On Proof Techniques in Jumping Models

Radim Kocman

Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno, Czech Republic ikocman@fit.vutbr.cz

Table of Contents

- Motivation
- Finite Automata
- Jumping Finite Automata
- Jumping $5' \rightarrow 3'$ Watson-Crick Finite Automata
- Conclusion
- Bonus

Motivation

- In formal language theory, it is a common task to prove that a certain language can or cannot be accepted by the model in question.
- Student courses (IFJ, etc.) show only basic, well-known techniques (pumping lemmas, etc.).
- This talk shows new techniques used in current research.
- Motivation for further study.

Finite Automata

Finite Automata – Definition (1/2)

Lazy Finite Automaton (LFA)

quintuple
$$M = (Q, \Sigma, R, s, F)$$

- is a finite set of states
- Σ is an input alphabet, $Q \cap \Sigma = \emptyset$
- R is a finite set of rules: (p, y, q), where $p, q \in Q$, $y \in \Sigma^*$
- s is the start state
- F is a set of final states

Finite Automaton (FA)

If $(p, y, q) \in R$ implies that $|y| \le 1$.

Finite Automata – Definition (2/2)

Configuration

pw

- p is the state
- w is an unprocessed input

Step/Move

$$pyx \Rightarrow qx$$

if $(p, y, q) \in R$ and $x, y \in \Sigma^*$. In the standard manner, define \Rightarrow^+ and \Rightarrow^* .

Accepted language

$$L(M) = \{ \mathbf{w} \in \mathbf{\Sigma}^* : s\mathbf{w} \Rightarrow^* f, f \in F \}$$

FA – Accepted Languages

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R:

$$(s, \mathbf{a}, p)$$

 (p, \mathbf{b}, q)
 (q, \mathbf{c}, s)

start
$$\longrightarrow$$
 S \xrightarrow{a} \xrightarrow{p} \xrightarrow{b} \xrightarrow{q}

Example input: abcabc

$$sabcabc \Rightarrow pbcabc \Rightarrow qcabc \Rightarrow sabc \Rightarrow pbc \Rightarrow qc \Rightarrow s$$

Resulting language

• FA:
$$L(M) = \{abc\}^*$$

FA – Undefinable Languages

- What about $L = \{a^n b^n : n \ge 0\}$?
- Can we construct an FA that accepts L?
- How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let L be a regular language over Σ . Then there is a constant k, depending on L, such that for each $w \in L$ with $|w| \ge k$ there exist $x, y, z \in \Sigma^*$ such that w = xyz and

- $|xy| \leq k$,
- |y| > 0,
- 3 $xy^iz \in L$ for all $i \geq 0$.
 - This lemma is necessary but not sufficient.
- There are sufficient lemmas but they are more complicated.

FA – Proof by Contradiction with PL

Theorem

There is no FA M such that $L(M) = \{a^n b^n : n \ge 0\}$.

Proof.

By contradiction. Assume that there is a FA M such that $L(M) = \{a^n b^n : n \ge 0\}$. Then, L(M) is a regular language.

Choose $w = a^k b^k$ in L(M). Clearly, $|w| \ge k$.

By the pumping lemma, w = xyz for some $x, y, z \in \Sigma^*$ such that (1) $|xy| \le k$, (2) |y| > 0, and (3) $xy^iz \in L(M)$ for all $i \ge 0$.

By (1) and (2), we have $y = a^m$, $1 \le m \le k$.

But $xy^0z = xz = a^{k-m}b^k \notin L(M)$. Thus, (3) does not hold.

Therefore, there is no FA M such that $L(M) = \{a^n b^n : n \ge 0\}$.

Jumping Finite Automata

Based on

- Alexander Meduna and Petr Zemek
 Jumping Finite Automata
 Int. J. Found. Comput. Sci. 23(7):1555–1578 (2012)
- Alexander Meduna and Petr Zemek Regulated Grammars and Automata Springer (2014)

Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple
$$M = (Q, \Sigma, R, s, F)$$

Q, Σ , R, s, F are defined as in LFA.

If $(p, y, q) \in R$ implies that $|y| \le 1$, then M is a jumping finite automaton (JFA).

Configuration

upv where $u, v \in \Sigma^*$ and $p \in Q$.

