On Proof Techniques in Jumping Models

Radim Kocman

Faculty of Information Technology
Brno University of Technology
Božetěchova 2, Brno, Czech Republic
ikocman@fit.vutbr.cz

$\sim \sim$| BRNO FACULTY |
| :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |

LTA 2019 (December 18, 2019)

- Motivation
- Finite Automata
- Jumping Finite Automata
- Jumping $5^{\prime} \rightarrow 3^{\prime}$ Watson-Crick Finite Automata
- Conclusion
- Bonus
- In formal language theory, it is a common task to prove that a certain language can or cannot be accepted by the model in question.
- Student courses (IFJ, etc.) show only basic, well-known techniques (pumping lemmas, etc.).
- This talk shows new techniques used in current research.
- Motivation for further study.

Finite Automata

Lazy Finite Automaton (LFA)

$$
\text { quintuple } M=(Q, \Sigma, R, s, F)
$$

Q is a finite set of states
Σ is an input alphabet, $Q \cap \Sigma=\emptyset$
R is a finite set of rules: (p, y, q), where $p, q \in Q, y \in \Sigma^{*}$
s is the start state
F is a set of final states

Finite Automaton (FA)

If $(p, y, q) \in R$ implies that $|y| \leq 1$.

Configuration

> pw
p is the state
w is an unprocessed input

Step/Move

$$
p y x \Rightarrow q x
$$

if $(p, y, q) \in R$ and $x, y \in \Sigma^{*}$.
In the standard manner, define \Rightarrow^{+}and \Rightarrow^{*}.
Accepted language

$$
L(M)=\left\{w \in \Sigma^{*}: s w \Rightarrow^{*} f, f \in F\right\}
$$

Example automaton

$$
M=(\{s, p, q\},\{a, b, c\}, R, s,\{s\})
$$

where R :

$$
\begin{aligned}
& (s, a, p) \\
& (p, b, q) \\
& (q, c, s)
\end{aligned}
$$

Example input: abcabc
$s a b c a b c \Rightarrow \mathrm{pbcabc} \Rightarrow \mathrm{qcabc} \Rightarrow s a b c \Rightarrow \mathrm{pbc} \Rightarrow q c \Rightarrow s$

Resulting language

- FA: $L(M)=\{a b c\}^{*}$
- What about $L=\left\{a^{n} b^{n}: n \geq 0\right\}$?
- Can we construct an FA that accepts L?
- How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let L be a regular language over Σ. Then there is a constant k, depending on L, such that for each $w \in L$ with $|w| \geq k$ there exist $x, y, z \in \Sigma^{*}$ such that $w=x y z$ and
(1) $|x y| \leq k$,
(2) $|y|>0$,
(3) $x y^{i} z \in L$ for all $i \geq 0$.

- This lemma is necessary but not sufficient.
- There are sufficient lemmas but they are more complicated.

Theorem

There is no FA M such that $L(M)=\left\{a^{n} b^{n}: n \geq 0\right\}$.

Proof.

By contradiction. Assume that there is a FA M such that $L(M)=\left\{a^{n} b^{n}: n \geq 0\right\}$. Then, $L(M)$ is a regular language.
Choose $w=a^{k} b^{k}$ in $L(M)$. Clearly, $|w| \geq k$.
By the pumping lemma, $w=x y z$ for some $x, y, z \in \Sigma^{*}$ such that (1) $|x y| \leq k$, (2) $|y|>0$, and (3) $x y^{i} z \in L(M)$ for all $i \geq 0$.

By (1) and (2), we have $y=a^{m}, 1 \leq m \leq k$. But $x y^{0} z=x z=a^{k-m} b^{k} \notin L(M)$. Thus, (3) does not hold. Therefore, there is no FA M such that $L(M)=\left\{a^{n} b^{n}: n \geq 0\right\}$.

