On Proof Techniques in Jumping Models

Radim Kocman

Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno, Czech Republic

ikocman@fit.vutbr.cz

LTA 2019 (December 18, 2019)

- Motivation
- Finite Automata
- Jumping Finite Automata
- Jumping $5' \rightarrow 3'$ Watson-Crick Finite Automata
- Conclusion
- Bonus

- In formal language theory, it is a common task to prove that a certain language can or cannot be accepted by the model in question.
- Student courses (IFJ, etc.) show only basic, well-known techniques (pumping lemmas, etc.).
- This talk shows new techniques used in current research.
- Motivation for further study.

Finite Automata

Lazy Finite Automaton (LFA)

quintuple $M = (Q, \Sigma, R, s, F)$

- \bigcirc is a finite set of states
- Σ is an input alphabet, $Q\cap \Sigma=\emptyset$
- *R* is a finite set of rules: (p, y, q), where $p, q \in Q, y \in \Sigma^*$
- s is the start state
- F is a set of final states

Lazy Finite Automaton (LFA)

quintuple $M = (Q, \Sigma, R, s, F)$

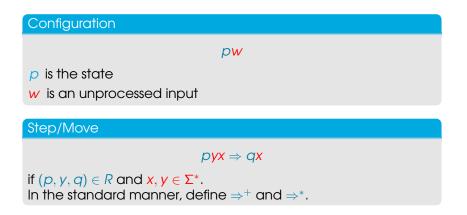
- Q is a finite set of states
- $\Sigma\,$ is an input alphabet, $Q\cap\Sigma=\emptyset$
- *R* is a finite set of rules: (p, y, q), where $p, q \in Q$, $y \in \Sigma^*$
- s is the start state
- F is a set of final states

Finite Automaton (FA)

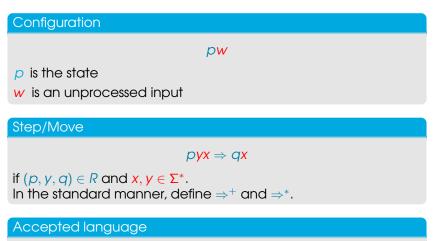
If $(p, y, q) \in R$ implies that $|y| \leq 1$.

Finite Automata – Definition (2/2)

Finite Automata – Definition (2/2)

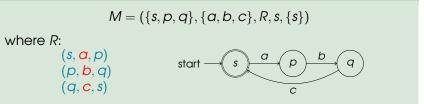


Finite Automata – Definition (2/2)



 $L(M) = \{ w \in \Sigma^* : sw \Rightarrow^* f, f \in F \}$

Example automaton



Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R:
$$(s, a, p)$$

start $\rightarrow s$ a p b q

Example input: *abcabc*

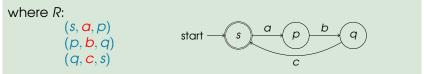
(p, b, q)(q, c, s)

 $sabcabc \Rightarrow pbcabc \Rightarrow qcabc \Rightarrow sabc \Rightarrow pbc \Rightarrow qc \Rightarrow s$

С

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$



Example input: abcabc

 $sabcabc \Rightarrow pbcabc \Rightarrow qcabc \Rightarrow sabc \Rightarrow pbc \Rightarrow qc \Rightarrow s$

Resulting language

• FA:
$$L(M) = \{abc\}^*$$

FA – Undefinable Languages

- What about $L = \{a^n b^n : n \ge 0\}$?
- Can we construct an FA that accepts L?
- How to rigorously prove that it is not possible?

FA – Undefinable Languages

T FIT

- What about $L = \{a^n b^n : n \ge 0\}$?
- Can we construct an FA that accepts L?
- How to rigorously prove that it is not possible?

Pumping lemma for regular languages

Let *L* be a regular language over Σ . Then there is a constant *k*, depending on *L*, such that for each $w \in L$ with $|w| \ge k$ there exist $x, y, z \in \Sigma^*$ such that w = xyz and

- $|xy| \leq k,$
- **2** |y| > 0,
- **3** $xy^i z \in L$ for all $i \ge 0$.
 - This lemma is necessary but not sufficient.
 - There are sufficient lemmas but they are more complicated.

FA – Proof by Contradiction with PL

Theorem

There is no FA M such that $L(M) = \{a^n b^n : n \ge 0\}$.

Proof.

By contradiction. Assume that there is a FA *M* such that $L(M) = \{a^n b^n : n \ge 0\}$. Then, L(M) is a regular language.

