
- $X \rightarrow A B C X \mid A B C$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$
- $A B \rightarrow B A$
- $B A \rightarrow A B$
- $A C \rightarrow C A$
- $C A \rightarrow A C$
- $B C \rightarrow C B$
- $C B \rightarrow B C$
- $L_{1} \in$ Perm $\backslash \mathbf{C F}$
- Note: $L_{1}^{B}=\{a b c\}^{*}$

Permutation languages: Counterexample

- $L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$
- No context-free infinite subset of L_{2} exists - there is no possible basis language for L_{2}.
- $L_{2} \in \mathbf{C S} \backslash$ Perm

Conclusion: $\mathbf{C F} \subset \mathbf{P e r m} \subset \mathbf{C S}$

- The inclusions shown previously turn out to be proper:

$\mathbf{C F} \subset \mathbf{P e r m} \subset \mathbf{C S}$

- Proof:
- CF \subseteq Perm $\subseteq \mathbf{C S}$,
- $L_{1} \in$ Perm \backslash CF,
- $L_{2} \in \mathbf{C S} \backslash$ Perm.

Generative Power: An infinite hierarchy

- A permutation rule $\alpha \rightarrow \beta$ is of length n if $|\alpha|=|\beta|=n$;
- A permutation grammar G is of order n if all its permutation rules are of length at most n;
- Perm ${ }_{n}$ denotes the class of languages generated by permutation grammars of order n;
- Clearly, $\mathbf{P e r m}_{2} \subseteq$ Perm $_{3} \subseteq$ Perm $_{4} \subseteq \cdots \subseteq$ Perm
- Furthermore, for all positive integers n,

$$
\operatorname{Perm}_{4 n-2} \subset \operatorname{Perm}_{4 n-1}
$$

- a

[^0]: ${ }^{1}$ The situation is different in a general jumping finite automaton

[^1]: ${ }^{2}$ Note that this is a bijection.

