
On Proof Techniques
in Jumping Models

Radim Kocman
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, Czech Republic

ikocman@fit.vutbr.cz

LTA 2019 (December 18, 2019)

Table of Contents

Motivation

Finite Automata

Jumping Finite Automata

Jumping 5′ → 3′ Watson-Crick Finite Automata

Conclusion

Bonus

On Proof Techniques in Jumping Models 2 / 38

Motivation

• In formal language theory, it is a common task to prove
that a certain language can or cannot be accepted by
the model in question.

• Student courses (IFJ, etc.) show only basic, well-known
techniques (pumping lemmas, etc.).

• This talk shows new techniques used in current research.

• Motivation for further study.

On Proof Techniques in Jumping Models 3 / 38

Finite Automata

Finite Automata – Definition (1/2)

Lazy Finite Automaton (LFA)

quintuple M = (Q,Σ,R, s, F)

Q is a finite set of states
Σ is an input alphabet, Q ∩ Σ = ∅
R is a finite set of rules: (p, y ,q), where p,q ∈ Q, y ∈ Σ∗

s is the start state
F is a set of final states

Finite Automaton (FA)

If (p, y ,q) ∈ R implies that |y | ≤ 1.

On Proof Techniques in Jumping Models 5 / 38

Finite Automata – Definition (1/2)

Lazy Finite Automaton (LFA)

quintuple M = (Q,Σ,R, s, F)

Q is a finite set of states
Σ is an input alphabet, Q ∩ Σ = ∅
R is a finite set of rules: (p, y ,q), where p,q ∈ Q, y ∈ Σ∗

s is the start state
F is a set of final states

Finite Automaton (FA)

If (p, y ,q) ∈ R implies that |y | ≤ 1.

On Proof Techniques in Jumping Models 5 / 38

Finite Automata – Definition (2/2)

Configuration

pw

p is the state
w is an unprocessed input

Step/Move

pyx ⇒ qx

if (p, y ,q) ∈ R and x , y ∈ Σ∗.
In the standard manner, define⇒+ and⇒∗.

Accepted language

L(M) = {w ∈ Σ∗ : sw ⇒∗ f , f ∈ F}

On Proof Techniques in Jumping Models 6 / 38

Finite Automata – Definition (2/2)

Configuration

pw

p is the state
w is an unprocessed input

Step/Move

pyx ⇒ qx

if (p, y ,q) ∈ R and x , y ∈ Σ∗.
In the standard manner, define⇒+ and⇒∗.

Accepted language

L(M) = {w ∈ Σ∗ : sw ⇒∗ f , f ∈ F}

On Proof Techniques in Jumping Models 6 / 38

Finite Automata – Definition (2/2)

Configuration

pw

p is the state
w is an unprocessed input

Step/Move

pyx ⇒ qx

if (p, y ,q) ∈ R and x , y ∈ Σ∗.
In the standard manner, define⇒+ and⇒∗.

Accepted language

L(M) = {w ∈ Σ∗ : sw ⇒∗ f , f ∈ F}

On Proof Techniques in Jumping Models 6 / 38

FA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abcabc

sabcabc ⇒ pbcabc ⇒ qcabc ⇒ sabc ⇒ pbc ⇒ qc ⇒ s

Resulting language
• FA: L(M) = {abc}∗

On Proof Techniques in Jumping Models 7 / 38

FA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abcabc

sabcabc ⇒ pbcabc ⇒ qcabc ⇒ sabc ⇒ pbc ⇒ qc ⇒ s

Resulting language
• FA: L(M) = {abc}∗

On Proof Techniques in Jumping Models 7 / 38

FA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abcabc

sabcabc ⇒ pbcabc ⇒ qcabc ⇒ sabc ⇒ pbc ⇒ qc ⇒ s

Resulting language
• FA: L(M) = {abc}∗

On Proof Techniques in Jumping Models 7 / 38

FA – Undefinable Languages

• What about L = {anbn : n ≥ 0}?
• Can we construct an FA that accepts L?
• How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let L be a regular language over Σ. Then there is a constant k ,
depending on L, such that for each w ∈ L with |w | ≥ k there
exist x , y , z ∈ Σ∗ such that w = xyz and

1 |xy | ≤ k ,
2 |y | > 0,
3 xy iz ∈ L for all i ≥ 0.

• This lemma is necessary but not sufficient.
• There are sufficient lemmas but they are more complicated.

On Proof Techniques in Jumping Models 8 / 38

FA – Undefinable Languages

• What about L = {anbn : n ≥ 0}?
• Can we construct an FA that accepts L?
• How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let L be a regular language over Σ. Then there is a constant k ,
depending on L, such that for each w ∈ L with |w | ≥ k there
exist x , y , z ∈ Σ∗ such that w = xyz and

1 |xy | ≤ k ,
2 |y | > 0,
3 xy iz ∈ L for all i ≥ 0.

