# Multi-Island Finite Automata and Their Even Computation

Martin Tomko

paper co-authored with: Dušan Kolář, Alexander Meduna

Faculty of Information Technology, BUT

December 5, 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Table of contents

Finite Automata

Bridges and Islands

Islands in Automata

**Even Computations** 

Accepting Power

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Finite Automata

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# Finite Automata: Example, Graphical Representation The GFA

 $M = (\{s, q, f\}, \{a, b\}, \{sa \rightarrow q, qa \rightarrow q, qb \rightarrow f, fb \rightarrow b\}, s, f)$ 

can be represented as:



The language accepted by this automaton is

$$L(M) = \{a^n b^m \mid n, m \ge 1\}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A generalized finite automaton (GFA) is a 5-tuple  $M = (Q, \Sigma, R, s, f)$ , where

- Q a finite set of states,
- Σ a finite, nonempty input alphabet,
- ►  $R \subseteq Q \times \Sigma^* \times Q$  a finite set of *rules*:

•  $(p, w, q) \in R$  written as  $pw \rightarrow q$ ,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\blacktriangleright$   $s \in Q$  the *initial state*,
- $f \in Q$  the final state.

A generalized finite automaton (GFA) is a 5-tuple  $M = (Q, \Sigma, R, s, f)$ , where

- Q a finite set of states,
- Σ a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^* \times Q$  a finite set of *rules*:

•  $(p, w, q) \in R$  written as  $pw \rightarrow q$ ,

- $\blacktriangleright$   $s \in Q$  the *initial state*,
- $f \in Q$  the final state.

Note these peculiarities:

The model is non-deterministic;

A generalized finite automaton (GFA) is a 5-tuple  $M = (Q, \Sigma, R, s, f)$ , where

- Q a finite set of states,
- Σ a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^* \times Q$  a finite set of *rules*:

•  $(p, w, q) \in R$  written as  $pw \rightarrow q$ ,

- $\blacktriangleright$   $s \in Q$  the *initial state*,
- $f \in Q$  the final state.

Note these peculiarities:

- The model is non-deterministic;
- The production rules allow reading entire strings;

A generalized finite automaton (GFA) is a 5-tuple  $M = (Q, \Sigma, R, s, f)$ , where

- Q a finite set of states,
- Σ a finite, nonempty input alphabet,
- $R \subseteq Q \times \Sigma^* \times Q$  a finite set of *rules*:

•  $(p, w, q) \in R$  written as  $pw \rightarrow q$ ,

- $\blacktriangleright$   $s \in Q$  the *initial state*,
- $f \in Q$  the final state.

Note these peculiarities:

- The model is non-deterministic;
- The production rules allow reading entire strings;

There is only a single final state.

An edge-labelled directed graph G = (V, E, W), where:

・ロト・日本・モト・モート ヨー うへで

$$\blacktriangleright$$
  $V = Q$ ,

An edge-labelled directed graph G = (V, E, W), where:

$$\blacktriangleright V = Q$$
,

► 
$$E = \{(u, v) \in Q \times Q \mid \exists w \in \Sigma^* : (uw \to v) \in R\},\$$

・ロト・日本・モト・モート ヨー うへで

An edge-labelled directed graph G = (V, E, W), where:

An edge-labelled directed graph G = (V, E, W), where:

$$V = Q,$$

$$E = \{(u, v) \in Q \times Q \mid \exists w \in \Sigma^* : (uw \to v) \in R\},$$

$$W : (u, v) \mapsto \{w \in \Sigma^* \mid (uw \to v) \in R\}.$$



# Bridges and Islands

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# Connected graph

*Connected graph*: Any two nodes are connected by an undirected path.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Disconnected graph

*Connected graph*: Any two nodes are connected by an undirected path.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Bridge

*Bridge*: an edge such that when it is removed, the graph is no longer connected.



#### Island

A *bridgeless island* = a maximal bridgeless connected component



Every node and edge is either a bridge or contained in exactly one bridgeless island.

