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Motivation

• In formal language theory, it is a common task to prove
that a certain language can or cannot be accepted by
the model in question.

• Student courses (IFJ, etc.) show only basic, well-known
techniques (pumping lemmas, etc.).

• This talk shows new techniques used in current research.

• Motivation for further study.
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Finite Automata



Finite Automata – Definition (1/2)

Lazy Finite Automaton (LFA)

quintuple M = (Q,Σ,R, s, F)

Q is a finite set of states
Σ is an input alphabet, Q ∩ Σ = ∅
R is a finite set of rules: (p, y ,q), where p,q ∈ Q, y ∈ Σ∗

s is the start state
F is a set of final states

Finite Automaton (FA)

If (p, y ,q) ∈ R implies that |y | ≤ 1.
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Finite Automata – Definition (2/2)

Configuration

pw

p is the state
w is an unprocessed input

Step/Move

pyx ⇒ qx

if (p, y ,q) ∈ R and x , y ∈ Σ∗.
In the standard manner, define⇒+ and⇒∗.

Accepted language

L(M) = {w ∈ Σ∗ : sw ⇒∗ f , f ∈ F}
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FA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abcabc

sabcabc ⇒ pbcabc ⇒ qcabc ⇒ sabc ⇒ pbc ⇒ qc ⇒ s

Resulting language
• FA: L(M) = {abc}∗
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FA – Undefinable Languages

• What about L = {anbn : n ≥ 0}?
• Can we construct an FA that accepts L?
• How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let L be a regular language over Σ. Then there is a constant k ,
depending on L, such that for each w ∈ L with |w | ≥ k there
exist x , y , z ∈ Σ∗ such that w = xyz and

1 |xy | ≤ k ,
2 |y | > 0,
3 xy iz ∈ L for all i ≥ 0.

• This lemma is necessary but not sufficient.
• There are sufficient lemmas but they are more complicated.
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FA – Proof by Contradiction with PL

Theorem

There is no FA M such that L(M) = {anbn : n ≥ 0}.

Proof.

By contradiction. Assume that there is a FA M such that
L(M) = {anbn : n ≥ 0}. Then, L(M) is a regular language.

Choose w = akbk in L(M). Clearly, |w | ≥ k .

By the pumping lemma, w = xyz for some x , y , z ∈ Σ∗ such that
(1) |xy | ≤ k , (2) |y | > 0, and (3) xy iz ∈ L(M) for all i ≥ 0.

By (1) and (2), we have y = am, 1 ≤m ≤ k .
But xy0z = xz = ak−mbk 6∈ L(M). Thus, (3) does not hold.
Therefore, there is no FA M such that L(M) = {anbn : n ≥ 0}.
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Jumping Finite Automata

Based on

Alexander Meduna and Petr Zemek
Jumping Finite Automata
Int. J. Found. Comput. Sci. 23(7):1555–1578 (2012)

Alexander Meduna and Petr Zemek
Regulated Grammars and Automata
Springer (2014)



Jumping Finite Automata – Definition

General Jumping Finite Automaton (GJFA)

quintuple M = (Q,Σ,R, s, F)

Q, Σ, R, s, F are defined as in LFA.

If (p, y ,q) ∈ R implies that |y | ≤ 1, then M is a jumping finite
automaton (JFA).

Configuration

upv where u, v ∈ Σ∗ and p ∈ Q.

Jump

xpyz y x ′qz ′

if x , z, x ′, z ′ ∈ Σ∗ such that xz = x ′z ′ and (p, y ,q) ∈ R; y+, y∗.

Accepted language

L(M) = {uv : u, v ∈ Σ∗, usv y∗ f , f ∈ F}
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JFA – Accepted Languages

Example automaton

M = ({s,p,q}, {a,b,c},R, s, {s})

where R:
(s,a,p)
(p,b,q)
(q,c, s)

sstart p qa b

c

Example input: abbacc

abbsacc y abpbcc y abqcc y sabc y pbc y qc y s

Resulting language
• FA: L(M) = {abc}∗

• JFA: L(M) = {w : w ∈ {a,b,c}∗, |w |a = |w |b = |w |c}
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JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols
between jumps.

Theorem

There is no GJFA M such that L(M) = {a}∗{b}∗.

Proof.

By contradiction. Let K = {a}∗{b}∗. Assume that there is a GJFA
M = (Q,Σ,R, s, F) such that L(M) = K .