Jump

$$xpyz \land x'qz'$$

if $x, z, x', z' \in \Sigma^*$ such that xz = x'z' and $(p, y, q) \in \mathbb{R}$; \uparrow^+ , \uparrow^* .

Accepted language

$$L(M) = \{uv : u, v \in \Sigma^*, usv \curvearrowright^* f, f \in F\}$$

JFA – Accepted Languages

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R:

$$(s, \mathbf{a}, p)$$

 (p, \mathbf{b}, q)
 (q, \mathbf{c}, s)

Example input: abbacc

abbsacc \land abpbcc \land abqcc \land sabc \land pbc \land qc \land s

Resulting language

- FA: $L(M) = \{abc\}^*$
- JFA: $L(M) = \{w : w \in \{a, b, c\}^*, |w|_a = |w|_b = |w|_c\}$

JFA – Undefinable Languages

 GJFA and JFA cannot guarantee the order of symbols between jumps.

Theorem

There is no GJFA M such that $L(M) = \{a\}^*\{b\}^*$.

Proof.

By contradiction. Let $K = \{a\}^* \{b\}^*$. Assume that there is a GJFA $M = (Q, \Sigma, R, s, F)$ such that L(M) = K.

Let $n = \max\{|y| : (p, y, q) \in R\}$ and $w = a^n b$.

When accepting w, a rule $(p, a^ib, q) \in R$, $0 \le i < n$, has to be used. However, then M also accepts from the configuration a^ibsa^{n-i} or sa^iba^{n-i} . This implies that $a^iba^{n-i} \in L(M)$. But that is a contradiction with the assumption that L(M) = K. Therefore, there is no GJFA M such that $L(M) = \{a\}^*\{b\}^*$.

JFA – Language Families

Jumping $5' \rightarrow 3'$ Watson-Crick Finite Automata

Based on

- Radim Kocman, Benedek Nagy, Zbyněk Křivka, and Alexander Meduna A Jumping 5' → 3' Watson-Crick Finite Automata Model Proceedings of NCMA 2018
- Radim Kocman, Zbyněk Křivka, Alexander Meduna, and Benedek Nagy A Jumping 5' → 3' Watson-Crick Finite Automata Model Acta Informatica (in review)

Jumping $5' \rightarrow 3'$ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

- biology-inspired model (the core model is similar to FA)
- work with the Watson-Crick tape (double-stranded tape, resembles DNA, the elements of the strands are pairwise complements of each other)
- uses two heads (one for each strand of the tape)

$5' \rightarrow 3'$ Watson-Crick Finite Automata

- the heads read in the biochemical $5' \rightarrow 3'$ direction
- that is physically/mathematically in opposite directions

Sensing $5' \rightarrow 3'$ Watson-Crick Finite Automata

- the heads sense that they are meeting
- the processing of the input ends if for all pairs of the sequence one of the letters is read
- the tape notation is usually simplified: $\begin{bmatrix} A \\ I \end{bmatrix}$ as a, \ldots

Jumping $5' \rightarrow 3'$ WKA – Idea

Combined model

- the combination of GJFA and sensing $5' \rightarrow 3'$ WKA
- two heads as in sensing $5' \rightarrow 3'$ WKA
- each head can traverse the whole input in its direction
- all pairs of symbols are read only once

Expectations

- better accepting power than the non-combined models
- ability to model languages with some crossed agreements

Jumping $5' \rightarrow 3'$ WKA – Definition (1/2)

Jumping 5' ightarrow 3' WK Automaton

quintuple
$$M = (V, Q, q_0, F, \delta)$$

$$V(\Sigma)$$
, Q , $q_0(s)$, F as in LFA, $V \cap \{\#\} = \emptyset$,

$$\delta \colon (Q \times V^* \times V^* \times D) \to 2^Q$$
 (finite),

 $D = \{\oplus, \ominus\}$ indicates the mutual position of heads.

Configuration

$$(q, s, w_1, w_2, w_3)$$

- a is the state
- s is the position of heads
- \mathbf{w}_1 is the unprocessed input before the first head
- W₂ is the unprocessed input between the heads
- W₃ is the unprocessed input after the second head

Jumping $5' \rightarrow 3'$ WKA – Definition (2/2)

Steps

Let $x, y, u, v, w_2 \in V^*$ and $w_1, w_3 \in (V \cup \{\#\})^*$.