• This lemma is necessary but not sufficient.
• There are sufficient lemmas but they are more complicated.

On Proof Techniques in Jumping Models 8 / 38

FA – Proof by Contradiction with PL

Theorem

There is no FA M such that L(M) = {anbn : n ≥ 0}.

Proof.

By contradiction. Assume that there is a FA M such that
L(M) = {anbn : n ≥ 0}. Then, L(M) is a regular language.

Choose w = akbk in L(M). Clearly, |w | ≥ k .

By the pumping lemma, w = xyz for some x , y , z ∈ Σ∗ such that
(1) |xy | ≤ k , (2) |y | > 0, and (3) xy iz ∈ L(M) for all i ≥ 0.

By (1) and (2), we have y = am, 1 ≤m ≤ k .
But xy0z = xz = ak−mbk 6∈ L(M). Thus, (3) does not hold.
Therefore, there is no FA M such that L(M) = {anbn : n ≥ 0}.

On Proof Techniques in Jumping Models 9 / 38

Jumping Finite Automata

Based on

Alexander Meduna and Petr Zemek
Jumping Finite Automata
Int. J. Found. Comput. Sci. 23(7):1555–1578 (2012)

Alexander Meduna and Petr Zemek
Regulated Grammars and Automata
Springer (2014)

Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple M = (Q,Σ,R, s, F)

Q, Σ, R, s, F are defined as in LFA.

If (p, y ,q) ∈ R implies that |y | ≤ 1, then M is a jumping finite
automaton (JFA).

Configuration

upv where u, v ∈ Σ∗ and p ∈ Q.

Jump

xpyz y x ′qz ′

if x , z, x ′, z ′ ∈ Σ∗ such that xz = x ′z ′ and (p, y ,q) ∈ R; y+, y∗.

Accepted language

L(M) = {uv : u, v ∈ Σ∗, usv y∗ f , f ∈ F}

On Proof Techniques in Jumping Models 11 / 38

Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple M = (Q,Σ,R, s, F)

Q, Σ, R, s, F are defined as in LFA.

If (p, y ,q) ∈ R implies that |y | ≤ 1, then M is a jumping finite
automaton (JFA).

Configuration

upv where u, v ∈ Σ∗ and p ∈ Q.

Jump

xpyz y x ′qz ′

if x , z, x ′, z ′ ∈ Σ∗ such that xz = x ′z ′ and (p, y ,q) ∈ R; y+, y∗.

Accepted language

L(M) = {uv : u, v ∈ Σ∗, usv y∗ f , f ∈ F}

On Proof Techniques in Jumping Models 11 / 38

Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple M = (Q,Σ,R, s, F)

Q, Σ, R, s, F are defined as in LFA.

If (p, y ,q) ∈ R implies that |y | ≤ 1, then M is a jumping finite
automaton (JFA).

Configuration

upv where u, v ∈ Σ∗ and p ∈ Q.

Jump

xpyz y x ′qz ′

if x , z, x ′, z ′ ∈ Σ∗ such that xz = x ′z ′ and (p, y ,q) ∈ R; y+, y∗.

Accepted language

L(M) = {uv : u, v ∈ Σ∗, usv y∗ f , f ∈ F}

On Proof Techniques in Jumping Models 11 / 38

Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple M = (Q,Σ,R, s, F)

Q, Σ, R, s, F are defined as in LFA.

If (p, y ,q) ∈ R implies that |y | ≤ 1, then M is a jumping finite
automaton (JFA).

Configuration

upv where u, v ∈ Σ∗ and p ∈ Q.

Jump

xpyz y x ′qz ′

if x , z, x ′, z ′ ∈ Σ∗ such that xz = x ′z ′ and (p, y ,q) ∈ R; y+, y∗.

Accepted language

L(M) = {uv : u, v ∈ Σ∗, usv y∗ f , f ∈ F}

On Proof Techniques in Jumping Models 11 / 38

JFA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abbacc

abbsacc y abpbcc y abqcc y sabc y pbc y qc y s

Resulting language
• FA: L(M) = {abc}∗

• JFA: L(M) = {w : w ∈ {a,b,c}∗, |w |a = |w |b = |w |c}

On Proof Techniques in Jumping Models 12 / 38

JFA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abbacc

abbsacc y abpbcc y abqcc y sabc y pbc y qc y s

Resulting language
• FA: L(M) = {abc}∗

• JFA: L(M) = {w : w ∈ {a,b,c}∗, |w |a = |w |b = |w |c}

On Proof Techniques in Jumping Models 12 / 38

JFA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abbacc

abbsacc y abpbcc y abqcc y sabc y pbc y qc y s

Resulting language
• FA: L(M) = {abc}∗

• JFA: L(M) = {w : w ∈ {a,b,c}∗, |w |a = |w |b = |w |c}

On Proof Techniques in Jumping Models 12 / 38

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols
between jumps.