Choose $w = a^k b^k$ in L(M). Clearly, $|w| \ge k$.

By the pumping lemma, w = xyz for some $x, y, z \in \Sigma^*$ such that (1) $|xy| \le k$, (2) |y| > 0, and (3) $xy^i z \in L(M)$ for all $i \ge 0$.

By (1) and (2), we have $y = a^m$, $1 \le m \le k$. But $xy^0z = xz = a^{k-m}b^k \notin L(M)$. Thus, (3) does not hold. Therefore, there is no FA M such that $L(M) = \{a^nb^n : n \ge 0\}$.

Jumping Finite Automata

Based on

- Alexander Meduna and Petr Zemek Jumping Finite Automata Int. J. Found. Comput. Sci. 23(7):1555–1578 (2012)
- Alexander Meduna and Petr Zemek Regulated Grammars and Automata Springer (2014)

General Jumping Finite Automaton (GJFA)

quintuple $M = (Q, \Sigma, R, s, F)$

 Q, Σ, R, s, F are defined as in LFA.

If $(p, y, q) \in R$ implies that $|y| \le 1$, then *M* is a jumping finite automaton (JFA).

General Jumping Finite Automaton (GJFA)

quintuple $M = (Q, \Sigma, R, s, F)$

 Q, Σ, R, s, F are defined as in LFA.

If $(p, y, q) \in R$ implies that $|y| \le 1$, then *M* is a jumping finite automaton (JFA).

Configuration

upv where $u, v \in \Sigma^*$ and $p \in Q$.

General Jumping Finite Automaton (GJFA)

quintuple $M = (Q, \Sigma, R, s, F)$

 Q, Σ, R, s, F are defined as in LFA.

If $(p, y, q) \in R$ implies that $|y| \le 1$, then *M* is a jumping finite automaton (JFA).

Configuration

upv where $u, v \in \Sigma^*$ and $p \in Q$.

Jump

xpyz \land x'qz'

if $x, z, x', z' \in \Sigma^*$ such that xz = x'z' and $(p, y, q) \in R$; \uparrow^+ , \uparrow^* .

General Jumping Finite Automaton (GJFA)

quintuple $M = (Q, \Sigma, R, s, F)$

 Q, Σ, R, s, F are defined as in LFA.

If $(p, y, q) \in R$ implies that $|y| \le 1$, then *M* is a jumping finite automaton (JFA).

Configuration

upv where $u, v \in \Sigma^*$ and $p \in Q$.

Jump

xpyz $\sim x'qz'$

if $x, z, x', z' \in \Sigma^*$ such that xz = x'z' and $(p, y, q) \in R$; \uparrow^+ , \uparrow^* .

Accepted language

 $L(M) = \{ uv : u, v \in \Sigma^*, usv \curvearrowright^* f, f \in F \}$

JFA – Accepted Languages

Example automaton

 (p, \mathbf{b}, q) (q, \mathbf{c}, s)

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R: (s, a, p)



T FIT

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R: (s, a, p) (p, b, q) (q, c, s)start $\rightarrow s$ a p b qc

Example input: abbacc

 $abbsacc \land abpbcc \land abqcc \land sabc \land pbc \land qc \land s$

T FIT

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R: (s, a, p) (p, b, q) (q, c, s)start $\rightarrow s$ a p b qc

Example input: abbacc

abbsacc \land abpbcc \land abqcc \land sabc \land pbc \land qc \land s

Resulting language

- FA: $L(M) = \{abc\}^*$
- JFA: $L(M) = \{w : w \in \{a, b, c\}^*, |w|_a = |w|_b = |w|_c\}$

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols between jumps.

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols between jumps.

Theorem

There is no GJFA M such that $L(M) = \{a\}^* \{b\}^*$.

JFA – Undefinable Languages

• GJFA and JFA cannot guarantee the order of symbols between jumps.

Theorem

There is no GJFA M such that $L(M) = \{a\}^* \{b\}^*$.

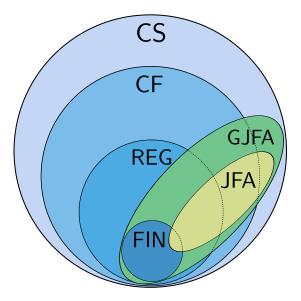
Proof.

By contradiction. Let $K = \{a\}^* \{b\}^*$. Assume that there is a GJFA $M = (Q, \Sigma, R, s, F)$ such that L(M) = K.

Let $n = \max\{|y| : (p, y, q) \in R\}$ and $w = a^n b$.

