Parallel Rewriting Over Word Monoids

Zuzana Beníčková

Department of Information Systems Faculty of Information Technology Brno University of Technology

December 12, 2019

Overview

Motivation

Regulation of the grammatical parallelism

Introduction Classification

EOL Systems EPOL Systems WMEOL grammar Generative Power

- regulation of the grammatical parallelism
- grammar alphabet always strictly taken as finite set of letters
- parallel rewriting over word monoids easily increase generative power

word = context

- parallelism is represented with **EOL** grammar systems
- WME(P)OL grammars EOL grammars over word monoids
- SE(P)OL as WME(P)OL(2) WME(P)OL grammars with words of length 2 - symbiotic EOL grammars

EOL System

$$G = (V, T, P, S)$$

- V is the total alphabet,
- T is a finite set of terminals, $T \subseteq V$,
- *P* is a finite set of productions in the form

 $a \longrightarrow w$

with $a \in V$, and $w \in V^*$,

• *S* is the axiom, $S \in V$.

EPOL Systems

EPOL System

$$G = (V, T, P, S)$$

- V is the total alphabet,
- T is a finite set of terminals, $T \subseteq V$,
- *P* is a finite set of productions in the form

 $a \longrightarrow w$

with $a \in V$, and $w \in V^+$,

• *S* is the axiom, $S \in V$.

EPOL Systems

Derivation Step

Let $u = a_1 a_2 \dots a_n$, and $v = w_1 w_2 \dots w_n$. If there exists a production rule $a_i \longrightarrow w_i \in P$ for all $1 \le i \le n$, then

 $U \Longrightarrow V.$

Generated Language

$$L(G) = \{ w \in T^* \mid S \Longrightarrow^* w \}$$

Generative Power

 $\mathcal{L}(REG) \subset \mathcal{L}(CF) \subset \mathcal{L}(EOL) = \mathcal{L}(EPOL) \subset \mathcal{L}(CS) \subset \mathcal{L}(RE)$

EOL grammar on word monoid - WMEOL grammar

```
WMEOL(i) grammar is a pair
```

(G, W)

where

$$G = (V, T, P, S)$$

- G is an EOL grammar,
- W is the set of generators, finite language over V
- *i* is a grammar degree, if every $y \in W$ satisfies $|y| \le i$.

Derivation Step

Let $x, y \in W^*$:

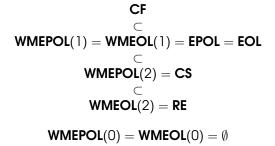
- $x = a_1 a_2 \cdots a_n$, $y = y_1 y_2 \cdots y_n$
- *a_i* ∈ *V*, *y_i* ∈ *V**
- $1 \le i \le n$, and $n \ge 0$

If $a_i y_i \in P$ for all i = 1 ... n, then x directly derives y according to rules $a_1 \rightarrow y_1, a_2 \rightarrow y_2, ..., a_n \rightarrow y_n$, symbolically written as

$$x \Rightarrow_{(G,W)} y[a_1 \rightarrow y_1, \dots, a_n \rightarrow y_n]$$

Generated Language

$$L(G, W) = \left\{ w \in T^* | S \Rightarrow^*_{(G, W)} w \right\}$$


Generative Power

 $\mathcal{L}(REG) \subset \mathcal{L}(CF) \subset \mathcal{L}(EOL) = \mathcal{L}(EPOL) \subset \mathcal{L}(WMEOL) =$ $\mathcal{L}(WMEPOL) \subset \mathcal{L}(CS) = \mathcal{L}(WMEPOL(2)) \subset \mathcal{L}(RE) = \mathcal{L}(WMEOL(2))$

Generative Power

Bibliography

- Ondřej Soukup Alexander Meduna. Modern Language Models and Computation: Theory with Applications. Vol. 1. 2017. ISBN: 3319631004.
- Petr Zemek Alexander Meduna. Regulated Grammars and Automata. Vol. 1. 2014. ISBN: 978-1-4939-0368-9.
- Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages: Word, Language, Grammar. Vol. 1. 1997. ISBN: 978-3-642-63863-3.

Thank You For Your Attention !