Theorem

There is no GJFA M such that L(M) = {a}∗{b}∗.

Proof.

By contradiction. Let K = {a}∗{b}∗. Assume that there is a GJFA
M = (Q,Σ,R, s, F) such that L(M) = K .

Let n = max{|y | : (p, y ,q) ∈ R} and w = anb.

When accepting w , a rule (p,aib,q) ∈ R, 0 ≤ i < n, has to be
used. However, then M also accepts from the configuration
aibsan−i or saiban−i . This implies that aiban−i ∈ L(M). But that is
a contradiction with the assumption that L(M) = K .
Therefore, there is no GJFA M such that L(M) = {a}∗{b}∗.

On Proof Techniques in Jumping Models 13 / 38

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols
between jumps.

Theorem

There is no GJFA M such that L(M) = {a}∗{b}∗.

Proof.

By contradiction. Let K = {a}∗{b}∗. Assume that there is a GJFA
M = (Q,Σ,R, s, F) such that L(M) = K .

Let n = max{|y | : (p, y ,q) ∈ R} and w = anb.

When accepting w , a rule (p,aib,q) ∈ R, 0 ≤ i < n, has to be
used. However, then M also accepts from the configuration
aibsan−i or saiban−i . This implies that aiban−i ∈ L(M). But that is
a contradiction with the assumption that L(M) = K .
Therefore, there is no GJFA M such that L(M) = {a}∗{b}∗.

On Proof Techniques in Jumping Models 13 / 38

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols
between jumps.

Theorem

There is no GJFA M such that L(M) = {a}∗{b}∗.

Proof.

By contradiction. Let K = {a}∗{b}∗. Assume that there is a GJFA
M = (Q,Σ,R, s, F) such that L(M) = K .

Let n = max{|y | : (p, y ,q) ∈ R} and w = anb.

When accepting w , a rule (p,aib,q) ∈ R, 0 ≤ i < n, has to be
used. However, then M also accepts from the configuration
aibsan−i or saiban−i . This implies that aiban−i ∈ L(M). But that is
a contradiction with the assumption that L(M) = K .
Therefore, there is no GJFA M such that L(M) = {a}∗{b}∗.

On Proof Techniques in Jumping Models 13 / 38

JFA – Language Families

On Proof Techniques in Jumping Models 14 / 38

Jumping 5′ → 3′ Watson-Crick Finite Automata

Based on

Radim Kocman, Benedek Nagy, Zbyněk Ǩrivka,
and Alexander Meduna
A Jumping 5′ → 3′ Watson-Crick Finite Automata Model
Proceedings of NCMA 2018

Radim Kocman, Zbyněk Ǩrivka, Alexander Meduna,
and Benedek Nagy
A Jumping 5′ → 3′ Watson-Crick Finite Automata Model
Acta Informatica (in review)

Jumping 5′ → 3′ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

• biology-inspired model (the core model is similar to FA)

• work with the Watson-Crick tape (double-stranded tape,
resembles DNA, the elements of the strands are pairwise
complements of each other)

• uses two heads (one for each strand of the tape)

5′ → 3′ Watson-Crick Finite Automata

• the heads read in the biochemical 5′ → 3′ direction

• that is physically/mathematically in opposite directions

Sensing 5′ → 3′ Watson-Crick Finite Automata

• the heads sense that they are meeting

• the processing of the input ends if for all pairs of the sequence
one of the letters is read

• the tape notation is usually simplified: [A
T] as a, . . .

On Proof Techniques in Jumping Models 16 / 38

Jumping 5′ → 3′ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

• biology-inspired model (the core model is similar to FA)

• work with the Watson-Crick tape (double-stranded tape,
resembles DNA, the elements of the strands are pairwise
complements of each other)

• uses two heads (one for each strand of the tape)

5′ → 3′ Watson-Crick Finite Automata

• the heads read in the biochemical 5′ → 3′ direction

• that is physically/mathematically in opposite directions

Sensing 5′ → 3′ Watson-Crick Finite Automata

• the heads sense that they are meeting

• the processing of the input ends if for all pairs of the sequence
one of the letters is read

• the tape notation is usually simplified: [A
T] as a, . . .