- ① \oplus -reading: $(q, \oplus, w_1, xw_2y, w_3) \curvearrowright (q', s, w_1\{\#\}^{|x|}, w_2, \{\#\}^{|y|}w_3)$, where $q' \in \delta(q, x, y, \oplus)$, and s is either \oplus if $|w_2| > 0$ or \ominus .
- 2 \ominus -reading: $(q, \ominus, w_1 y, \varepsilon, xw_3) \land (q', \ominus, w_1, \varepsilon, w_3)$, where $q' \in \delta(q, x, y, \ominus)$.
- ③ ⊕-jumping: $(q, \oplus, w_1, uw_2v, w_3) \sim (q, s, w_1u, w_2, vw_3)$, where s is either \oplus if $|w_2| > 0$ or \ominus .

In the standard manner, define \wedge^+ and \wedge^* .

Accepted language

$$L(M) = \{ w \in V^* : (q_0, \oplus, \varepsilon, w, \varepsilon) \curvearrowright^* (q_f, \ominus, \varepsilon, \varepsilon, \varepsilon), \ q_f \in F \}$$

JWKFA – Accepted Languages (1/3)

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, a, b, \oplus) = \{s\}$$
$$\delta(s, a, b, \ominus) = \{s\}$$

Example input: aaabbb

JWKFA – Accepted Languages (2/3)

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, a, b, \oplus) = \{s\}$$

$$\delta(s, a, b, \ominus) = \{s\}$$

Example input: baabba

$$\begin{array}{lll} (s,\oplus,\varepsilon,baabba,\varepsilon) & & \oplus\text{-jumping} \\ (s,\oplus,b,aabb,a) & & \oplus\text{-reading} \\ (s,\oplus,b\#,ab,\#a) & & \oplus\text{-reading} \\ (s,\ominus,b\#\#,\varepsilon,\#\#a) & & \ominus\text{-jumping} \\ (s,\ominus,b,\varepsilon,a) & & \oplus\text{-reading} \\ (s,\ominus,\varepsilon,\varepsilon,\varepsilon) & & \oplus\text{-reading} \\ \end{array}$$

Resulting language

$$L(M) = \{w : w \in \{a, b\}^*, |w|_a = |w|_b\}$$

JWKFA – Accepted Languages (3/3)

- What happens if we remove $\delta(s, \boldsymbol{a}, \boldsymbol{b}, \ominus) = \{s\}$ from M? $\rightarrow L(M) = \{a^n b^n : n > 0\}$
- And if we use only $\delta(s, \alpha, \varepsilon, \oplus) = \{s\}$ and $\delta(s, \varepsilon, b, \oplus) = \{s\}$? $\to L(M) = \{\alpha\}^*\{b\}^*$
- REG ⊂ JWK
- LIN ⊂ JWK
- $\{w_1w_2: w_1 \in \{a,b\}^*, \ w_2 \in \{c,d\}^*, \ |w_1|_a = |w_2|_c, \ |w_1|_b = |w_2|_d\} \in \mathbf{JWK}$ which is a non-context-free language
- JWK ⊂ CS

JWKFA – Undefinable Languages

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?
 - The automaton can guarantee the order of symbols in certain cases. We cannot use the JFA technique.
 - The symbols can be mixed so it is not easy to derive a meaningful pumping lemma.

Parikh Vector (1/2)

Parikh Vector

The Parikh vector associated to a string $x \in V^*$ with respect to the alphabet $V = \{a_1, a_2, \dots, a_n\}$ is $\Psi_V(x) = (|x|_{a_1}, |x|_{a_2}, \dots, |x|_{a_n}).$

For $L \subseteq V^*$ we define $\Psi_V(L) = \{\Psi_V(x) : x \in L\}$.

Example strings

$$V = \{a, b, c\},$$
 $x = abbccc$ $\Rightarrow \Psi_V(x) = (1, 2, 3)$
 $V = \{a, b, c, d\},$ $x = abbccc$ $\Rightarrow \Psi_V(x) = (1, 2, 3, 0)$
 $V = \{a, b, c, d\},$ $x = cbabcc$ $\Rightarrow \Psi_V(x) = (1, 2, 3, 0)$
 $V = \{a, b, c, d\},$ $x = \varepsilon$ $\Rightarrow \Psi_V(x) = (0, 0, 0, 0)$

Parikh Vector (2/2)

Parikh Vector

The Parikh vector associated to a string $x \in V^*$ with respect to the alphabet $V = \{a_1, a_2, \dots, a_n\}$ is $\Psi_V(x) = (|x|_{a_1}, |x|_{a_2}, \dots, |x|_{a_n}).$

For $L \subseteq V^*$ we define $\Psi_V(L) = \{\Psi_V(x) : x \in L\}$.

