
Commutative Grammars and Permutation
Grammars

Martin Tomko

Faculty of Information Technology, BUT

December 9, 2019

Table of contents

Motivation: Jumping Automata

Basic Terminology

Commutative Grammars: Definition

Permutation Grammars

Motivation: Jumping Automata

Jumping Finite Automata

I M = (Q,Σ,R, s,F) – all with the same meaning as an
ordinary finite automaton;

I The jumping relation:

xpaz yM x ′qz ′

where pa→ q ∈ R and xz = x ′z ′;
I L(M) = {uv | u, v ∈ Σ∗, usv y∗M f , f ∈ F};
I The order of symbols in the input string essentially does not

matter.1

1The situation is different in a general jumping finite automaton

Basic Terminology

Bags

I Informally: unordered strings;
I Formally, a bag over an alphabet V is a finite multiset of

elements in V ;
I The set of all bags over V is denoted by ∗V ;
I The empty bag is denoted by ε, +V = ∗V \ {ε}

I ∗V can be defined as the free commutative monoid generated
by V ;

I Let V = {a1, . . . , ak}. Any w ∈ ∗V can be written as

w = ai11 · · · a
ik
k

where ij ∈ N0 for 1 ≤ j ≤ k

Parikh Mapping

I A function that maps a string to the number of occurences of
each symbol;

I Let V = {a1, . . . , ak}, where k = |V |:
I ΨV : V ∗ → Nk

0
I ΨV (w) = (#a1(w), . . . ,#ak (w))

I The subscript V can be omitted when not necessary.

I Can also be defined for bags: Ψ(ai11 · · · a
ik
k) = (i1, . . . , ik)2

I Can be generalized to sets of strings / bags
I Can also be defined as Ψ : V ∗ → ∗V

2Note that this is a bijection.

Commutative Grammars: Definition

Commutative Grammars
I A commutative grammar is a 4-tuple G c = (N,T ,S ,Pc)

where
I N,T are disjoint finite alphabets, V = N ∪ T ,
I S ∈ N is a start symbol,
I Pc ⊆ +N × ∗V is a finite set of production rules;

I L(G c) = {w ∈ ∗T | S ⇒∗G c w}
I A commutative grammar G c is

I of type 0 with no additional restrictions on Pc ,
I context-sensitive if α→ β ∈ Pc implies |α| ≤ |β|,
I context-free if Pc ⊆ N × ∗V ,
I regular if Pc ⊆ N × ∗T (N ∪ {ε}).

Comparing bags and strings: Ψ-equivalence

I Let G be a phrase-structure grammar and G c a commutative
grammar;

I G and G c are Ψ-equivalent iff

Ψ(L(G)) = Ψ(L(G c))

I Given G = (N,T , S ,P) and G c = (N,T , S ,Pc), and for each
α→ β ∈ Pc a rule u → v ∈ P such that Ψ(α) = Ψ(u) and
Ψ(β) = Ψ(v) does not imply that the grammars are
Ψ-equivalent;

I Counterexample: Consider the rules {S → BaC ,BC → b}
I The implication does hold for context-free grammars.

Related models: Petri nets
I Petri nets – a bag can represent the marking of a Petri net:

I Each nonterminal represents a place
I Each production rule represents a transition

Image source: Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/f/fe/Detailed_petri_net.png

Related models: vector addition systems
I An n-dimensional vector addition system is a pair (r ,W),

where
I r ∈ Nn

0 is a vector of nonnegative integers,
I W ⊆ Zn is a finite set of integer vectors.

I The set R(r ,W) of reachable states:
I Vectors of the form r +

∑q
i=1 ci , ci ∈W , such that

I r +
∑k

i=1 ci ∈ Nn
0 for all 1 ≤ k ≤ q

Relation to Matrix Grammars

I For any commutative grammar G c , there exists a
Ψ-equivalent matrix grammar G , and conversely.

Permutation Grammars

Permutation Grammars: Definition
I A permutation grammar is a grammar G = (N,Σ,P, S),

where for each r ∈ P:
a) r is a context-free rule r : A→ γ,
b) r is a permutation rule r : α→ β where Ψ(α) = Ψ(β), α 6= β;

I L(G) is called a permutation language;
I The class of all permutation languages is denoted by Perm;
I Clearly, CF ⊆ Perm ⊆ CS.

Basis Language
I Let G = (N,Σ,P ∪ R, S) be a permutation grammar, where

I P only contains context-free rules,
I R only contains permutation rules;

I Let L = L(G), G ′ = (N,Σ,P, S);
I Then LB = L(G ′) is a basis language of L wrt. G ;
I The languages L and LB are Ψ-equivalent.

Permutation languages: Example

I L1 = (w ∈ {a, b, c}∗ |#a(w) = #b(w) = #c(w))
I L1 = L(G1), where G1 = ({S ,A,B,C ,X}, {a, b, c},P1,S),

and P1 contains:
I S → ε | X
I X → ABCX | ABC
I A→ a
I B → b
I C → c
I AB → BA
I BA→ AB
I AC → CA
I CA→ AC
I BC → CB
I CB → BC

I L1 ∈ Perm \ CF
I Note: LB1 = {abc}∗

Permutation languages: Counterexample

I L2 = {anbncn | n ≥ 1}
I No context-free infinite subset of L2 exists – there is no

possible basis language for L2.
I L2 ∈ CS \ Perm

Conclusion: CF ⊂ Perm ⊂ CS
I The inclusions shown previously turn out to be proper:

CF ⊂ Perm ⊂ CS
I Proof:

I CF ⊆ Perm ⊆ CS,
I L1 ∈ Perm \ CF,
I L2 ∈ CS \ Perm.

Generative Power: An infinite hierarchy

I A permutation rule α→ β is of length n if |α| = |β| = n;
I A permutation grammar G is of order n if all its permutation

rules are of length at most n;
I Permn denotes the class of languages generated by

permutation grammars of order n;
I Clearly, Perm2 ⊆ Perm3 ⊆ Perm4 ⊆ · · · ⊆ Perm
I Furthermore, for all positive integers n,

Perm4n−2 ⊂ Perm4n−1

I a

	Motivation: Jumping Automata
	Basic Terminology
	Commutative Grammars: Definition
	Permutation Grammars