On Proof Techniques in Jumping Models 16 / 38

Jumping 5′ → 3′ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

• biology-inspired model (the core model is similar to FA)

• work with the Watson-Crick tape (double-stranded tape,
resembles DNA, the elements of the strands are pairwise
complements of each other)

• uses two heads (one for each strand of the tape)

5′ → 3′ Watson-Crick Finite Automata

• the heads read in the biochemical 5′ → 3′ direction

• that is physically/mathematically in opposite directions

Sensing 5′ → 3′ Watson-Crick Finite Automata

• the heads sense that they are meeting

• the processing of the input ends if for all pairs of the sequence
one of the letters is read

• the tape notation is usually simplified: [A
T] as a, . . .

On Proof Techniques in Jumping Models 16 / 38

Jumping 5′ → 3′ WKA – Idea

Combined model
• the combination of GJFA and sensing 5′ → 3′ WKA
• two heads as in sensing 5′ → 3′ WKA
• each head can traverse the whole input in its direction
• all pairs of symbols are read only once

Expectations
• better accepting power than the non-combined models
• ability to model languages with some crossed agreements

On Proof Techniques in Jumping Models 17 / 38

Jumping 5′ → 3′ WKA – Definition (1/2)

Jumping 5′ → 3′ WK Automaton

quintuple M = (V ,Q,q0, F , δ)

V (Σ),Q,q0 (s), F as in LFA, V ∩ {#} = ∅,

δ : (Q × V ∗ × V ∗ ×D)→ 2Q (finite),
D = {⊕,	} indicates the mutual position of heads.

Configuration

(q, s,w1,w2,w3)

q is the state
s is the position of heads

w1 is the unprocessed input before the first head
w2 is the unprocessed input between the heads
w3 is the unprocessed input after the second head

On Proof Techniques in Jumping Models 18 / 38

Jumping 5′ → 3′ WKA – Definition (1/2)

Jumping 5′ → 3′ WK Automaton

quintuple M = (V ,Q,q0, F , δ)

V (Σ),Q,q0 (s), F as in LFA, V ∩ {#} = ∅,

δ : (Q × V ∗ × V ∗ ×D)→ 2Q (finite),
D = {⊕,	} indicates the mutual position of heads.

Configuration

(q, s,w1,w2,w3)

q is the state
s is the position of heads

w1 is the unprocessed input before the first head
w2 is the unprocessed input between the heads
w3 is the unprocessed input after the second head

On Proof Techniques in Jumping Models 18 / 38

Jumping 5′ → 3′ WKA – Definition (2/2)

Steps
Let x , y ,u, v ,w2 ∈ V ∗ and w1,w3 ∈ (V ∪ {#})∗.

1 ⊕-reading: (q,⊕,w1, xw2y ,w3) y (q′, s,w1{#}|x|,w2, {#}|y|w3),
where q′ ∈ δ(q, x , y ,⊕), and s is either ⊕ if |w2| > 0 or 	.

2 	-reading: (q,	,w1y , ε, xw3) y (q′,	,w1, ε,w3),
where q′ ∈ δ(q, x , y ,).

3 ⊕-jumping: (q,⊕,w1,uw2v ,w3) y (q, s,w1u,w2, vw3),
where s is either ⊕ if |w2| > 0 or 	.

4 	-jumping: (q,	,w1{#}∗, ε, {#}∗w3) y (q,	,w1, ε,w3).

In the standard manner, define y+ and y∗.

Accepted language

L(M) = {w ∈ V ∗ : (q0,⊕, ε,w , ε) y∗ (qf ,	, ε, ε, ε), qf ∈ F}

On Proof Techniques in Jumping Models 19 / 38

Jumping 5′ → 3′ WKA – Definition (2/2)

Steps
Let x , y ,u, v ,w2 ∈ V ∗ and w1,w3 ∈ (V ∪ {#})∗.

1 ⊕-reading: (q,⊕,w1, xw2y ,w3) y (q′, s,w1{#}|x|,w2, {#}|y|w3),
where q′ ∈ δ(q, x , y ,⊕), and s is either ⊕ if |w2| > 0 or 	.

2 	-reading: (q,	,w1y , ε, xw3) y (q′,	,w1, ε,w3),
where q′ ∈ δ(q, x , y ,).

3 ⊕-jumping: (q,⊕,w1,uw2v ,w3) y (q, s,w1u,w2, vw3),
where s is either ⊕ if |w2| > 0 or 	.

4 	-jumping: (q,	,w1{#}∗, ε, {#}∗w3) y (q,	,w1, ε,w3).

In the standard manner, define y+ and y∗.