Example language

Let
$$V = \{a, b, c\}$$
 and $L = \{a^nb^nc^n : n \ge 0\}$. Then, $\Psi_V(L) = \{x = \varepsilon \Rightarrow \Psi_V(x) = (0, 0, 0) \\ x = abc \Rightarrow \Psi_V(x) = (1, 1, 1) \\ x = aabbcc \Rightarrow \Psi_V(x) = (2, 2, 2) \\ x = aaabbbccc \Rightarrow \Psi_V(x) = (3, 3, 3) \\ \cdots$

$$\} = \{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), \dots\} = \{(n, n, n) : n \ge 0\}.$$

JWKFA – The Debt of the Configuration (1/2)

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton, where $V = \{a_1, \dots, a_n\}$. Following the computation of M on an input $w \in V^*$, let $o = (o_1, \dots, o_n)$ be the Parikh vector built by the processed (read) symbols from w: At first, for the starting configuration, set $o = \Psi_V(\varepsilon)$. For the following configurations, whenever M makes a \oplus/\ominus -reading step from some q to q' according to $q' \in \delta(q, u, v, s)$, set $o = o + \Psi_V(uv)$. Using the Parikh mapping of L(M), we define $\Delta(o) = \{\sum_{i=1}^{n} (m_i - o_i) : A(o) = \{\sum_{i=1}^{n} (m_i (m_1, ..., m_n) \in \Psi_V(L(M)), \ m_i > o_i, \ 1 < i < n \} \cup \{\infty\}.$ Finally, we define the debt of the current configuration of M as $\min \Delta(o)$.

- We are counting the processed symbols in the Parikh Vector $o = (o_1, \ldots, o_n)$.
- 2 The debt of the current configuration of M is the minimum number of symbols that we need to add to o so that it matches some Parikh vector from $\Psi_V(L(M))$.

JWKFA – The Debt of the Configuration (2/2)

Example automaton

Let $V = \{a, b, c\}$. Assume that there is a jumping $5' \rightarrow 3'$ WK automaton $M = (V, Q, q_0, F, \delta)$ such that $L(M) = \{a^n b^n c^n : A \in A \}$ n > 0.

Therefore, $\Psi_V(L(M)) = \{(n, n, n) : n \ge 0\}.$

Example steps

$$\begin{array}{lll} (s,\oplus,\varepsilon,\underset{\longleftarrow}{\text{aabbcc}},\varepsilon)\curvearrowright & o=(0,0,0) & \min\Delta(o)=0\\ (?,\oplus,\#,abbcc,\varepsilon)\curvearrowright & o=(1,0,0) & \min\Delta(o)=2\\ (?,\oplus,\#a,bbcc,\varepsilon)\curvearrowright & o=(1,0,0) & \min\Delta(o)=2\\ (?,\oplus,\#a\#,bc,\#)\curvearrowright & o=(1,1,1) & \min\Delta(o)=0\\ (?,\oplus,\#a\#\#,\varepsilon,\#\#) \curvearrowright & o=(1,2,2) & \min\Delta(o)=1\\ (?,\ominus,\#a,\varepsilon,\varepsilon)\curvearrowright & o=(1,2,2) & \min\Delta(o)=1\\ (?,\ominus,\#,\varepsilon,\varepsilon)\curvearrowright & o=(2,2,2) & \min\Delta(o)=0\\ (?,\ominus,\#,\varepsilon,\varepsilon)\curvearrowright & o=(2,2,2) & \min\Delta(o)=0\\ (?,\ominus,\varepsilon,\varepsilon,\varepsilon,\varepsilon)\curvearrowright & o=(2,2,2) & \min\Delta(o)=0\\ (?,\ominus,\varepsilon,\varepsilon,\varepsilon,\varepsilon)\curvearrowright & o=(2,2,2) & \min\Delta(o)=0\\ \end{array}$$

Debt lemma

Let L be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \to 3'$ WK automaton. If L(M) = L, M accepts all $w \in L$ using only configurations that have their debt bounded by some constant k for M.