Jumping Finite Automata

Based on

Alexander Meduna and Petr Zemek Jumping Finite Automata Int. J. Found. Comput. Sci. 23(7):1555-1578 (2012)

E- Alexander Meduna and Petr Zemek Regulated Grammars and Automata Springer (2014)

| Jumping Finite Automata - Definition

General Jumping Finite Automaton (GJFA)

$$
\text { quintuple } M=(Q, \Sigma, R, s, F)
$$

Q, Σ, R, s, F are defined as in LFA.
If $(p, y, q) \in R$ implies that $|y| \leq 1$, then M is a jumping finite automaton (JFA).

Configuration
$u p v$ where $u, v \in \Sigma^{*}$ and $p \in Q$.
Jump

$$
x p y z \curvearrowright x^{\prime} q z^{\prime}
$$

if $x, z, x^{\prime}, z^{\prime} \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $(p, y, q) \in R ; \curvearrowright^{+}, \curvearrowright^{*}$.
Accepted language
$L(M)=\left\{u v: u, v \in \Sigma^{*}, u s v \curvearrowright^{*} f, f \in F\right\}$

Example automaton

$$
M=(\{s, p, q\},\{a, b, c\}, R, s,\{s\})
$$

where R :

$$
\begin{aligned}
& (s, a, p) \\
& (p, b, q) \\
& (q, c, s)
\end{aligned}
$$

Example input: abbacc

$a b b s a c c \curvearrowright a b p b c c \curvearrowright a b q c c \curvearrowright s a b c \curvearrowright p b c \curvearrowright q c \curvearrowright s$

Resulting language

- FA: $L(M)=\{a b c\}^{*}$
- JFA: $L(M)=\left\{w: w \in\{a, b, c\}^{*},|w|_{a}=|w|_{b}=|w|_{c}\right\}$
- GJFA and JFA cannot guarantee the order of symbols between jumps.

Theorem

There is no GJFA M such that $L(M)=\{a\}^{*}\{b\}^{*}$.

Proof.

By contradiction. Let $K=\{a\}^{*}\{b\}^{*}$. Assume that there is a GJFA $M=(Q, \Sigma, R, s, F)$ such that $L(M)=K$.

Let $n=\max \{|y|:(p, y, q) \in R\}$ and $w=a^{n} b$.
When accepting w, a rule $\left(p, a^{i} b, q\right) \in R, 0 \leq i<n$, has to be used. However, then M also accepts from the configuration $a^{i} b s a^{n-i}$ or $s a^{i} b a^{n-i}$. This implies that $a^{i} b a^{n-i} \in L(M)$. But that is a contradiction with the assumption that $L(M)=K$. Therefore, there is no GJFA M such that $L(M)=\{a\}^{*}\{b\}^{*}$.

| JFA - Language Families

Jumping $5^{\prime} \rightarrow 3^{\prime}$ Watson-Crick Finite Automata

Based on

Radim Kocman, Benedek Nagy, Zbyněk Kïivka, and Alexander Meduna
A Jumping $5^{\prime} \rightarrow 3^{\prime}$ Watson-Crick Finite Automata Model Proceedings of NCMA 2018

Radim Kocman, Zbyněk Kïvka, Alexander Meduna, and Benedek Nagy
A Jumping 5' $\rightarrow 3^{\prime}$ Watson-Crick Finite Automata Model Acta Informatica (in review)

Watson-Crick Finite Automata (WKA)

- biology-inspired model (the core model is similar to FA)
- work with the Watson-Crick tape (double-stranded tape, resembles DNA, the elements of the strands are pairwise complements of each other)
- uses two heads (one for each strand of the tape)

5' $\rightarrow 3^{\prime}$ Watson-Crick Finite Automata

- the heads read in the biochemical $5^{\prime} \rightarrow 3^{\prime}$ direction
- that is physically/mathematically in opposite directions

Sensing $5^{\prime} \rightarrow 3^{\prime}$ Watson-Crick Finite Automata

- the heads sense that they are meeting
- the processing of the input ends if for all pairs of the sequence one of the letters is read
- the tape notation is usually simplified: $\left[\begin{array}{c}A \\ T\end{array}\right]$ as a, \ldots

