Commutative Grammars and Permutation Grammars

Martin Tomko

Faculty of Information Technology, BUT

December 9, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of contents

Motivation: Jumping Automata

Basic Terminology

Commutative Grammars: Definition

Permutation Grammars

Motivation: Jumping Automata

Jumping Finite Automata

- M = (Q, Σ, R, s, F) all with the same meaning as an ordinary finite automaton;
- The jumping relation:

xpaz
$$\sim_M x'qz'$$

where $pa \rightarrow q \in R$ and xz = x'z';

►
$$L(M) = \{uv \mid u, v \in \Sigma^*, usv \curvearrowright^*_M f, f \in F\};$$

The order of symbols in the input string essentially does not matter.¹

¹The situation is different in a general jumping finite automaton \rightarrow (\equiv) \rightarrow \sim

Basic Terminology

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Bags

- Informally: unordered strings;
- Formally, a bag over an alphabet V is a finite multiset of elements in V;
- The set of all bags over V is denoted by *V;

• The empty bag is denoted by ε , $+V = *V \setminus \{\varepsilon\}$

*V can be defined as the free commutative monoid generated by V;

• Let
$$V = \{a_1, \ldots, a_k\}$$
. Any $w \in {}^*V$ can be written as

$$w = a_1^{i_1} \cdots a_k^{i_k}$$

where $i_j \in \mathbb{N}_0$ for $1 \leq j \leq k$

Parikh Mapping

- A function that maps a string to the number of occurences of each symbol;
- Let $V = \{a_1, \ldots, a_k\}$, where k = |V|:
- Ψ_V: V* → N^k₀
 Ψ_V(w) = (#_{a1}(w),..., #_{ak}(w))
 The subscript V can be omitted when not necessary.
 Can also be defined for bags: Ψ(aⁱ¹₁ ··· a^{ik}_k) = (i₁,..., i_k)²
 Can be generalized to sets of strings / bags
 Can also be defined as Ψ : V* → *V

²Note that this is a bijection.

Commutative Grammars: Definition

Commutative Grammars

- A commutative grammar is a 4-tuple G^c = (N, T, S, P^c) where
 - N, T are disjoint finite alphabets, $V = N \cup T$,
 - $\blacktriangleright S \in N \text{ is a start symbol,}$

▶ $P^{c} \subseteq {}^{+}N \times {}^{*}V$ is a finite set of production rules;

 $\blacktriangleright \ L(G^c) = \{ w \in {}^*T \mid S \Rightarrow^*_{G^c} w \}$

A commutative grammar G^c is

- of type 0 with no additional restrictions on P^c,
- context-sensitive if $\alpha \to \beta \in P^c$ implies $|\alpha| \le |\beta|$,

- context-free if $P^c \subseteq N \times {}^*V$,
- regular if $P^c \subseteq N \times {}^*T(N \cup \{\varepsilon\})$.

Comparing bags and strings: Ψ -equivalence

- Let G be a phrase-structure grammar and G^c a commutative grammar;
- G and G^c are Ψ-equivalent iff

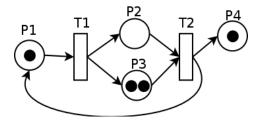
$$\Psi(L(G))=\Psi(L(G^c))$$

• Given G = (N, T, S, P) and $G^c = (N, T, S, P^c)$, and for each $\alpha \rightarrow \beta \in P^c$ a rule $u \rightarrow v \in P$ such that $\Psi(\alpha) = \Psi(u)$ and $\Psi(\beta) = \Psi(v)$ does **not** imply that the grammars are Ψ -equivalent;

- Counterexample: Consider the rules $\{S \rightarrow BaC, BC \rightarrow b\}$
- The implication does hold for context-free grammars.