# Islands in Automata

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

#### Islands in Automata: The Structure

▶ A state is *useful* if it occurs on some path from *s* to *f*;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Otherwise, it is useless;

#### Islands in Automata: The Structure

- A state is useful if it occurs on some path from s to f;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Islands in Automata: The Structure

- A state is useful if it occurs on some path from s to f;
- Otherwise, it is useless;
- Assuming no useless states, the islands will always be aranged linearly:

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_n$$

- Sketch of Proof:
  - Think of an "island graph" the nodes are islands, the edges are bridges;

- 2. This graph is necessarily a tree;
- 3. There must be exactly one path between  $I_s$  and  $I_f$ ;
- 4. All states are useful, so all islands must lie on this path.

#### Islands in Automata: Number Variability

For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;

### Islands in Automata: Number Variability

- For any integers m, n, a GFA with m bridges can be converted into an equivalent GFA with n bridges;
- Idea of proof:
  - Redundant states and transitions can merge existing islands and create new ones.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► a *k-bridge island* in *G*:
  - a maximal connected subgraph of G containing exactly k bridges
  - the merging of k + 1 bridgeless islands and their connecting bridges

- ► a *k-bridge island* in *G*:
  - a maximal connected subgraph of G containing exactly k bridges
  - the merging of k + 1 bridgeless islands and their connecting bridges

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can explicitly specify which islands we want:
  - a) Explicitly describe which states form which islands,

- ► a *k-bridge island* in *G*:
  - a maximal connected subgraph of G containing exactly k bridges
  - the merging of k + 1 bridgeless islands and their connecting bridges

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can explicitly specify which islands we want:
  - a) Explicitly describe which states form which islands,
  - b) Select the bridges that will actually divide islands;

- ► a *k-bridge island* in *G*:
  - a maximal connected subgraph of G containing exactly k bridges
  - the merging of k + 1 bridgeless islands and their connecting bridges
- We can explicitly specify which islands we want:
  - a) Explicitly describe which states form which islands,
  - b) Select the bridges that will actually divide islands;

•  $\binom{b}{n-1}$  ways to select *n* islands in a GFA with *b* bridges.

### *n*-Island GFA

An *n*-island GFA (*n*-IGFA) is:

- A GFA M (with at least n-1 bridges),
- Along with a set Γ of selected bridges;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# *n*-Island GFA

- An *n*-island GFA (*n*-IGFA) is:
  - A GFA M (with at least n-1 bridges),
  - Along with a set Γ of selected bridges;
- Let L(GFA<sub>n</sub>) denote the class of languages accepted by n-IGFA;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• 
$$\mathcal{L}(\mathsf{GFA}_n) = \mathsf{REG}$$
 for any  $n \ge 1$ ;

# *n*-Island GFA

- An *n*-island GFA (*n*-IGFA) is:
  - A GFA M (with at least n-1 bridges),
  - Along with a set Γ of selected bridges;
- Let L(GFA<sub>n</sub>) denote the class of languages accepted by n-IGFA;
- $\mathcal{L}(\mathsf{GFA}_n) = \mathsf{REG}$  for any  $n \ge 1$ ;
- Sketch of proof:
  - 1. n-IGFA are special cases of GFA;
  - 2. A GFA along with  $\Gamma=\emptyset$  is a 1-IGFA;
  - 3. An *n*-IGFA can be transformed into an equivalent *m*-IGFA.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

An *n*-IGFA accepts the same language as the underlying GFA...