Combined model

- the combination of GJFA and sensing $5^{\prime} \rightarrow 3^{\prime}$ WKA
- two heads as in sensing $5^{\prime} \rightarrow 3^{\prime}$ WKA
- each head can traverse the whole input in its direction
- all pairs of symbols are read only once

Expectations

- better accepting power than the non-combined models
- ability to model languages with some crossed agreements

Jumping $5^{\prime} \rightarrow 3^{\prime}$ WK Automaton

$$
\begin{aligned}
& \text { quintuple } M=\left(V, Q, q_{0}, F, \delta\right) \\
& V(\Sigma), Q, q_{0}(s), F \text { as in LFA, } V \cap\{\#\}=\emptyset, \\
& \delta:\left(Q \times V^{*} \times V^{*} \times D\right) \rightarrow 2^{Q} \text { (finite), } \\
& D=\{\ominus, \ominus\} \text { indicates the mutual position of heads. }
\end{aligned}
$$

Configuration

$$
\left(q, s, w_{1}, w_{2}, w_{3}\right)
$$

q is the state
s is the position of heads
w_{1} is the unprocessed input before the first head
W_{2} is the unprocessed input between the heads
W_{3} is the unprocessed input after the second head

Steps

Let $x, y, u, v, w_{2} \in V^{*}$ and $w_{1}, w_{3} \in(V \cup\{\#\})^{*}$.
(1) \oplus-reading: $\left(q, \oplus, w_{1}, x w_{2} y, w_{3}\right) \curvearrowright\left(q^{\prime}, s, w_{1}\{\#\}^{|x|}, W_{2},\{\#\}^{|y|} W_{3}\right)$, where $q^{\prime} \in \delta(q, x, y, \oplus)$, and s is either \oplus if $\left|w_{2}\right|>0$ or \ominus.
(2) \ominus-reading: $\left(q, \ominus, w_{1} y, \varepsilon, x w_{3}\right) \curvearrowright\left(q^{\prime}, \ominus, w_{1}, \varepsilon, w_{3}\right)$, where $q^{\prime} \in \delta(q, x, y, \ominus)$.
(3) \oplus-jumping: $\left(q, \oplus, w_{1}, u w_{2} v, w_{3}\right) \curvearrowright\left(q, s, w_{1} u, w_{2}, v w_{3}\right)$, where s is either \oplus if $\left|w_{2}\right|>0$ or \ominus.
(4) \ominus-jumping: $\left(q, \ominus, w_{1}\{\#\}^{*}, \varepsilon,\{\#\}^{*} W_{3}\right) \curvearrowright\left(q, \ominus, w_{1}, \varepsilon, W_{3}\right)$.

In the standard manner, define \curvearrowright^{+}and \curvearrowright^{*}.
Accepted language

$$
L(M)=\left\{w \in V^{*}:\left(q_{0}, \oplus, \varepsilon, w, \varepsilon\right) \curvearrowright^{*}\left(q_{f}, \ominus, \varepsilon, \varepsilon, \varepsilon\right), q_{f} \in F\right\}
$$

Example automaton

$$
M=(\{a, b\},\{s\}, s,\{s\}, \delta)
$$

where δ :

$$
\begin{aligned}
& \delta(s, a, b, \oplus)=\{s\} \\
& \delta(s, a, b, \ominus)=\{s\}
\end{aligned}
$$

Example input: aaabbb

$$
\begin{aligned}
& (s, \oplus, \varepsilon, \text { aaabbb }, \varepsilon) \curvearrowright \oplus \text {-reading } \\
& (s, \oplus, \#, \text { aabb, \#) } \curvearrowright \quad \oplus \text {-reading } \\
& (s, \oplus, \# \#, a b, \# \#) \curvearrowright \quad \oplus \text {-reading } \\
& (s, \ominus, \# \# \#, \varepsilon, \# \# \#) \curvearrowright \quad \ominus \text {-jumping } \\
& (s, \ominus, \varepsilon, \varepsilon, \varepsilon)
\end{aligned}
$$

Example automaton

$$
M=(\{a, b\},\{s\}, s,\{s\}, \delta)
$$

where δ :

$$
\begin{aligned}
& \delta(s, a, b, \oplus)=\{s\} \\
& \delta(s, a, b, \ominus)=\{s\}
\end{aligned}
$$