When accepting w, a rule $(p, a^i b, q) \in R$, $0 \le i < n$, has to be used. However, then M also accepts from the configuration $a^i b s a^{n-i}$ or $s a^i b a^{n-i}$. This implies that $a^i b a^{n-i} \in L(M)$. But that is a contradiction with the assumption that L(M) = K. Therefore, there is no GJFA M such that $L(M) = \{a\}^* \{b\}^*$.

JFA – Language Families



Jumping $5' \rightarrow 3'$ Watson-Crick Finite Automata

Based on

Radim Kocman, Benedek Nagy, Zbyněk Křivka, and Alexander Meduna A Jumping 5' → 3' Watson-Crick Finite Automata Model Proceedings of NCMA 2018

Radim Kocman, Zbyněk Křivka, Alexander Meduna, and Benedek Nagy A Jumping 5' → 3' Watson-Crick Finite Automata Model Acta Informatica (in review)

Jumping $5' \rightarrow 3'$ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

- biology-inspired model (the core model is similar to FA)
- work with the Watson-Crick tape (double-stranded tape, resembles DNA, the elements of the strands are pairwise complements of each other)
- uses two heads (one for each strand of the tape)

Jumping $5' \rightarrow 3'$ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

- biology-inspired model (the core model is similar to FA)
- work with the Watson-Crick tape (double-stranded tape, resembles DNA, the elements of the strands are pairwise complements of each other)
- uses two heads (one for each strand of the tape)

$5' \rightarrow 3'$ Watson-Crick Finite Automata

- the heads read in the biochemical $5' \rightarrow 3'$ direction
- that is physically/mathematically in opposite directions

Jumping $5' \rightarrow 3'$ WKA – Preliminaries

Watson-Crick Finite Automata (WKA)

- biology-inspired model (the core model is similar to FA)
- work with the Watson-Crick tape (double-stranded tape, resembles DNA, the elements of the strands are pairwise complements of each other)
- uses two heads (one for each strand of the tape)

$5' \rightarrow 3'$ Watson-Crick Finite Automata

- the heads read in the biochemical $5' \rightarrow 3'$ direction
- that is physically/mathematically in opposite directions

Sensing $5' \rightarrow 3'$ Watson-Crick Finite Automata

- the heads sense that they are meeting
- the processing of the input ends if for all pairs of the sequence one of the letters is read
- the tape notation is usually simplified: $\begin{bmatrix} A \\ T \end{bmatrix}$ as a, \ldots

Combined model

- the combination of GJFA and sensing 5' ightarrow 3' WKA
- two heads as in sensing $5' \rightarrow 3'$ WKA
- each head can traverse the whole input in its direction
- all pairs of symbols are read only once

Expectations

- better accepting power than the non-combined models
- ability to model languages with some crossed agreements

Jumping $5' \rightarrow 3'$ WK Automaton

quintuple $M = (V, Q, q_0, F, \delta)$

 $V(\Sigma), Q, q_0(s), F$ as in LFA, $V \cap \{\#\} = \emptyset$,

 $\delta : (Q \times V^* \times V^* \times D) \rightarrow 2^Q$ (finite),

 $D = \{\oplus, \ominus\}$ indicates the mutual position of heads.

Jumping $5' \rightarrow 3'$ WK Automaton

quintuple $M = (V, Q, q_0, F, \delta)$

 $V(\Sigma), Q, q_0(s), F$ as in LFA, $V \cap \{\#\} = \emptyset$,

 $\delta: (Q \times V^* \times V^* \times D) \rightarrow 2^Q$ (finite), $D = \{\oplus, \ominus\}$ indicates the mutual position of heads.

Configuration

 (q, s, w_1, w_2, w_3)

- q is the state
- s is the position of heads
- w_1 is the unprocessed input before the first head
- w_2 is the unprocessed input between the heads
- w_3 is the unprocessed input after the second head

Steps

Let $x, y, u, v, w_2 \in V^*$ and $w_1, w_3 \in (V \cup \{\#\})^*$.

- e-reading: $(q, \oplus, w_1, xw_2y, w_3) \frown (q', s, w_1\{\#\}^{|x|}, w_2, \{\#\}^{|y|}w_3)$, where $q' \in \delta(q, x, y, \oplus)$, and s is either \oplus if $|w_2| > 0$ or \oplus .
- 2 ⊖-reading: $(q, \ominus, w_1 y, \varepsilon, xw_3) \frown (q', \ominus, w_1, \varepsilon, w_3)$, where $q' \in \delta(q, x, y, \ominus)$.
- 3 \oplus -jumping: $(q, \oplus, w_1, uw_2v, w_3) \land (q, s, w_1u, w_2, vw_3)$, where s is either \oplus if $|w_2| > 0$ or \ominus .