Let n = max{|y | : (p, y ,q) ∈ R} and w = anb.

When accepting w , a rule (p,aib,q) ∈ R, 0 ≤ i < n, has to be
used. However, then M also accepts from the configuration
aibsan−i or saiban−i . This implies that aiban−i ∈ L(M). But that is
a contradiction with the assumption that L(M) = K .
Therefore, there is no GJFA M such that L(M) = {a}∗{b}∗.
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JFA – Language Families
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Jumping 5′ → 3′ Watson-Crick Finite Automata

Based on

Radim Kocman, Benedek Nagy, Zbyněk Ǩrivka,
and Alexander Meduna
A Jumping 5′ → 3′ Watson-Crick Finite Automata Model
Proceedings of NCMA 2018

Radim Kocman, Zbyněk Ǩrivka, Alexander Meduna,
and Benedek Nagy
A Jumping 5′ → 3′ Watson-Crick Finite Automata Model
Acta Informatica (in review)



Jumping 5′ → 3′ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

• biology-inspired model (the core model is similar to FA)

• work with the Watson-Crick tape (double-stranded tape,
resembles DNA, the elements of the strands are pairwise
complements of each other)

• uses two heads (one for each strand of the tape)

5′ → 3′ Watson-Crick Finite Automata

• the heads read in the biochemical 5′ → 3′ direction

• that is physically/mathematically in opposite directions

Sensing 5′ → 3′ Watson-Crick Finite Automata

• the heads sense that they are meeting

• the processing of the input ends if for all pairs of the sequence
one of the letters is read

• the tape notation is usually simplified: [ A
T ] as a, . . .
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Jumping 5′ → 3′ WKA – Idea

Combined model
• the combination of GJFA and sensing 5′ → 3′ WKA
• two heads as in sensing 5′ → 3′ WKA
• each head can traverse the whole input in its direction
• all pairs of symbols are read only once

Expectations
• better accepting power than the non-combined models
• ability to model languages with some crossed agreements
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Jumping 5′ → 3′ WKA – Definition (1/2)

Jumping 5′ → 3′ WK Automaton

quintuple M = (V ,Q,q0, F , δ)

V (Σ),Q,q0 (s), F as in LFA, V ∩ {#} = ∅,

δ : (Q × V ∗ × V ∗ ×D)→ 2Q (finite),
D = {⊕,	} indicates the mutual position of heads.

Configuration

(q, s,w1,w2,w3)

q is the state
s is the position of heads

w1 is the unprocessed input before the first head
w2 is the unprocessed input between the heads
w3 is the unprocessed input after the second head
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Jumping 5′ → 3′ WKA – Definition (2/2)

Steps
Let x , y ,u, v ,w2 ∈ V ∗ and w1,w3 ∈ (V ∪ {#})∗.

1 ⊕-reading: (q,⊕,w1, xw2y ,w3) y (q′, s,w1{#}|x|,w2, {#}|y|w3),
where q′ ∈ δ(q, x , y ,⊕), and s is either ⊕ if |w2| > 0 or 	.

2 	-reading: (q,	,w1y , ε, xw3) y (q′,	,w1, ε,w3),
where q′ ∈ δ(q, x , y ,	).

3 ⊕-jumping: (q,⊕,w1,uw2v ,w3) y (q, s,w1u,w2, vw3),
where s is either ⊕ if |w2| > 0 or 	.

4 	-jumping: (q,	,w1{#}∗, ε, {#}∗w3) y (q,	,w1, ε,w3).

In the standard manner, define y+ and y∗.

Accepted language

L(M) = {w ∈ V ∗ : (q0,⊕, ε,w , ε) y∗ (qf ,	, ε, ε, ε), qf ∈ F}
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JWKFA – Accepted Languages (1/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,	) = {s}

Example input: aaabbb

(s,⊕, ε,aaabbb, ε) y ⊕-reading
(s,⊕,#,aabb,#) y ⊕-reading
(s,⊕,##,ab,##) y ⊕-reading
(s,	,###, ε,###) y 	-jumping
(s,	, ε, ε, ε)
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JWKFA – Accepted Languages (2/3)

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,	) = {s}

Example input: baabba

(s,⊕, ε,baabba, ε) y ⊕-jumping
(s,⊕,b,aabb,a) y ⊕-reading
(s,⊕,b#,ab,#a) y ⊕-reading
(s,	,b##, ε,##a) y 	-jumping
(s,	,b, ε,a) y 	-reading
(s,	, ε, ε, ε)