Example input: baabba

$$
\begin{array}{ll}
(s, \oplus, \varepsilon, b a a b b a, \varepsilon) \curvearrowright & \oplus \text {-jumping } \\
(s, \oplus, b, a a b b, a) \curvearrowright & \oplus \text {-reading } \\
(s, \oplus, b \#, a b, \# a) \curvearrowright & \oplus \text {-reading } \\
(s, \ominus, b \# \#, \varepsilon, \# \# a) \curvearrowright & \ominus \text {-jumping } \\
(s, \ominus, b, \varepsilon, a) \curvearrowright & \ominus \text {-reading } \\
(s, \ominus, \varepsilon, \varepsilon, \varepsilon) &
\end{array}
$$

Resulting language
$L(M)=\left\{w: w \in\{a, b\}^{*},|w|_{a}=|w|_{b}\right\}$

- What happens if we remove $\delta(s, a, b, \ominus)=\{s\}$ from M ?
$\rightarrow L(M)=\left\{a^{n} b^{n}: n \geq 0\right\}$
- And if we use only $\delta(s, a, \varepsilon, \oplus)=\{s\}$ and $\delta(s, \varepsilon, b, \oplus)=\{s\}$? $\rightarrow L(M)=\{a\}^{*}\{b\}^{*}$
- REG \subset JWK
- $\mathbf{L I N} \subset$ JWK
- $\left\{w_{1} w_{2}: w_{1} \in\{a, b\}^{*}, w_{2} \in\{c, d\}^{*},\left|w_{1}\right|_{a}=\left|w_{2}\right|_{c},\left|w_{1}\right|_{b}=\right.$ $\left.\left|w_{2}\right|_{d}\right\} \in J W K$ which is a non-context-free language
- JWK $\subset \mathbf{C S}$

Theorem

There is no jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton M such that $L(M)=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?
- The automaton can guarantee the order of symbols in certain cases. We cannot use the JFA technique. (:)
- The symbols can be mixed so it is not easy to derive a meaningful pumping lemma. :)
- We need a different proof technique:
\rightarrow introducing the new debt lemma.

Parikh Vector

The Parikh vector associated to a string $x \in V^{*}$ with respect to the alphabet $V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is
$\Psi_{V}(x)=\left(|x|_{a_{1}},|x|_{a_{2}}, \ldots,|x|_{a_{n}}\right)$.
For $L \subseteq V^{*}$ we define $\Psi_{V}(L)=\left\{\Psi_{V}(x): x \in L\right\}$.

Example strings

$$
\begin{array}{lll}
V=\{a, b, c\}, & x=a b b c c c & \Rightarrow \Psi_{V}(x)=(1,2,3) \\
V=\{a, b, c, d\}, & x=a b b c c c & \Rightarrow \Psi_{V}(x)=(1,2,3,0) \\
V=\{a, b, c, d\}, & x=c b a b c c & \Rightarrow \Psi_{V}(x)=(1,2,3,0) \\
V=\{a, b, c, d\}, & x=\varepsilon & \Rightarrow \Psi_{V}(x)=(0,0,0,0)
\end{array}
$$

Parikh Vector

The Parikh vector associated to a string $x \in V^{*}$ with respect to the alphabet $V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is
$\psi_{V}(x)=\left(|x|_{a_{1}},|x|_{a_{2}}, \ldots,|x|_{a_{n}}\right)$.
For $L \subseteq V^{*}$ we define $\Psi_{V}(L)=\left\{\Psi_{V}(x): x \in L\right\}$.

Example language

Let $V=\{a, b, c\}$ and $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$. Then, $\Psi_{V}(L)=\{$

$$
\begin{array}{lll}
x=\varepsilon & \Rightarrow & \Psi_{V}(x)=(0,0,0) \\
x=a b c & \Rightarrow & \Psi_{V}(x)=(1,1,1) \\
x=a a b b c c & \Rightarrow & \Psi_{V}(x)=(2,2,2) \\
x=a a a b b b c c c & \Rightarrow & \Psi_{V}(x)=(3,3,3)
\end{array}
$$

$\}=\{(0,0,0),(1,1,1),(2,2,2),(3,3,3), \ldots\}=\{(n, n, n): n \geq 0\}$.