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, \mathbf{a}, \mathbf{b}, \oplus) = \{s\}$$
$$\delta(s, \mathbf{a}, \mathbf{b}, \ominus) = \{s\}$$

$$L(M) = \{w : w \in \{a,b\}^*, \ |w|_a = |w|_b\}$$

k = 0 is sufficient \odot

You can go to Bonus for the proof.

JWKFA – $\{a^nb^nc^n : n \ge 0\}$ (1/3)

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^nb^nc^n : n \geq 0\}.$

Proof (1/3).

Basic idea. Considering any sufficiently large constant k, we show that M cannot process all symbols of $a^{10k}b^{10k}c^{10k}$ using only configurations that have their debt bounded by k.

Formal proof. (sketch) By contradiction. Let $L = \{a^nb^nc^n : n \ge 0\}$, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \to 3'$ WK automaton such that L(M) = L.

Consider any k such that $k > \max\{|uv| : \delta(q, u, v, s) \neq \emptyset, u, v \in V^*\}$. Represent the debt of the configuration as $\langle d_a, d_b, d_c \rangle$.

For all traversed configurations must hold $d_a + d_b + d_c < k$.

Let $w = a^{10k}b^{10k}c^{10k}$.

JWKFA – $\{a^nb^nc^n : n \ge 0\}$ (2/3)

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^nb^nc^n : n \ge 0\}.$

Proof (2/3).

First, we explore the maximum number of symbols that M can read from w before the heads meet. Starting from $(q_0, \oplus, \varepsilon, w, \varepsilon)$ $\langle 0, 0, 0 \rangle$ and until the position \ominus is reached. Consider the optimal reading strategy to process the maximum number of symbols from $a^{10k}b^{10k}c^{10k}$:

- 1 M processes (with multiple steps) a^k and c^k and reaches (0, k, 0),
- 2 *M* reads *l* symbols together in one step (balanced number of a's, b's, and c's) while keeping (0, k, 0), l < k,
- 3 M processes b^{2k} and a^k (or c^k) and reaches (0,0,k) (or (k,0,0)).

No further reading is possible; this strategy processed 5k + l symbols.

JWKFA – $\{a^nb^nc^n : n \ge 0\}$ (3/3)

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^nb^nc^n : n \ge 0\}.$

Proof (3/3).

Second, when the heads meet, $a^{>4k}b^{>4k}c^{>4k}$ has yet to be processed. Consider one of the optimal reading strategies:

- 1) the heads are between b's and c's,
- 2 the debt of the current configuration is (0, k, 0),
- 3 *M* processes b^{2k} and c^k and reaches $\langle k, 0, 0 \rangle$.

No further reading is possible; this strategy processed 3k symbols.

M is not able to process more than 8k + l symbols; but the input contains 30k symbols. Consequently, there is no constant k that bounds the debt of configurations of M.

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}.$

Proof (1/10).

...NO

Proof.

$$\Psi_{V}(\{w \in \{a, b, c\}^{*}: |w|_{a} = |w|_{b} = |w|_{c}\}) = \Psi_{V}(\{a^{n}b^{n}c^{n}: n \ge 0\})$$

$$w = a^{10k}b^{10k}c^{10k}$$

Since the debt depends only on o and Ψ_{V} , the proof is analogous.

JWKFA – Language Families (1/2)

- JWK is incomparable with GJFA and JFA.
- JWK and CF are incomparable.

Restrictions

- N stateless, i.e., with only one state: if $Q = F = \{q_0\}$
- **F** all-final, i.e., with only final states: if Q = F
- s imple (at most one head moves in a step)
- 1 1-limited (exactly one letter is being read in a step)

Further variations such as **NS**, **FS**, **N1**, and **F1** WK automata can be identified in a straightforward way by using multiple constraints.

JWKFA – Language Families (2/2)

Figure: If there is an arrow from family X to family Y in the figure, then $X \subset Y$. Furthermore, if there is no path (following the arrows) between families X and Y, then X and Y are incomparable.