Accepted language

L(M) = {w ∈ V ∗ : (q0,⊕, ε,w , ε) y∗ (qf ,	, ε, ε, ε), qf ∈ F}

On Proof Techniques in Jumping Models 19 / 38

JWKFA – Accepted Languages (1/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

Example input: aaabbb

(s,⊕, ε,aaabbb, ε) y ⊕-reading
(s,⊕,#,aabb,#) y ⊕-reading
(s,⊕,##,ab,##) y ⊕-reading
(s,	,###, ε,###) y 	-jumping
(s,	, ε, ε, ε)

On Proof Techniques in Jumping Models 20 / 38

JWKFA – Accepted Languages (1/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

Example input: aaabbb

(s,⊕, ε,aaabbb, ε) y ⊕-reading
(s,⊕,#,aabb,#) y ⊕-reading
(s,⊕,##,ab,##) y ⊕-reading
(s,	,###, ε,###) y 	-jumping
(s,	, ε, ε, ε)

On Proof Techniques in Jumping Models 20 / 38

JWKFA – Accepted Languages (2/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

Example input: baabba

(s,⊕, ε,baabba, ε) y ⊕-jumping
(s,⊕,b,aabb,a) y ⊕-reading
(s,⊕,b#,ab,#a) y ⊕-reading
(s,	,b##, ε,##a) y 	-jumping
(s,	,b, ε,a) y 	-reading
(s,	, ε, ε, ε)

Resulting language

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

On Proof Techniques in Jumping Models 21 / 38

JWKFA – Accepted Languages (2/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

Example input: baabba

(s,⊕, ε,baabba, ε) y ⊕-jumping
(s,⊕,b,aabb,a) y ⊕-reading
(s,⊕,b#,ab,#a) y ⊕-reading
(s,	,b##, ε,##a) y 	-jumping
(s,	,b, ε,a) y 	-reading
(s,	, ε, ε, ε)

Resulting language

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

On Proof Techniques in Jumping Models 21 / 38

JWKFA – Accepted Languages (3/3)

• What happens if we remove δ(s,a,b,) = {s} from M?
→ L(M) = {anbn : n ≥ 0}

• And if we use only δ(s,a, ε,⊕) = {s} and δ(s, ε,b,⊕) = {s}?
→ L(M) = {a}∗{b}∗

• REG ⊂ JWK
• LIN ⊂ JWK
• {w1w2 : w1 ∈ {a,b}∗, w2 ∈ {c,d}∗, |w1|a = |w2|c, |w1|b =
|w2|d} ∈ JWK which is a non-context-free language

• JWK ⊂ CS

On Proof Techniques in Jumping Models 22 / 38

JWKFA – Accepted Languages (3/3)

• What happens if we remove δ(s,a,b,) = {s} from M?
→ L(M) = {anbn : n ≥ 0}

• And if we use only δ(s,a, ε,⊕) = {s} and δ(s, ε,b,⊕) = {s}?
→ L(M) = {a}∗{b}∗

• REG ⊂ JWK
• LIN ⊂ JWK
• {w1w2 : w1 ∈ {a,b}∗, w2 ∈ {c,d}∗, |w1|a = |w2|c, |w1|b =
|w2|d} ∈ JWK which is a non-context-free language

• JWK ⊂ CS

On Proof Techniques in Jumping Models 22 / 38

JWKFA – Accepted Languages (3/3)

• What happens if we remove δ(s,a,b,) = {s} from M?
→ L(M) = {anbn : n ≥ 0}

• And if we use only δ(s,a, ε,⊕) = {s} and δ(s, ε,b,⊕) = {s}?
→ L(M) = {a}∗{b}∗

• REG ⊂ JWK
• LIN ⊂ JWK
• {w1w2 : w1 ∈ {a,b}∗, w2 ∈ {c,d}∗, |w1|a = |w2|c, |w1|b =
|w2|d} ∈ JWK which is a non-context-free language

• JWK ⊂ CS

On Proof Techniques in Jumping Models 22 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38

Parikh Vector (1/2)

Parikh Vector

The Parikh vector associated to a string x ∈ V ∗ with respect to
the alphabet V = {a1,a2, . . . ,an} is
ΨV (x) = (|x |a1 , |x |a2 , . . . , |x |an).

For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}.

Example strings

V = {a,b,c}, x = abbccc ⇒ ΨV (x) = (1, 2, 3)

V = {a,b,c,d}, x = abbccc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = cbabcc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = ε ⇒ ΨV (x) = (0, 0, 0, 0)

On Proof Techniques in Jumping Models 24 / 38

Parikh Vector (1/2)

Parikh Vector

The Parikh vector associated to a string x ∈ V ∗ with respect to
the alphabet V = {a1,a2, . . . ,an} is
ΨV (x) = (|x |a1 , |x |a2 , . . . , |x |an).

For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}.