In the standard manner, define \uparrow^+ and \uparrow^* .

Steps

Let $x, y, u, v, w_2 \in V^*$ and $w_1, w_3 \in (V \cup \{\#\})^*$.

- e-reading: $(q, \oplus, w_1, xw_2y, w_3) \frown (q', s, w_1\{\#\}^{|x|}, w_2, \{\#\}^{|y|}w_3)$, where $q' \in \delta(q, x, y, \oplus)$, and s is either \oplus if $|w_2| > 0$ or \oplus .
- 2 ⊖-reading: $(q, \ominus, w_1 y, \varepsilon, xw_3) \frown (q', \ominus, w_1, \varepsilon, w_3)$, where $q' \in \delta(q, x, y, \ominus)$.
- 3 \oplus -jumping: $(q, \oplus, w_1, uw_2v, w_3) \land (q, s, w_1u, w_2, vw_3)$, where s is either \oplus if $|w_2| > 0$ or \ominus .

In the standard manner, define \uparrow^+ and \uparrow^* .

Accepted language

 $L(M) = \{ w \in V^* : (q_0, \oplus, \varepsilon, w, \varepsilon) \curvearrowright^* (q_f, \ominus, \varepsilon, \varepsilon, \varepsilon), \ q_f \in F \}$

JWKFA – Accepted Languages (1/3)

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$
$$\delta(s, a, b, \oplus) = \{s\}$$
$$\delta(s, a, b, \ominus) = \{s\}$$

where δ :

JWKFA – Accepted Languages (1/3)

Example automaton

where δ :

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$
$$\delta(s, a, b, \oplus) = \{s\}$$
$$\delta(s, a, b, \ominus) = \{s\}$$

Example input: aaabbb

 $\begin{array}{ll} (s,\oplus,\varepsilon,aaabbb,\varepsilon) & \oplus \text{-reading} \\ (s,\oplus,\#,aabb,\#) & \oplus \text{-reading} \\ (s,\oplus,\#\#,ab,\#\#) & \oplus \text{-reading} \\ (s,\oplus,\#\#,\varepsilon,\#\#\#) & \oplus \text{-reading} \\ (s,\oplus,\varepsilon,\varepsilon,\varepsilon) & \oplus \text{-jumping} \\ (s,\oplus,\varepsilon,\varepsilon,\varepsilon) \end{array}$

JWKFA – Accepted Languages (2/3)

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

 $\delta(s, a, b, \oplus) = \{s\}$ $\delta(s, a, b, \oplus) = \{s\}$

Example input: baabba

JWKFA – Accepted Languages (2/3)

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

 $\delta(s, a, b, \oplus) = \{s\}$ $\delta(s, a, b, \oplus) = \{s\}$

Example input: baabba

Resulting language

$$L(M) = \{w : w \in \{a, b\}^*, |w|_a = |w|_b\}$$

JWKFA – Accepted Languages (3/3)

• What happens if we remove $\delta(s, a, b, \ominus) = \{s\}$ from *M*? $\rightarrow L(M) = \{a^n b^n : n \ge 0\}$ JWKFA – Accepted Languages (3/3)

- What happens if we remove $\delta(s, a, b, \ominus) = \{s\}$ from *M*? $\rightarrow L(M) = \{a^n b^n : n \ge 0\}$
- And if we use only $\delta(s, \boldsymbol{a}, \boldsymbol{\varepsilon}, \oplus) = \{s\}$ and $\delta(s, \boldsymbol{\varepsilon}, \boldsymbol{b}, \oplus) = \{s\}$? $\rightarrow L(M) = \{a\}^* \{b\}^*$

JWKFA – Accepted Languages (3/3)

T FIT

- What happens if we remove $\delta(s, a, b, \ominus) = \{s\}$ from *M*? $\rightarrow L(M) = \{a^n b^n : n \ge 0\}$
- And if we use only $\delta(s, \boldsymbol{a}, \boldsymbol{\varepsilon}, \oplus) = \{s\}$ and $\delta(s, \boldsymbol{\varepsilon}, \boldsymbol{b}, \oplus) = \{s\}$? $\rightarrow L(M) = \{a\}^* \{b\}^*$
- $\mathbf{REG} \subset \mathbf{JWK}$
- LIN \subset JWK
- $\{w_1w_2 : w_1 \in \{a, b\}^*, w_2 \in \{c, d\}^*, |w_1|_a = |w_2|_c, |w_1|_b = |w_2|_d\} \in JWK$ which is a non-context-free language
- JWK \subset CS