Conclusion

- The debt lemma was used only in JWKFAs so far.
- It can work in any automaton model that reads at least semi-continuously and where the steps depend only on the current state (not the previous readings, e.g., no stack).
- It can work in FAs.

Welcome at the end of this presentation!

And now Bonus...

JWKFA – Why the Debt Lemma Holds (1/4)

Definition

Let $M=(V,Q,q_0,F,\delta)$ be a jumping $5'\to 3'$ WK automaton. Assuming some states $q,q'\in Q$ and a mutual position of heads $s\in \{\oplus,\ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q,s,w_1,w_2,w_3) such that $(q,s,w_1,w_2,w_3) \curvearrowright^* (q',s',w'_1,w'_2,w'_3)$ in M, $s'\in \{\oplus,\ominus\}$, $w_1,w_2,w_3,w'_1,w'_2,w'_3\in (V\cup \{\#\})^*$.

Example automaton

$$M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, a, \varepsilon, \oplus) = \{p\}$$

 $\delta(s, a, \varepsilon, \ominus) = \{q\}$

- p is reachable from s and \oplus
- p is not reachable from s and \ominus
- q is reachable from s and \oplus
- q is reachable from s and \ominus

JWKFA – Why the Debt Lemma Holds (2/4)

Lemma

Let $M=(V,Q,q_0,F,\delta)$ be a jumping $5'\to 3'$ WK automaton, and let $q\in Q$ and $s\in \{\oplus,\ominus\}$ such that $f\in F$ is reachable from q and s. When $(q_0,\oplus,\varepsilon,w,\varepsilon) \curvearrowright^* (q,s,w_1,w_2,w_3)$ in $M,w\in V^*,w_1,w_2,w_3\in (V\cup \{\#\})^*$, there exists $w'\in L(M)$ such that M starting with w' can reach q and s' (s'=s or $s'=\ominus$) by using the same sequence of \oplus/\ominus -reading steps as in $(q_0,\oplus,\varepsilon,w,\varepsilon) \curvearrowright^* (q,s,w_1,w_2,w_3)$ and the rest of w' can be processed with a limited number of steps bounded by some constant k for M.

- \bigcirc On a string w with a sequence of steps we reach q and s.
- \bigcirc A final state is reachable from q and s.
- 3 There exists some string w' such that we can reach q and s' with the same sequence of steps.
- 4 We can finish accepting w' with a limited number of additional steps.

JWKFA – Why the Debt Lemma Holds (3/4)

Proof.

(idea)

(1) If f is reachable from q and s, there has to exist a sequence of state transitions from $(Q \times \{\oplus, \ominus\})^+$ such that $(p_0, s_0) \cdots (p_n, s_n)$, $p_0 = q$, $s_0 = s'$, $p_n = f$, $s_n = \ominus$, all pairs are unique, . . .

This sequence has to be finite and bounded by some constant.

- (2) Represent the complete sequence as $(p_0, s_0) \cdots (p_m, s_m)$. At first, for all $i = 0, \ldots, m$, set $a_i = \varepsilon$, $b_i = \varepsilon$, $c_i = \varepsilon$, $d_i = \varepsilon$. If $p_{i+1} \in \delta(p_i, u_i, v_i, s_i)$ is used, then if $s_i = \oplus$, set $a_i = u_i$ and $b_i = v_i$, otherwise if $s_i = \ominus$, set $c_i = u_i$ and $d_i = v_i$.
- $(3) w' = a_0 \cdots a_m d_m \cdots d_0 c_0 \cdots c_m b_m \cdots b_0 \in L(M)$

JWKFA – Why the Debt Lemma Holds (4/4)

Debt lemma

Let L be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \to 3'$ WK automaton. If L(M) = L, M accepts all $w \in L$ using only configurations that have their debt bounded by some constant k for M.

Proof.

(idea) By contradiction.

- (1) Assume that M does not accept all $w \in L$ exclusively using only configurations that have their debt bounded by some constant k for M, then M can accept some $w \in L$ over a configuration for which the debt cannot be bounded by any k.
- (2) Due to previous lemmas, if final state is reachable there is some w' such that $\min \Delta(o)$ must be bounded by some constant.
- (3) M cannot accept w over a state q and a mutual position of heads s from which no final state $f \in F$ is reachable.
- (4) Consequently, when M accepts w, it must be done over configurations with the debt $\leq k$. But that is a contradiction.