Definition

Let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton, where $V=\left\{a_{1}, \ldots, a_{n}\right\}$. Following the computation of M on an input $w \in V^{*}$, let $o=\left(O_{1}, \ldots, O_{n}\right)$ be the Parikh vector built by the processed (read) symbols from w : At first, for the starting configuration, set $o=\Psi_{V}(\varepsilon)$. For the following configurations, whenever M makes a \oplus / \ominus-reading step from some q to q^{\prime} according to $q^{\prime} \in \delta(q, u, v, s)$, set $o=0+\Psi_{v}(u v)$. Using the Parikh mapping of $L(M)$, we define $\Delta(0)=\left\{\sum_{i=1}^{n}\left(m_{i}-O_{i}\right)\right.$: $\left.\left(m_{1}, \ldots, m_{n}\right) \in \Psi_{V}(L(M)), m_{i} \geq 0_{i}, 1 \leq i \leq n\right\} \cup\{\infty\}$. Finally, we define the debt of the current configuration of M as $\min \Delta(0)$.
(1) We are counting the processed symbols in the Parikh Vector $o=\left(O_{1}, \ldots, o_{n}\right)$.
(2) The debt of the current configuration of M is the minimum number of symbols that we need to add to o so that it matches some Parikh vector from $\Psi_{V}(L(M))$.

Example automaton

Let $V=\{a, b, c\}$. Assume that there is a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton $M=\left(V, Q, q_{0}, F, \delta\right)$ such that $L(M)=\left\{a^{n} b^{n} c^{n}\right.$: $n \geq 0\}$.
Therefore, $\Psi_{V}(L(M))=\{(n, n, n): n \geq 0\}$.

Example steps

$$
\begin{array}{lll}
(s, \oplus, \varepsilon, a a b b c c, \varepsilon) \curvearrowright & 0=(0,0,0) & \min \Delta(0)=0 \\
(?, \oplus, \#, a b b c c, \varepsilon) \curvearrowright & 0=(1,0,0) & \min \Delta(0)=2 \\
(?, \oplus, \# a, b b c c, \varepsilon) \curvearrowright & 0=(1,0,0) & \min \Delta(0)=2 \\
(?, \oplus, \# a \#, b c, \#) \curvearrowright & 0=(1,1,1) & \min \Delta(0)=0 \\
(?, \ominus, \# a \# \#, \varepsilon, \# \#) \curvearrowright & 0=(1,2,2) & \min \Delta(0)=1 \\
(?, \ominus, \# a, \varepsilon, \varepsilon) \curvearrowright & o=(1,2,2) & \min \Delta(0)=1 \\
(?, \ominus, \#, \varepsilon, \varepsilon) \curvearrowright & 0=(2,2,2) & \min \Delta(0)=0 \\
(?, \ominus, \#, \varepsilon, \varepsilon) \curvearrowright & o=(2,2,2) & \min \Delta(0)=0 \\
(?, \ominus, \varepsilon, \varepsilon, \varepsilon) \curvearrowright & o=(2,2,2) & \min \Delta(0)=0
\end{array}
$$

Debt lemma

Let L be a language, and let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton. If $L(M)=L, M$ accepts all $w \in L$ using only configurations that have their debt bounded by some constant k for M.

Example automaton

$$
M=(\{a, b\},\{s\}, s,\{s\}, \delta)
$$

where δ :

$$
\begin{aligned}
& \delta(s, a, b, \oplus)=\{s\} \\
& \delta(s, a, b, \ominus)=\{s\}
\end{aligned}
$$

$L(M)=\left\{w: w \in\{a, b\}^{*},|w|_{a}=|w|_{b}\right\}$
$k=0$ is sufficient -

You can go to Bonus for the proof.

Theorem

There is no jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton M such that $L(M)=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

Proof (1/3).