Resulting language

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}
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JWKFA – Accepted Languages (3/3)

• What happens if we remove δ(s,a,b,	) = {s} from M?
→ L(M) = {anbn : n ≥ 0}

• And if we use only δ(s,a, ε,⊕) = {s} and δ(s, ε,b,⊕) = {s}?
→ L(M) = {a}∗{b}∗

• REG ⊂ JWK
• LIN ⊂ JWK
• {w1w2 : w1 ∈ {a,b}∗, w2 ∈ {c,d}∗, |w1|a = |w2|c, |w1|b =
|w2|d} ∈ JWK which is a non-context-free language

• JWK ⊂ CS
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JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



JWKFA – Undefinable Languages

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

• Intuitively, the automaton needs to periodically remove
symbols from three different positions in the input. But we
have only two heads that can move in one direction.

• How to rigorously prove it?

• The automaton can guarantee the order of symbols in
certain cases. We cannot use the JFA technique. /

• The symbols can be mixed so it is not easy to derive a
meaningful pumping lemma. /

• We need a different proof technique:
→ introducing the new debt lemma.

On Proof Techniques in Jumping Models 23 / 38



Parikh Vector (1/2)

Parikh Vector

The Parikh vector associated to a string x ∈ V ∗ with respect to
the alphabet V = {a1,a2, . . . ,an} is
ΨV (x) = (|x |a1 , |x |a2 , . . . , |x |an ).

For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}.

Example strings

V = {a,b,c}, x = abbccc ⇒ ΨV (x) = (1, 2, 3)

V = {a,b,c,d}, x = abbccc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = cbabcc ⇒ ΨV (x) = (1, 2, 3, 0)

V = {a,b,c,d}, x = ε ⇒ ΨV (x) = (0, 0, 0, 0)
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Parikh Vector (2/2)

Parikh Vector

The Parikh vector associated to a string x ∈ V ∗ with respect to
the alphabet V = {a1,a2, . . . ,an} is
ΨV (x) = (|x |a1 , |x |a2 , . . . , |x |an ).

For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}.

Example language

Let V = {a,b,c} and L = {anbncn : n ≥ 0}. Then, ΨV (L) = {

x = ε ⇒ ΨV (x) = (0, 0, 0)

x = abc ⇒ ΨV (x) = (1, 1, 1)

x = aabbcc ⇒ ΨV (x) = (2, 2, 2)

x = aaabbbccc ⇒ ΨV (x) = (3, 3, 3)

. . .

} = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), . . . } = {(n,n,n) : n ≥ 0}.
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JWKFA – The Debt of the Configuration (1/2)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, where
V = {a1, . . . ,an}. Following the computation of M on an input w ∈ V ∗,
let o = (o1, . . . ,on) be the Parikh vector built by the processed (read)
symbols from w : At first, for the starting configuration, set o = ΨV (ε). For
the following configurations, whenever M makes a ⊕/	-reading step
from some q to q′ according to q′ ∈ δ(q,u, v , s), set o = o + ΨV (uv).
Using the Parikh mapping of L(M), we define ∆(o) = {

∑n
i=1(mi − oi) :

(m1, . . . ,mn) ∈ ΨV (L(M)), mi ≥ oi , 1 ≤ i ≤ n} ∪ {∞}. Finally, we define
the debt of the current configuration of M as min ∆(o).

1 We are counting the processed symbols in the Parikh
Vector o = (o1, . . . ,on).

2 The debt of the current configuration of M is the minimum
number of symbols that we need to add to o so that it
matches some Parikh vector from ΨV (L(M)).
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JWKFA – The Debt of the Configuration (2/2)

Example automaton

Let V = {a,b,c}. Assume that there is a jumping 5′ → 3′ WK
automaton M = (V ,Q,q0, F , δ) such that L(M) = {anbncn :
n ≥ 0}.

Therefore, ΨV (L(M)) = {(n,n,n) : n ≥ 0}.