Example strings

V = {a,b,c}, x = abbccc ⇒ ΨV (x) = (1, 2, 3)

V = {a,b,c,d}, x = abbccc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = cbabcc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = ε ⇒ ΨV (x) = (0, 0, 0, 0)

On Proof Techniques in Jumping Models 24 / 38

Parikh Vector (2/2)

Parikh Vector

The Parikh vector associated to a string x ∈ V ∗ with respect to
the alphabet V = {a1,a2, . . . ,an} is
ΨV (x) = (|x |a1 , |x |a2 , . . . , |x |an).

For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}.

Example language

Let V = {a,b,c} and L = {anbncn : n ≥ 0}. Then, ΨV (L) = {

x = ε ⇒ ΨV (x) = (0, 0, 0)

x = abc ⇒ ΨV (x) = (1, 1, 1)

x = aabbcc ⇒ ΨV (x) = (2, 2, 2)

x = aaabbbccc ⇒ ΨV (x) = (3, 3, 3)

. . .

} = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), . . . } = {(n,n,n) : n ≥ 0}.

On Proof Techniques in Jumping Models 25 / 38

JWKFA – The Debt of the Configuration (1/2)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, where
V = {a1, . . . ,an}. Following the computation of M on an input w ∈ V ∗,
let o = (o1, . . . ,on) be the Parikh vector built by the processed (read)
symbols from w : At first, for the starting configuration, set o = ΨV (ε). For
the following configurations, whenever M makes a ⊕/	-reading step
from some q to q′ according to q′ ∈ δ(q,u, v , s), set o = o + ΨV (uv).
Using the Parikh mapping of L(M), we define ∆(o) = {

∑n
i=1(mi − oi) :

(m1, . . . ,mn) ∈ ΨV (L(M)), mi ≥ oi , 1 ≤ i ≤ n} ∪ {∞}. Finally, we define
the debt of the current configuration of M as min ∆(o).

1 We are counting the processed symbols in the Parikh
Vector o = (o1, . . . ,on).

2 The debt of the current configuration of M is the minimum
number of symbols that we need to add to o so that it
matches some Parikh vector from ΨV (L(M)).

On Proof Techniques in Jumping Models 26 / 38

JWKFA – The Debt of the Configuration (1/2)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, where
V = {a1, . . . ,an}. Following the computation of M on an input w ∈ V ∗,
let o = (o1, . . . ,on) be the Parikh vector built by the processed (read)
symbols from w : At first, for the starting configuration, set o = ΨV (ε). For
the following configurations, whenever M makes a ⊕/	-reading step
from some q to q′ according to q′ ∈ δ(q,u, v , s), set o = o + ΨV (uv).
Using the Parikh mapping of L(M), we define ∆(o) = {

∑n
i=1(mi − oi) :

(m1, . . . ,mn) ∈ ΨV (L(M)), mi ≥ oi , 1 ≤ i ≤ n} ∪ {∞}. Finally, we define
the debt of the current configuration of M as min ∆(o).

1 We are counting the processed symbols in the Parikh
Vector o = (o1, . . . ,on).

2 The debt of the current configuration of M is the minimum
number of symbols that we need to add to o so that it
matches some Parikh vector from ΨV (L(M)).

On Proof Techniques in Jumping Models 26 / 38

JWKFA – The Debt of the Configuration (2/2)

Example automaton

Let V = {a,b,c}. Assume that there is a jumping 5′ → 3′ WK
automaton M = (V ,Q,q0, F , δ) such that L(M) = {anbncn :
n ≥ 0}.

Therefore, ΨV (L(M)) = {(n,n,n) : n ≥ 0}.

Example steps

(s,⊕, ε,aabbcc, ε) y o = (0, 0, 0) min ∆(o) = 0
(?,⊕,#,abbcc, ε) y o = (1, 0, 0) min ∆(o) = 2
(?,⊕,#a,bbcc, ε) y o = (1, 0, 0) min ∆(o) = 2
(?,⊕,#a#,bc,#) y o = (1, 1, 1) min ∆(o) = 0
(?,	,#a##, ε,##) y o = (1, 2, 2) min ∆(o) = 1
(?,	,#a, ε, ε) y o = (1, 2, 2) min ∆(o) = 1
(?,	,#, ε, ε) y o = (2, 2, 2) min ∆(o) = 0
(?,	,#, ε, ε) y o = (2, 2, 2) min ∆(o) = 0
(?,	, ε, ε, ε) y o = (2, 2, 2) min ∆(o) = 0

On Proof Techniques in Jumping Models 27 / 38

JWKFA – The Debt Lemma

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

k = 0 is sufficient ,

On Proof Techniques in Jumping Models 28 / 38

JWKFA – The Debt Lemma

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

k = 0 is sufficient ,

On Proof Techniques in Jumping Models 28 / 38

JWKFA – The Debt Lemma

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,) = {s}

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

k = 0 is sufficient ,

On Proof Techniques in Jumping Models 28 / 38

You can go to Bonus for the proof.