Basic idea. Considering any sufficiently large constant k, we show that M cannot process all symbols of $a^{10 k} b^{10 k} c^{10 k}$ using only configurations that have their debt bounded by k.
Formal proof. (sketch) By contradiction. Let $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$, and let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton such that $L(M)=L$.
Consider any k such that $k>\max \left\{|u v|: \delta(q, u, v, s) \neq \emptyset, u, v \in V^{*}\right\}$.
Represent the debt of the configuration as $\left\langle d_{a}, d_{\mathrm{b}}, d_{\mathrm{c}}\right\rangle$.
For all traversed configurations must hold $d_{a}+d_{b}+d_{c} \leq k$.
Let $w=a^{10 k} b^{10 k} c^{10 k}$.

Theorem

There is no jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton M such that $L(M)=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

Proof (2/3).

First, we explore the maximum number of symbols that M can read from w before the heads meet. Starting from ($q_{0}, \oplus, \varepsilon, w, \varepsilon$) $\langle 0,0,0\rangle$ and until the position \ominus is reached. Consider the optimal reading strategy to process the maximum number of symbols from $a^{10 k} b^{10 k} c^{10 k}$:
(1) M processes (with multiple steps) a^{k} and c^{k} and reaches $\langle 0, k, 0\rangle$,
(2) M reads / symbols together in one step (balanced number of a 's, b 's, and c's) while keeping $\langle 0, k, 0\rangle, l<k$,
(3) M processes $b^{2 k}$ and a^{k} (or c^{k}) and reaches $\langle 0,0, k\rangle$ (or $\langle k, 0,0\rangle$).

No further reading is possible; this strategy processed $5 k+\mid$ symbols.

Theorem

There is no jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton M such that $L(M)=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

Proof (3/3).

Second, when the heads meet, $a^{>4 k} b^{>4 k} c^{>4 k}$ has yet to be processed. Consider one of the optimal reading strategies:
(1) the heads are between b 's and c 's,
(2) the debt of the current configuration is $\langle 0, k, 0\rangle$,
(3) M processes $b^{2 k}$ and c^{k} and reaches $\langle k, 0,0\rangle$.

No further reading is possible; this strategy processed $3 k$ symbols.
M is not able to process more than $8 k+I$ symbols; but the input contains 30 k symbols. Consequently, there is no constant k that bounds the debt of configurations of M.

Theorem

There is no jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton M such that $L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}$.

Proof (1/10).
. . NO
Proof.
$\Psi_{V}\left(\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}\right)=\Psi_{V}\left(\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}\right)$
$w=a^{10 k} b^{10 k} c^{10 k}$
Since the debt depends only on o and Ψ_{V}, the proof is analogous.

- JWK is incomparable with GJFA and JFA.
- JWK and CF are incomparable.

Restrictions

N stateless, i.e., with only one state: if $Q=F=\left\{q_{0}\right\}$
F all-final, i.e., with only final states: if $Q=F$
S simple (at most one head moves in a step)
1 1-limited (exactly one letter is being read in a step)
Further variations such as NS, FS, N1, and FI WK automata can be identified in a straightforward way by using multiple constraints.

Figure: If there is an arrow from family X to family Y in the figure, then $X \subset Y$. Furthermore, if there is no path (following the arrows) between families X and Y, then X and Y are incomparable.

- The debt lemma was used only in JWKFAs so far.
- It can work in any automaton model that reads at least semi-continuously and where the steps depend only on the current state (not the previous readings, e.g., no stack).
- It can work in FAs.

Welcome at the end of this presentation!

And now Bonus. . .

Definition

Let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton. Assuming some states $a, q^{\prime} \in Q$ and a mutual position of heads $s \in\{\Theta, \ominus\}$, we say that q^{\prime} is reachable from q and s if there exists a configuration $\left(q, s, w_{1}, w_{2}, w_{3}\right)$ such that $\left(q, s, w_{1}, w_{2}, w_{3}\right) \curvearrowright^{*}\left(q^{\prime}, s^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right)$ in M, $s^{\prime} \in\{\oplus, \ominus\}, w_{1}, w_{2}, w_{3}, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime} \in(V \cup\{\#\})^{*}$.