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

• Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?
 - The automaton can guarantee the order of symbols in certain cases. We cannot use the JFA technique. 😳

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?
 - The automaton can guarantee the order of symbols in certain cases. We cannot use the JFA technique. 😳
 - The symbols can be mixed so it is not easy to derive a meaningful pumping lemma. ⁽²⁾

- Intuitively, the automaton needs to periodically remove symbols from three different positions in the input. But we have only two heads that can move in one direction.
- How to rigorously prove it?
 - The automaton can guarantee the order of symbols in certain cases. We cannot use the JFA technique. 🙁
 - The symbols can be mixed so it is not easy to derive a meaningful pumping lemma. ⁽²⁾
 - We need a different proof technique:
 → introducing the new debt lemma.

Parikh Vector

The Parikh vector associated to a string $x \in V^*$ with respect to the alphabet $V = \{a_1, a_2, \dots, a_n\}$ is $\Psi_V(x) = (|x|_{a_1}, |x|_{a_2}, \dots, |x|_{a_n}).$

For $L \subseteq V^*$ we define $\Psi_V(L) = \{\Psi_V(x) : x \in L\}$.

Parikh Vector

The Parikh vector associated to a string $x \in V^*$ with respect to the alphabet $V = \{a_1, a_2, \dots, a_n\}$ is $\Psi_V(x) = (|x|_{a_1}, |x|_{a_2}, \dots, |x|_{a_n}).$

For $L \subseteq V^*$ we define $\Psi_V(L) = \{\Psi_V(x) : x \in L\}.$

Example strings

$V = \{a, b, c\},$	x = abbccc	$\Rightarrow \Psi_V(x) = (1,2,3)$
$V = \{a, b, c, d\},$	x = abbccc	$\Rightarrow \Psi_V(x) = (1,2,3,0)$
$V = \{a, b, c, d\},$	x = cbabcc	$\Rightarrow \Psi_V(x) = (1,2,3,0)$
$V = \{a, b, c, d\},$	$X = \varepsilon$	$\Rightarrow \Psi_V(x) = (0,0,0,0)$

T FIT

Parikh Vector

The Parikh vector associated to a string $x \in V^*$ with respect to the alphabet $V = \{a_1, a_2, \dots, a_n\}$ is $\Psi_V(x) = (|x|_{a_1}, |x|_{a_2}, \dots, |x|_{a_n}).$

For $L \subseteq V^*$ we define $\Psi_V(L) = \{\Psi_V(x) : x \in L\}$.

Example language

. . .

Let $V = \{a, b, c\}$ and $L = \{a^n b^n c^n : n \ge 0\}$. Then, $\Psi_V(L) = \{$

$X = \varepsilon$	\Rightarrow	$\Psi_V(x)=(0,0,0)$
x = abc	\Rightarrow	$\Psi_V(x) = (1, 1, 1)$
x = aabbcc	\Rightarrow	$\Psi_V(x)=(2,2,2)$

$$x = aaabbbccc \Rightarrow \Psi_V(x) = (3,3,3)$$

 $\} = \{(0,0,0), (1,1,1), (2,2,2), (3,3,3), \dots\} = \{(n,n,n) : n \ge 0\}.$

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \to 3'$ WK automaton, where $V = \{a_1, \ldots, a_n\}$. Following the computation of M on an input $w \in V^*$, let $o = (o_1, \ldots, o_n)$ be the Parikh vector built by the processed (read) symbols from w: At first, for the starting configuration, set $o = \Psi_V(\varepsilon)$. For the following configurations, whenever M makes a \oplus/\oplus -reading step from some q to q' according to $q' \in \delta(q, u, v, s)$, set $o = o + \Psi_V(uv)$. Using the Parikh mapping of L(M), we define $\Delta(o) = \{\sum_{i=1}^n (m_i - o_i) : (m_1, \ldots, m_n) \in \Psi_V(L(M)), m_i \ge o_i, 1 \le i \le n\} \cup \{\infty\}$. Finally, we define the debt of the current configuration of M as min $\Delta(o)$.