JWKFA – {anbncn : n ≥ 0} (1/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (1/3).

Basic idea. Considering any sufficiently large constant k , we show that
M cannot process all symbols of a10kb10kc10k using only configurations
that have their debt bounded by k .
Formal proof. (sketch) By contradiction. Let L = {anbncn : n ≥ 0}, and
let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton such that
L(M) = L.
Consider any k such that k > max{|uv | : δ(q,u, v , s) 6= ∅, u, v ∈ V ∗}.
Represent the debt of the configuration as 〈da,db,dc〉.
For all traversed configurations must hold da + db + dc ≤ k .
Let w = a10kb10kc10k .

On Proof Techniques in Jumping Models 30 / 38

JWKFA – {anbncn : n ≥ 0} (1/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (1/3).

Basic idea. Considering any sufficiently large constant k , we show that
M cannot process all symbols of a10kb10kc10k using only configurations
that have their debt bounded by k .
Formal proof. (sketch) By contradiction. Let L = {anbncn : n ≥ 0}, and
let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton such that
L(M) = L.
Consider any k such that k > max{|uv | : δ(q,u, v , s) 6= ∅, u, v ∈ V ∗}.
Represent the debt of the configuration as 〈da,db,dc〉.
For all traversed configurations must hold da + db + dc ≤ k .
Let w = a10kb10kc10k .

On Proof Techniques in Jumping Models 30 / 38

JWKFA – {anbncn : n ≥ 0} (2/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (2/3).

First, we explore the maximum number of symbols that M can read
from w before the heads meet. Starting from (q0,⊕, ε,w , ε) 〈0, 0, 0〉 and
until the position 	 is reached. Consider the optimal reading strategy
to process the maximum number of symbols from a10kb10kc10k :

1 M processes (with multiple steps) ak and ck and reaches 〈0, k , 0〉,
2 M reads l symbols together in one step (balanced number of a’s,

b’s, and c’s) while keeping 〈0, k , 0〉, l < k ,

3 M processes b2k and ak (or ck) and reaches 〈0, 0, k〉 (or 〈k , 0, 0〉).
No further reading is possible; this strategy processed 5k + l symbols.

On Proof Techniques in Jumping Models 31 / 38

JWKFA – {anbncn : n ≥ 0} (3/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (3/3).

Second, when the heads meet, a>4kb>4kc>4k has yet to be
processed. Consider one of the optimal reading strategies:

1 the heads are between b’s and c’s,

2 the debt of the current configuration is 〈0, k , 0〉,
3 M processes b2k and ck and reaches 〈k , 0, 0〉.

No further reading is possible; this strategy processed 3k symbols.

M is not able to process more than 8k + l symbols; but the input
contains 30k symbols. Consequently, there is no constant k that
bounds the debt of configurations of M.

On Proof Techniques in Jumping Models 32 / 38

JWKFA – {w ∈{a,b,c}∗ : |w |a= |w |b= |w |c}

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {w ∈ {a,b,c}∗ : |w |a = |w |b = |w |c}.

Proof (1/10).

. . .

NO

Proof.

ΨV ({w ∈{a,b,c}∗ : |w |a = |w |b = |w |c}) = ΨV ({anbncn : n ≥ 0})

w = a10kb10kc10k

Since the debt depends only on o and ΨV ,
the proof is analogous.

On Proof Techniques in Jumping Models 33 / 38

JWKFA – {w ∈{a,b,c}∗ : |w |a= |w |b= |w |c}

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {w ∈ {a,b,c}∗ : |w |a = |w |b = |w |c}.

Proof (1/10).

. . . NO

Proof.

ΨV ({w ∈{a,b,c}∗ : |w |a = |w |b = |w |c}) = ΨV ({anbncn : n ≥ 0})

w = a10kb10kc10k

Since the debt depends only on o and ΨV ,
the proof is analogous.

On Proof Techniques in Jumping Models 33 / 38

JWKFA – Language Families (1/2)

• JWK is incomparable with GJFA and JFA.
• JWK and CF are incomparable.

Restrictions

N stateless, i.e., with only one state: if Q = F = {q0}
F all-final, i.e., with only final states: if Q = F
S simple (at most one head moves in a step)
1 1-limited (exactly one letter is being read in a step)

Further variations such as NS, FS, N1, and F1 WK automata can be
identified in a straightforward way by using multiple constraints.

On Proof Techniques in Jumping Models 34 / 38

JWKFA – Language Families (1/2)

• JWK is incomparable with GJFA and JFA.
• JWK and CF are incomparable.