Example automaton

$$
M=(\{a\},\{s, p, q\}, s,\{s\}, \delta)
$$

where δ :

$$
\begin{aligned}
& \delta(s, a, \varepsilon, \ominus)=\{p\} \\
& \delta(s, a, \varepsilon, \ominus)=\{a\}
\end{aligned}
$$

p is reachable from s and \oplus
p is not reachable from s and \ominus
q is reachable from s and \oplus
q is reachable from s and θ

Lemma

Let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton, and let $q \in Q$ and $s \in\{\oplus, \ominus\}$ such that $f \in F$ is reachable from q and s. When $\left(q_{0}, \oplus, \varepsilon, w, \varepsilon\right) ค^{*}\left(q, s, w_{1}, w_{2}, w_{3}\right)$ in $M, w \in V^{*}, w_{1}, w_{2}, w_{3} \in(V \cup\{\#\})^{*}$, there exists $w^{\prime} \in L(M)$ such that M starting with w^{\prime} can reach q and s^{\prime} ($s^{\prime}=s$ or $s^{\prime}=\ominus$) by using the same sequence of \oplus / θ-reading steps as in $\left(q_{0}, \oplus, \varepsilon, w, \varepsilon\right) \frown^{*}\left(q, s, w_{1}, w_{2}, w_{3}\right)$ and the rest of w^{\prime} can be processed with a limited number of steps bounded by some constant k for M.
(1) On a string w with a sequence of steps we reach q and s.
(2) A final state is reachable from q and s.
(3) There exists some string w^{\prime} such that we can reach q and s^{\prime} with the same sequence of steps.
(4) We can finish accepting w^{\prime} with a limited number of additional steps.

Proof.

(idea)
(1) If f is reachable from q and s, there has to exist a sequence of state transitions from $(Q \times\{\oplus, \ominus\})^{+}$such that $\left(p_{0}, s_{0}\right) \cdots\left(p_{n}, s_{n}\right), p_{0}=q$, $s_{0}=s^{\prime}, p_{n}=f, s_{n}=\theta$, all pairs are unique, ...
This sequence has to be finite and bounded by some constant.
(2) Represent the complete sequence as $\left(p_{0}, s_{0}\right) \cdots\left(p_{m}, s_{m}\right)$. At first, for all $i=0, \ldots, m$, set $a_{i}=\varepsilon, b_{i}=\varepsilon, c_{i}=\varepsilon, d_{i}=\varepsilon$. If $p_{i+1} \in \delta\left(p_{i}, u_{i}, v_{i}, s_{i}\right)$ is used, then if $s_{i}=\oplus$, set $a_{i}=u_{i}$ and $b_{i}=v_{i}$, otherwise if $s_{i}=\theta$, set $c_{i}=u_{i}$ and $d_{i}=v_{i}$.
(3) $w^{\prime}=a_{0} \cdots a_{m} d_{m} \cdots d_{0} c_{0} \cdots c_{m} b_{m} \cdots b_{0} \in L(M)$

Debt lemma

Let L be a language, and let $M=\left(V, Q, q_{0}, F, \delta\right)$ be a jumping $5^{\prime} \rightarrow 3^{\prime}$ WK automaton. If $L(M)=L, M$ accepts all $w \in L$ using only configurations that have their debt bounded by some constant k for M.

Proof.

(idea) By contradiction.
(1) Assume that M does not accept all $w \in L$ exclusively using only configurations that have their debt bounded by some constant k for M, then M can accept some $w \in L$ over a configuration for which the debt cannot be bounded by any k.
(2) Due to previous lemmas, if final state is reachable there is some w^{\prime} such that $\min \Delta(0)$ must be bounded by some constant.
(3) M cannot accept w over a state q and a mutual position of heads s from which no final state $f \in F$ is reachable.
(4) Consequently, when M accepts w, it must be done over configurations with the debt $\leq k$. But that is a contradiction.