Example steps

(s,⊕, ε,aabbcc, ε) y o = (0, 0, 0) min ∆(o) = 0
(?,⊕,#,abbcc, ε) y o = (1, 0, 0) min ∆(o) = 2
(?,⊕,#a,bbcc, ε) y o = (1, 0, 0) min ∆(o) = 2
(?,⊕,#a#,bc,#) y o = (1, 1, 1) min ∆(o) = 0
(?,	,#a##, ε,##) y o = (1, 2, 2) min ∆(o) = 1
(?,	,#a, ε, ε) y o = (1, 2, 2) min ∆(o) = 1
(?,	,#, ε, ε) y o = (2, 2, 2) min ∆(o) = 0
(?,	,#, ε, ε) y o = (2, 2, 2) min ∆(o) = 0
(?,	, ε, ε, ε) y o = (2, 2, 2) min ∆(o) = 0
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JWKFA – The Debt Lemma

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Example automaton

M = ({a,b}, {s}, s, {s}, δ)

where δ:
δ(s,a,b,⊕) = {s}
δ(s,a,b,	) = {s}

L(M) = {w : w ∈ {a,b}∗, |w |a = |w |b}

k = 0 is sufficient ,
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You can go to Bonus for the proof.



JWKFA – {anbncn : n ≥ 0} (1/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (1/3).

Basic idea. Considering any sufficiently large constant k , we show that
M cannot process all symbols of a10kb10kc10k using only configurations
that have their debt bounded by k .
Formal proof. (sketch) By contradiction. Let L = {anbncn : n ≥ 0}, and
let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton such that
L(M) = L.
Consider any k such that k > max{|uv | : δ(q,u, v , s) 6= ∅, u, v ∈ V ∗}.
Represent the debt of the configuration as 〈da,db,dc〉.
For all traversed configurations must hold da + db + dc ≤ k .
Let w = a10kb10kc10k .
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JWKFA – {anbncn : n ≥ 0} (2/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (2/3).

First, we explore the maximum number of symbols that M can read
from w before the heads meet. Starting from (q0,⊕, ε,w , ε) 〈0, 0, 0〉 and
until the position 	 is reached. Consider the optimal reading strategy
to process the maximum number of symbols from a10kb10kc10k :

1 M processes (with multiple steps) ak and ck and reaches 〈0, k , 0〉,
2 M reads l symbols together in one step (balanced number of a’s,

b’s, and c’s) while keeping 〈0, k , 0〉, l < k ,

3 M processes b2k and ak (or ck ) and reaches 〈0, 0, k〉 (or 〈k , 0, 0〉).
No further reading is possible; this strategy processed 5k + l symbols.
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JWKFA – {anbncn : n ≥ 0} (3/3)

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {anbncn : n ≥ 0}.

Proof (3/3).

Second, when the heads meet, a>4kb>4kc>4k has yet to be
processed. Consider one of the optimal reading strategies:

1 the heads are between b’s and c’s,

2 the debt of the current configuration is 〈0, k , 0〉,
3 M processes b2k and ck and reaches 〈k , 0, 0〉.

No further reading is possible; this strategy processed 3k symbols.

M is not able to process more than 8k + l symbols; but the input
contains 30k symbols. Consequently, there is no constant k that
bounds the debt of configurations of M.
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JWKFA – {w ∈{a,b,c}∗ : |w |a= |w |b= |w |c}

Theorem

There is no jumping 5′ → 3′ WK automaton M such that
L(M) = {w ∈ {a,b,c}∗ : |w |a = |w |b = |w |c}.

Proof (1/10).

. . .

NO

Proof.

ΨV ({w ∈{a,b,c}∗ : |w |a = |w |b = |w |c}) = ΨV ({anbncn : n ≥ 0})

w = a10kb10kc10k

Since the debt depends only on o and ΨV ,
the proof is analogous.
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JWKFA – Language Families (1/2)

• JWK is incomparable with GJFA and JFA.
• JWK and CF are incomparable.

Restrictions

N stateless, i.e., with only one state: if Q = F = {q0}
F all-final, i.e., with only final states: if Q = F
S simple (at most one head moves in a step)
1 1-limited (exactly one letter is being read in a step)

Further variations such as NS, FS, N1, and F1 WK automata can be
identified in a straightforward way by using multiple constraints.
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JWKFA – Language Families (2/2)

S JWK = JWK

1 JWK

LIN

REG

FIN

FINε-inc

F JWK

FS JWK N JWK

F1 JWK

NS JWK

N1 JWK

Figure: If there is an arrow from family X to family Y in the figure, then
X ⊂ Y . Furthermore, if there is no path (following the arrows) between
families X and Y , then X and Y are incomparable.
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Conclusion

• The debt lemma was used only in JWKFAs so far.