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \to 3'$ WK automaton, where $V = \{a_1, \ldots, a_n\}$. Following the computation of M on an input $w \in V^*$, let $o = (o_1, \ldots, o_n)$ be the Parikh vector built by the processed (read) symbols from w: At first, for the starting configuration, set $o = \Psi_V(\varepsilon)$. For the following configurations, whenever M makes a \oplus/\oplus -reading step from some q to q' according to $q' \in \delta(q, u, v, s)$, set $o = o + \Psi_V(uv)$. Using the Parikh mapping of L(M), we define $\Delta(o) = \{\sum_{i=1}^n (m_i - o_i) : (m_1, \ldots, m_n) \in \Psi_V(L(M)), m_i \ge o_i, 1 \le i \le n\} \cup \{\infty\}$. Finally, we define the debt of the current configuration of M as min $\Delta(o)$.

- We are counting the processed symbols in the Parikh Vector $o = (o_1, \ldots, o_n)$.
- 2 The debt of the current configuration of M is the minimum number of symbols that we need to add to o so that it matches some Parikh vector from $\Psi_V(L(M))$.

JWKFA – The Debt of the Configuration (2/2)

O =

O =

O =

O =

O =

Example automaton

Let $V = \{a, b, c\}$. Assume that there is a jumping $5' \rightarrow 3'$ WK automaton $M = (V, Q, q_0, F, \delta)$ such that $L(M) = \{a^n b^n c^n :$ n > 0.

Therefore, $\Psi_V(L(M)) = \{(n, n, n) : n \ge 0\}.$

Example steps

 $(s, \oplus, \varepsilon, aabbcc, \varepsilon) \sim$ $(?, \oplus, \#, abbcc, \varepsilon) \frown o =$ $(?, \oplus, \#a, bbcc, \varepsilon) \land o =$ $(?, \oplus, \#a\#, bc, \#) \land o =$ $(?, \ominus, \#a\#\#, \varepsilon, \#\#) \land$ $(?, \ominus, \#\mathbf{a}, \varepsilon, \varepsilon) \land$ $(?, \ominus, \#, \varepsilon, \varepsilon) \land$ $(?, \ominus, \#, \varepsilon, \varepsilon) \curvearrowright$ $(?, \ominus, \varepsilon, \varepsilon, \varepsilon) \land$

$$\begin{array}{ll} o = (0,0,0) & \min \Delta(o) = 0 \\ o = (1,0,0) & \min \Delta(o) = 2 \\ o = (1,0,0) & \min \Delta(o) = 2 \\ o = (1,1,1) & \min \Delta(o) = 0 \\ o = (1,2,2) & \min \Delta(o) = 1 \\ o = (1,2,2) & \min \Delta(o) = 1 \\ o = (2,2,2) & \min \Delta(o) = 0 \\ o = (2,2,2) & \min \Delta(o) = 0 \\ o = (2,2,2) & \min \Delta(o) = 0 \end{array}$$

Debt lemma

Let *L* be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. If L(M) = L, *M* accepts all $w \in L$ using only configurations that have their debt bounded by some constant *k* for *M*.

Debt lemma

Let *L* be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. If L(M) = L, *M* accepts all $w \in L$ using only configurations that have their debt bounded by some constant *k* for *M*.

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

 $\delta(s, a, b, \oplus) = \{s\}$ $\delta(s, a, b, \ominus) = \{s\}$

 $L(M) = \{w : w \in \{a, b\}^*, |w|_a = |w|_b\}$

T FIT

Debt lemma

Let *L* be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. If L(M) = L, *M* accepts all $w \in L$ using only configurations that have their debt bounded by some constant *k* for *M*.

Example automaton

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

 $\delta(s, a, b, \oplus) = \{s\}$ $\delta(s, a, b, \ominus) = \{s\}$

 $L(M) = \{w : w \in \{a, b\}^*, |w|_a = |w|_b\}$ $k = 0 \text{ is sufficient } \bigcirc$

You can go to Bonus for the proof.

JWKFA – $\{a^n b^n c^n : n \ge 0\}$ (1/3)

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

Proof (1/3).

Basic idea. Considering any sufficiently large constant k, we show that M cannot process all symbols of $a^{10k}b^{10k}c^{10k}$ using only configurations that have their debt bounded by k.

Formal proof. (sketch) By contradiction. Let $L = \{a^n b^n c^n : n \ge 0\}$, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton such that L(M) = L.

Consider any k such that $k > \max\{|uv| : \delta(q, u, v, s) \neq \emptyset, u, v \in V^*\}$. Represent the debt of the configuration as $\langle d_a, d_b, d_c \rangle$.

For all traversed configurations must hold $d_a + d_b + d_c \le k$. Let $w = a^{10k}b^{10k}c^{10k}$.

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

Proof (2/3).