Related models: Petri nets

- Petri nets a bag can represent the marking of a Petri net:
 - Each nonterminal represents a place
 - Each production rule represents a transition



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Image source: Wikimedia Commons

Related models: vector addition systems

- An *n*-dimensional vector addition system is a pair (r, W), where
 - $r \in \mathbb{N}_0^n$ is a vector of nonnegative integers,
 - $W \subseteq \mathbb{Z}^n$ is a finite set of integer vectors.
- The set R(r, W) of reachable states:
 - Vectors of the form $r + \sum_{i=1}^{q} c_i$, $c_i \in W$, such that

•
$$r + \sum_{i=1}^{k} c_i \in \mathbb{N}_0^n$$
 for all $1 \le k \le q$

Relation to Matrix Grammars

For any commutative grammar G^c, there exists a Ψ-equivalent matrix grammar G, and conversely.

Permutation Grammars

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Permutation Grammars: Definition

• A permutation grammar is a grammar $G = (N, \Sigma, P, S)$, where for each $r \in P$:

a) r is a context-free rule $r: A \rightarrow \gamma$,

b) r is a permutation rule $r : \alpha \to \beta$ where $\Psi(\alpha) = \Psi(\beta)$, $\alpha \neq \beta$;

L(G) is called a permutation language;

The class of all permutation languages is denoted by Perm;

• Clearly, $CF \subseteq Perm \subseteq CS$.

Basis Language

Let G = (N, Σ, P ∪ R, S) be a permutation grammar, where
P only contains context-free rules,
R only contains permutation rules;
Let L = L(G), G' = (N, Σ, P, S);
Then L^B = L(G') is a basis language of L wrt. G;

• The languages L and L^B are Ψ -equivalent.

Permutation languages: Example

- ► $L_1 = (w \in \{a, b, c\}^* | \#_a(w) = \#_b(w) = \#_c(w))$
- ▶ $L_1 = L(G_1)$, where $G_1 = ({S, A, B, C, X}, {a, b, c}, P_1, S)$, and P_1 contains:

$$S \to \varepsilon \mid X$$

$$X \to ABCX \mid ABC$$

 \blacktriangleright $A \rightarrow a$

$$\blacktriangleright$$
 $B \rightarrow b$

$$\blacktriangleright$$
 $C \rightarrow c$

- $\blacktriangleright AB \to BA$
- $\blacktriangleright BA \to AB$
- $\blacktriangleright AC \rightarrow CA$
- $\blacktriangleright CA \to AC$
- $\blacktriangleright BC \to CB$
- $\blacktriangleright CB \to BC$

$\blacktriangleright \ L_1 \in \mathbf{Perm} \setminus \mathbf{CF}$

$$\blacktriangleright \text{ Note: } L_1^B = \{abc\}^*$$

Permutation languages: Counterexample

$$\blacktriangleright L_2 = \{a^n b^n c^n \mid n \ge 1\}$$

No context-free infinite subset of L₂ exists – there is no possible basis language for L₂.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ $L_2 \in \textbf{CS} \setminus \textbf{Perm}$

Conclusion: $CF \subset Perm \subset CS$

▶ The inclusions shown previously turn out to be proper:

 $\textbf{CF} \subset \textbf{Perm} \subset \textbf{CS}$

- Proof:
 - CF ⊆ Perm ⊆ CS,
 *L*₁ ∈ Perm \ CF,
 - $L_1 \in \mathsf{CS} \setminus \mathsf{Perm}.$

Generative Power: An infinite hierarchy

- A permutation rule $\alpha \rightarrow \beta$ is of length *n* if $|\alpha| = |\beta| = n$;
- A permutation grammar G is of order n if all its permutation rules are of length at most n;
- Perm_n denotes the class of languages generated by permutation grammars of order n;
- ▶ Clearly, $Perm_2 \subseteq Perm_3 \subseteq Perm_4 \subseteq \cdots \subseteq Perm$
- Furthermore, for all positive integers n,

 $\mathbf{Perm}_{4n-2} \subset \mathbf{Perm}_{4n-1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●