• It can work in any automaton model that reads at least
semi-continuously and where the steps depend only on the
current state (not the previous readings, e.g., no stack).

• It can work in FAs.
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Welcome at the end of this presentation!



And now Bonus. . .



JWKFA – Why the Debt Lemma Holds (1/4)

Definition
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton. Assuming
some states q,q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we
say that q′ is reachable from q and s if there exists a configuration
(q, s,w1,w2,w3) such that (q, s,w1,w2,w3) y∗ (q′, s′,w ′1,w

′
2,w

′
3) in M,

s′ ∈ {⊕,	}, w1,w2,w3,w ′1, w ′2,w
′
3 ∈ (V ∪ {#})∗.

Example automaton

M = ({a}, {s,p,q}, s, {s}, δ)

where δ:
δ(s,a, ε,⊕) = {p}
δ(s,a, ε,	) = {q}

p is reachable from s and ⊕
p is not reachable from s and 	
q is reachable from s and ⊕
q is reachable from s and 	
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JWKFA – Why the Debt Lemma Holds (2/4)

Lemma
Let M = (V ,Q,q0, F , δ) be a jumping 5′ → 3′ WK automaton, and let
q ∈ Q and s ∈ {⊕,	} such that f ∈ F is reachable from q and s. When
(q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) in M, w ∈ V ∗,w1,w2,w3 ∈ (V ∪ {#})∗,
there exists w ′ ∈ L(M) such that M starting with w ′ can reach q and s′

(s′ = s or s′ = 	) by using the same sequence of ⊕/	-reading steps as
in (q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) and the rest of w ′ can be
processed with a limited number of steps bounded by some constant
k for M.

1 On a string w with a sequence of steps we reach q and s.
2 A final state is reachable from q and s.
3 There exists some string w ′ such that we can reach q and s′

with the same sequence of steps.
4 We can finish accepting w ′ with a limited number of

additional steps.
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there exists w ′ ∈ L(M) such that M starting with w ′ can reach q and s′

(s′ = s or s′ = 	) by using the same sequence of ⊕/	-reading steps as
in (q0,⊕, ε,w , ε) y∗ (q, s,w1,w2,w3) and the rest of w ′ can be
processed with a limited number of steps bounded by some constant
k for M.

1 On a string w with a sequence of steps we reach q and s.
2 A final state is reachable from q and s.
3 There exists some string w ′ such that we can reach q and s′

with the same sequence of steps.
4 We can finish accepting w ′ with a limited number of

additional steps.
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JWKFA – Why the Debt Lemma Holds (3/4)

Proof.
(idea)
(1) If f is reachable from q and s, there has to exist a sequence of state
transitions from (Q × {⊕,	})+ such that (p0, s0) · · · (pn, sn), p0 = q,
s0 = s′, pn = f , sn = 	, all pairs are unique, . . .
This sequence has to be finite and bounded by some constant.

(2) Represent the complete sequence as (p0, s0) · · · (pm, sm). At first, for
all i = 0, . . . ,m, set ai = ε, bi = ε, ci = ε, di = ε. If pi+1 ∈ δ(pi ,ui , vi , si) is
used, then if si = ⊕, set ai = ui and bi = vi , otherwise if si = 	, set ci = ui

and di = vi .

(3) w ′ = a0 · · ·amdm · · ·d0c0 · · ·cmbm · · ·b0 ∈ L(M)
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JWKFA – Why the Debt Lemma Holds (4/4)

Debt lemma

Let L be a language, and let M = (V ,Q,q0, F , δ) be a jumping
5′ → 3′ WK automaton. If L(M) = L, M accepts all w ∈ L using
only configurations that have their debt bounded by some
constant k for M.

Proof.
(idea) By contradiction.
(1) Assume that M does not accept all w ∈ L exclusively using only
configurations that have their debt bounded by some constant k for
M, then M can accept some w ∈ L over a configuration for which the
debt cannot be bounded by any k .

(2) Due to previous lemmas, if final state is reachable there is some w ′

such that min ∆(o) must be bounded by some constant.

(3) M cannot accept w over a state q and a mutual position of heads
s from which no final state f ∈ F is reachable.

(4) Consequently, when M accepts w , it must be done over
configurations with the debt ≤ k . But that is a contradiction.
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