First, we explore the maximum number of symbols that M can read from w before the heads meet. Starting from $(q_0, \oplus, \varepsilon, w, \varepsilon) \langle 0, 0, 0 \rangle$ and until the position \oplus is reached. Consider the optimal reading strategy to process the maximum number of symbols from $a^{10k}b^{10k}c^{10k}$:

- **1** *M* processes (with multiple steps) a^k and c^k and reaches (0, k, 0),
- 2 M reads / symbols together in one step (balanced number of a's, b's, and c's) while keeping (0, k, 0), I < k,</p>
- **3** *M* processes b^{2k} and a^k (or c^k) and reaches (0, 0, k) (or (k, 0, 0)).

No further reading is possible; this strategy processed 5k + l symbols.

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

Proof (3/3).

Second, when the heads meet, $a^{>4k}b^{>4k}c^{>4k}$ has yet to be processed. Consider one of the optimal reading strategies:

- 1) the heads are between b's and c's,
- 2 the debt of the current configuration is (0, k, 0),
- 3 *M* processes b^{2k} and c^k and reaches $\langle k, 0, 0 \rangle$.

No further reading is possible; this strategy processed 3k symbols.

M is not able to process more than 8k + l symbols; but the input contains 30*k* symbols. Consequently, there is no constant *k* that bounds the debt of configurations of *M*.

 $JWKFA - \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}.$

Proof (1/10).

. . .

 $JWKFA - \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$

T FIT

Theorem

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}.$

Proof (1/10).

...NO

Proof.

$$\Psi_V(\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}) = \Psi_V(\{a^n b^n c^n : n \ge 0\})$$

 $w = a^{10k}b^{10k}c^{10k}$

Since the debt depends only on o and Ψ_V , the proof is analogous.

JWKFA – Language Families (1/2)

- JWK is incomparable with GJFA and JFA.
- JWK and CF are incomparable.

JWKFA – Language Families (1/2)

T FIT

- JWK is incomparable with GJFA and JFA.
- JWK and CF are incomparable.

Restrictions

- **N** stateless, i.e., with only one state: if $Q = F = \{q_0\}$
- **F** all-final, i.e., with only final states: if Q = F
- s simple (at most one head moves in a step)
- 1 1-limited (exactly one letter is being read in a step)

Further variations such as **NS**, **FS**, **N1**, and **F1** WK automata can be identified in a straightforward way by using multiple constraints.

JWKFA – Language Families (2/2)

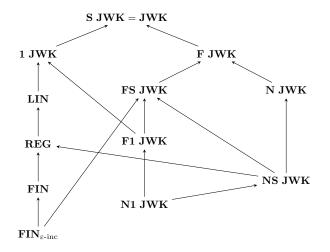


Figure: If there is an arrow from family X to family Y in the figure, then $X \subset Y$. Furthermore, if there is no path (following the arrows) between families X and Y, then X and Y are incomparable.

- The debt lemma was used only in JWKFAs so far.
- It can work in any automaton model that reads at least semi-continuously and where the steps depend only on the current state (not the previous readings, e.g., no stack).
- It can work in FAs.

Welcome at the end of this presentation!

And now Bonus...

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Example automaton

 $M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$

where δ :

 $\delta(s, a, \varepsilon, \oplus) = \{p\}$ $\delta(s, a, \varepsilon, \ominus) = \{q\}$

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Example automaton

 $M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$

where δ :

 $\delta(\mathbf{S}, \mathbf{a}, \varepsilon, \oplus) = \{\mathcal{P}\}\$ $\delta(\mathbf{S}, \mathbf{a}, \varepsilon, \ominus) = \{\mathbf{q}\}$

p is reachable from s and \oplus

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Example automaton

 $M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$

where δ :

 $\delta(s, a, \varepsilon, \oplus) = \{p\}$ $\delta(s, a, \varepsilon, \ominus) = \{q\}$

p is reachable from *s* and \oplus *p* is not reachable from *s* and \oplus

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Example automaton

 $M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$

where δ :

 $\delta(s, a, \varepsilon, \oplus) = \{p\}$ $\delta(s, a, \varepsilon, \ominus) = \{q\}$

p is reachable from *s* and \oplus *p* is not reachable from *s* and \oplus *q* is reachable from *s* and \oplus

Definition

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. Assuming some states $q, q' \in Q$ and a mutual position of heads $s \in \{\oplus, \ominus\}$, we say that q' is reachable from q and s if there exists a configuration (q, s, w_1, w_2, w_3) such that $(q, s, w_1, w_2, w_3) \curvearrowright^* (q', s', w'_1, w'_2, w'_3)$ in M, $s' \in \{\oplus, \ominus\}, w_1, w_2, w_3, w'_1, w'_2, w'_3 \in (V \cup \{\#\})^*$.