Restrictions

N stateless, i.e., with only one state: if Q = F = {q0}
F all-final, i.e., with only final states: if Q = F
S simple (at most one head moves in a step)
1 1-limited (exactly one letter is being read in a step)

Further variations such as NS, FS, N1, and F1 WK automata can be
identified in a straightforward way by using multiple constraints.

On Proof Techniques in Jumping Models 34 / 38

JWKFA – Language Families (2/2)

S JWK = JWK

1 JWK

LIN

REG

FIN

FINε-inc

F JWK

FS JWK N JWK

F1 JWK

NS JWK

N1 JWK

Figure: If there is an arrow from family X to family Y in the figure, then
X ⊂ Y . Furthermore, if there is no path (following the arrows) between
families X and Y , then X and Y are incomparable.

On Proof Techniques in Jumping Models 35 / 38

Conclusion

• The debt lemma was used only in JWKFAs so far.

• It can work in any automaton model that reads at least
semi-continuously and where the steps depend only on the
current state (not the previous readings, e.g., no stack).

• It can work in FAs.

On Proof Techniques in Jumping Models 36 / 38

Welcome at the end of this presentation!

And now Bonus. . .

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	
q is reachable from s and ⊕
q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	
q is reachable from s and ⊕
q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕

p is not reachable from s and 	
q is reachable from s and ⊕
q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	

q is reachable from s and ⊕
q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	
q is reachable from s and ⊕

q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	
q is reachable from s and ⊕
q is reachable from s and 	

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (2/4)

Lemma
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, and let
q ∈ Q and s ∈ {⊕,	} such that f ∈ F is reachable from q and s. When
(q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) in M, w ∈ V ∗,w1,w2,w3 ∈ (V ∪ {#})∗,
there exists w ′ ∈ L(M) such that M starting with w ′ can reach q and s′

(s′ = s or s′ =) by using the same sequence of ⊕/	-reading steps as
in (q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) and the rest of w ′ can be
processed with a limited number of steps bounded by some constant
k for M.

1 On a string w with a sequence of steps we reach q and s.
2 A final state is reachable from q and s.
3 There exists some string w ′ such that we can reach q and s′

with the same sequence of steps.
4 We can finish accepting w ′ with a limited number of

additional steps.

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (2/4)

Lemma
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, and let
q ∈ Q and s ∈ {⊕,	} such that f ∈ F is reachable from q and s. When
(q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) in M, w ∈ V ∗,w1,w2,w3 ∈ (V ∪ {#})∗,
there exists w ′ ∈ L(M) such that M starting with w ′ can reach q and s′

(s′ = s or s′ =) by using the same sequence of ⊕/	-reading steps as
in (q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) and the rest of w ′ can be
processed with a limited number of steps bounded by some constant
k for M.

1 On a string w with a sequence of steps we reach q and s.
2 A final state is reachable from q and s.
3 There exists some string w ′ such that we can reach q and s′

with the same sequence of steps.
4 We can finish accepting w ′ with a limited number of

additional steps.

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (3/4)

Proof.
(idea)
(1) If f is reachable from q and s, there has to exist a sequence of state
transitions from (Q × {⊕,	})+ such that (p0, s0) · · · (pn, sn), p0 = q,
s0 = s′, pn = f , sn = 	, all pairs are unique, . . .
This sequence has to be finite and bounded by some constant.

(2) Represent the complete sequence as (p0, s0) · · · (pm, sm). At first, for
all i = 0, . . . ,m, set ai = ε, bi = ε, ci = ε, di = ε. If pi+1 ∈ δ(pi ,ui , vi , si) is
used, then if si = ⊕, set ai = ui and bi = vi , otherwise if si = 	, set ci = ui

and di = vi .

(3) w ′ = a0 · · ·amdm · · ·d0c0 · · ·cmbm · · ·b0 ∈ L(M)

On Proof Techniques in Jumping Models 38 / 38

JWKFA – Why the Debt Lemma Holds (4/4)

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Proof.
(idea) By contradiction.
(1) Assume that M does not accept all w ∈ L exclusively using only
configurations that have their debt bounded by some constant k for
M, then M can accept some w ∈ L over a configuration for which the
debt cannot be bounded by any k .

(2) Due to previous lemmas, if final state is reachable there is some w ′

such that min ∆(o) must be bounded by some constant.

(3) M cannot accept w over a state q and a mutual position of heads
s from which no final state f ∈ F is reachable.

(4) Consequently, when M accepts w , it must be done over
configurations with the debt ≤ k . But that is a contradiction.

On Proof Techniques in Jumping Models 38 / 38

	Motivation
	Finite Automata
	Jumping Finite Automata
	Jumping 5'3' Watson-Crick Finite Automata
	Conclusion
	Bonus