Example automaton

 $M = (\{a\}, \{s, p, q\}, s, \{s\}, \delta)$

where δ :

 $\delta(s, a, \varepsilon, \oplus) = \{p\}$ $\delta(s, a, \varepsilon, \ominus) = \{q\}$

p is reachable from *s* and \oplus *p* is not reachable from *s* and \oplus *q* is reachable from *s* and \oplus *q* is reachable from *s* and \oplus

Lemma

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton, and let $q \in Q$ and $s \in \{\oplus, \ominus\}$ such that $f \in F$ is reachable from q and s. When $(q_0, \oplus, \varepsilon, w, \varepsilon) \frown^* (q, s, w_1, w_2, w_3)$ in $M, w \in V^*, w_1, w_2, w_3 \in (V \cup \{\#\})^*$, there exists $w' \in L(M)$ such that M starting with w' can reach q and s' $(s' = s \text{ or } s' = \Theta)$ by using the same sequence of \oplus/\ominus -reading steps as in $(q_0, \oplus, \varepsilon, w, \varepsilon) \frown^* (q, s, w_1, w_2, w_3)$ and the rest of w' can be processed with a limited number of steps bounded by some constant k for M.

Lemma

Let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton, and let $q \in Q$ and $s \in \{\oplus, \ominus\}$ such that $f \in F$ is reachable from q and s. When $(q_0, \oplus, \varepsilon, w, \varepsilon) \frown^* (q, s, w_1, w_2, w_3)$ in $M, w \in V^*, w_1, w_2, w_3 \in (V \cup \{\#\})^*$, there exists $w' \in L(M)$ such that M starting with w' can reach q and s' $(s' = s \text{ or } s' = \Theta)$ by using the same sequence of \oplus/\ominus -reading steps as in $(q_0, \oplus, \varepsilon, w, \varepsilon) \frown^* (q, s, w_1, w_2, w_3)$ and the rest of w' can be processed with a limited number of steps bounded by some constant k for M.

- 1) On a string w with a sequence of steps we reach q and s.
- \bigcirc A final state is reachable from q and s.
- 3 There exists some string w' such that we can reach q and s' with the same sequence of steps.
- We can finish accepting w' with a limited number of additional steps.

Proof.

(idea)

(1) If *f* is reachable from *q* and *s*, there has to exist a sequence of state transitions from $(Q \times \{\oplus, \ominus\})^+$ such that $(p_0, s_0) \cdots (p_n, s_n)$, $p_0 = q$, $s_0 = s'$, $p_n = f$, $s_n = \ominus$, all pairs are unique, ... This sequence has to be finite and bounded by some constant.

(2) Represent the complete sequence as $(p_0, s_0) \cdots (p_m, s_m)$. At first, for all $i = 0, \ldots, m$, set $a_i = \varepsilon$, $b_i = \varepsilon$, $c_i = \varepsilon$, $d_i = \varepsilon$. If $p_{i+1} \in \delta(p_i, u_i, v_i, s_i)$ is used, then if $s_i = \oplus$, set $a_i = u_i$ and $b_i = v_i$, otherwise if $s_i = \ominus$, set $c_i = u_i$ and $d_i = v_i$.

$$(3) w' = a_0 \cdots a_m d_m \cdots d_0 c_0 \cdots c_m b_m \cdots b_0 \in L(M)$$

Debt lemma

Let *L* be a language, and let $M = (V, Q, q_0, F, \delta)$ be a jumping $5' \rightarrow 3'$ WK automaton. If L(M) = L, *M* accepts all $w \in L$ using only configurations that have their debt bounded by some constant *k* for *M*.

Proof.

(idea) By contradiction.

(1) Assume that *M* does not accept all $w \in L$ exclusively using only configurations that have their debt bounded by some constant *k* for *M*, then *M* can accept some $w \in L$ over a configuration for which the debt cannot be bounded by any *k*.

(2) Due to previous lemmas, if final state is reachable there is some w' such that $\min \Delta(o)$ must be bounded by some constant.

(3) *M* cannot accept *w* over a state *q* and a mutual position of heads *s* from which no final state $f \in F$ is reachable.

(4) Consequently, when M accepts w, it must be done over configurations with the debt $\leq k$. But that is a contradiction.