An *n*-IGFA accepts the same language as the underlying GFA...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... unless we add an additional constraint to their computation:

- An *n*-IGFA accepts the same language as the underlying GFA...
- ... unless we add an additional constraint to their computation:
- A computation of an *n*-IGFA is *even* if the same number of steps is taken in each island.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Even Computations: Example (1/2)



Note:  $\varepsilon$  denotes the *empty string*;



# Even Computations: Example (1/2)



- Note: ε denotes the empty string;
- The language accepted by this automaton is

$$L(M) = \{a^i b^j c^k \mid i, j, k \ge 0\}.$$

・ロト ・聞ト ・ヨト ・ヨト

э
#### Even Computations: Example (2/2)



イロト イポト イヨト イヨト

э

Note: ε denotes the empty string;

Let us consider islands defined by the bridges Γ = {(s, q), (q, f)}:

### Even Computations: Example (2/2)



- Note: ε denotes the empty string;
- Let us consider islands defined by the bridges Γ = {(s, q), (q, f)}:
- The language accepted by this automaton by even computations with regard to Γ is

$$L_e(M,\Gamma) = \{a^n b^n c^n \mid n \ge 0\};$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

► 
$$L_e(M, \Gamma) \in \mathsf{CS} \setminus \mathsf{CF}.$$

### Accepting Power

#### Accepting Power: n-PRLG

 Let L<sub>e</sub>(GFA<sub>n</sub>) denote the class of languages accepted by n-IGFA by even computations;

#### Accepting Power: n-PRLG

- Let L<sub>e</sub>(GFA<sub>n</sub>) denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to *n*-parallel right linear grammars (*n*-PRLG):
  - (N, Σ, P, S);

P contains rules of the forms:

a)  $S \to x$ , where  $x \in \Sigma^*$ ,

- b)  $S \rightarrow A_1 \cdots A_n$ , where  $A_i \in N$ ,
- c)  $A \to xB$ , where  $A, B \in N \setminus \{S\}, x \in \Sigma^*$ ,

d)  $A \rightarrow x$ , where  $A \in N \setminus \{S\}, x \in \Sigma^*$ ;

All nonterminals rewritten at once;

#### Accepting Power: n-PRLG

- Let L<sub>e</sub>(GFA<sub>n</sub>) denote the class of languages accepted by n-IGFA by even computations;
- Equivalent power to *n*-parallel right linear grammars (*n*-PRLG):
  - $\blacktriangleright (N, \Sigma, P, S);$

P contains rules of the forms:

a)  $S \to x$ , where  $x \in \Sigma^*$ ,

- b)  $S \rightarrow A_1 \cdots A_n$ , where  $A_i \in N$ ,
- c)  $A \to xB$ , where  $A, B \in N \setminus \{S\}, x \in \Sigma^*$ ,
- d)  $A \to x$ , where  $A \in N \setminus \{S\}, x \in \Sigma^*$ ;

All nonterminals rewritten at once;

We denote the class of languages generated by n-PRLGs by PRL<sub>n</sub>.

## *n*-PRLG: Example

#### n-PRLG: Example

G = ({S, A, B}, {a, b}, P, S),
 P contains the following rules:
 S → AB | BA,
 A → aA | ε,
 B → bB | ε;
 G is a 2-PRLG;

### n-PRLG: Example

G = ({S, A, B}, {a, b}, P, S),
 P contains the following rules:
 S → AB | BA,
 A → aA | ε,
 B → bB | ε;
 G is a 2-PRLG;

▶ 
$$L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$$

 Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;

Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;

- For the *j*-th island, let:
  - Q<sub>j</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;

- Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
  - Q<sub>j</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;
- Construct the grammar  $G = (Q \cup \{S\}, \Sigma, P, S)$  where  $S \notin Q \cup \Sigma$  and  $P = P_s \cup P_i \cup P_f$  where:

- Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
  - Q<sub>i</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;
- Construct the grammar  $G = (Q \cup \{S\}, \Sigma, P, S)$  where  $S \notin Q \cup \Sigma$  and  $P = P_s \cup P_i \cup P_f$  where:

$$\blacktriangleright P_s = \{S \to s_1 \cdots s_n\},\$$

- Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
  - Q<sub>j</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;
- Construct the grammar  $G = (Q \cup \{S\}, \Sigma, P, S)$  where  $S \notin Q \cup \Sigma$  and  $P = P_s \cup P_i \cup P_f$  where:

- Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;
- For the j-th island, let:
  - Q<sub>j</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;
- Construct the grammar  $G = (Q \cup \{S\}, \Sigma, P, S)$  where  $S \notin Q \cup \Sigma$  and  $P = P_s \cup P_i \cup P_f$  where:

 $\blacktriangleright P_f = \{f_j \to x | (f_j x \to s_{j+1}) \in R \text{ for some } 1 \le j < n\} \cup \{f \to \varepsilon\};$ 

- Let M = (Q, Σ, R, s, f) be an n-IGFA along with a set Γ of bridges;
- For the *j*-th island, let:
  - Q<sub>i</sub> denote its set of states,
  - s<sub>j</sub> its entry state, and
  - *f<sub>j</sub>* its *exit state*;
- Construct the grammar  $G = (Q \cup \{S\}, \Sigma, P, S)$  where  $S \notin Q \cup \Sigma$  and  $P = P_s \cup P_i \cup P_f$  where:

► 
$$P_f = \{f_j \to x | (f_j x \to s_{j+1}) \in R \text{ for some } 1 \le j < n\} \cup \{f \to \varepsilon\};$$
  
►  $L(G) = L_e(M, \Gamma).$ 

The converse direction is considerably harder to prove; consider the grammar from before:

The converse direction is considerably harder to prove; consider the grammar from before:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• 
$$G = (\{S, A, B\}, \{a, b\}, P, S),$$

P contains the following rules:

$$S \rightarrow AB \mid BA$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bB \mid \varepsilon$$

$$\blacktriangleright L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$$

The converse direction is considerably harder to prove; consider the grammar from before:

• 
$$G = (\{S, A, B\}, \{a, b\}, P, S),$$

P contains the following rules:

$$S \rightarrow AB \mid BA$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bB \mid \varepsilon$$

▶ 
$$L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$$

We can easily form components to accept substrings of the forms a<sup>n</sup> or b<sup>n</sup> in each island, and even computations will ensure equal length;

The converse direction is considerably harder to prove; consider the grammar from before:

• 
$$G = (\{S, A, B\}, \{a, b\}, P, S),$$

P contains the following rules:

$$S \rightarrow AB \mid BA A \rightarrow aA \mid \varepsilon B \rightarrow bB \mid \varepsilon$$

▶ 
$$L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$$

- We can easily form components to accept substrings of the forms a<sup>n</sup> or b<sup>n</sup> in each island, and even computations will ensure equal length;
- How do we ensure that the a<sup>n</sup> component in the first island will only work with the b<sup>n</sup> component in the second island and vice versa?

The converse direction is considerably harder to prove; consider the grammar from before:

• 
$$G = (\{S, A, B\}, \{a, b\}, P, S),$$

P contains the following rules:

$$S \rightarrow AB \mid BA A \rightarrow aA \mid \varepsilon B \rightarrow bB \mid \varepsilon$$

▶ 
$$L(G) = \{a^n b^n, b^n a^n \mid n \ge 0\}$$

- We can easily form components to accept substrings of the forms a<sup>n</sup> or b<sup>n</sup> in each island, and even computations will ensure equal length;
- How do we ensure that the a<sup>n</sup> component in the first island will only work with the b<sup>n</sup> component in the second island and vice versa?
- In general, how do we deal with different initial rules of an n-PRLG?

### Proof: $PRL_n \subseteq \mathcal{L}_e(GFA_n)$ – An Example Solution

The trick is to encode the form of the accepted string in the number of steps in each island;

### Proof: $PRL_n \subseteq \mathcal{L}_e(GFA_n)$ – An Example Solution

- The trick is to encode the form of the accepted string in the number of steps in each island;
- ▶ For example, an odd number for the form a<sup>n</sup>b<sup>n</sup>, and an even number for the form b<sup>n</sup>a<sup>n</sup>:

#### Proof: $PRL_n \subseteq \mathcal{L}_e(GFA_n)$ – An Example Solution

- The trick is to encode the form of the accepted string in the number of steps in each island;
- For example, an odd number for the form a<sup>n</sup>b<sup>n</sup>, and an even number for the form b<sup>n</sup>a<sup>n</sup>:



▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;
- ► Each island i (for 1 ≤ i ≤ n) will contain the following kinds of states:

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;
- ► Each island i (for 1 ≤ i ≤ n) will contain the following kinds of states:

Entry state s<sub>i</sub> and exit state f<sub>i</sub>,

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;
- ► Each island i (for 1 ≤ i ≤ n) will contain the following kinds of states:
  - Entry state s<sub>i</sub> and exit state f<sub>i</sub>,
  - States (i, j) where 1 ≤ j ≤ m for the initial generation of remainder j,

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;
- ► Each island i (for 1 ≤ i ≤ n) will contain the following kinds of states:
  - Entry state s<sub>i</sub> and exit state f<sub>i</sub>,
  - States (i, j) where 1 ≤ j ≤ m for the initial generation of remainder j,
  - States (A, i, j) where 1 ≤ j ≤ m and A ∈ N \ {S} to represent nonterminal A simulated with predetermined remainder j,

- ▶ Let *m* be the number of starting production rules of the input grammar of the form  $S \rightarrow A_1 \cdots A_n$ ;
- Associate each of these starting rules with a remainder modulo m + 1 with the remainder 0 reserved for starting rules of the form S → x, x ∈ Σ\*;
- ► Each island i (for 1 ≤ i ≤ n) will contain the following kinds of states:
  - Entry state s<sub>i</sub> and exit state f<sub>i</sub>,
  - States (i, j) where 1 ≤ j ≤ m for the initial generation of remainder j,
  - States (A, i, j) where 1 ≤ j ≤ m and A ∈ N \ {S} to represent nonterminal A simulated with predetermined remainder j,
  - States (i, j, k, B) where 1 ≤ j, k ≤ m and B ∈ (N \ {S}) ∪ {ε}, which use k as a counter to drag out the rewriting of A to B to m + 1 moves.

The automaton constructed will contain the following kinds of rules:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The automaton constructed will contain the following kinds of rules:

Rules to generate a remainder (at the start of each island):

・ロト・日本・モート モー うへぐ

• 
$$s_i \rightarrow \langle i, 1 \rangle$$
,  $\langle i, j \rangle \rightarrow \langle i, j + 1 \rangle$ ;

- The automaton constructed will contain the following kinds of rules:
  - Rules to generate a remainder (at the start of each island):

• 
$$s_i \rightarrow \langle i, 1 \rangle$$
,  $\langle i, j \rangle \rightarrow \langle i, j + 1 \rangle$ ;

 Rules to pair a given remainder with the corresponding computation within each island,

$$\blacktriangleright \quad \langle 1,m\rangle \to f_1, \ \langle i,m\rangle \to f_i \ \text{for} \ S \to x \in P_i$$

$$s_i \to \langle A_{i1}, i, 1 \rangle, \ \langle i, j - 1 \rangle \to \langle A_{ij}, i, j \rangle \text{ for } \\ p_j : S \to A_{1j} \cdots A_{nj} \in P;$$

- The automaton constructed will contain the following kinds of rules:
  - Rules to generate a remainder (at the start of each island):

• 
$$s_i \rightarrow \langle i, 1 \rangle$$
,  $\langle i, j \rangle \rightarrow \langle i, j + 1 \rangle$ ;

 Rules to pair a given remainder with the corresponding computation within each island,

$$\blacktriangleright \quad \langle 1,m\rangle \to f_1, \ \langle i,m\rangle \to f_i \ \text{for} \ S \to x \in P,$$

► 
$$s_i \rightarrow \langle A_{i1}, i, 1 \rangle$$
,  $\langle i, j - 1 \rangle \rightarrow \langle A_{ij}, i, j \rangle$  for  
 $p_j : S \rightarrow A_{1j} \cdots A_{nj} \in P$ ;

Rules to simulate grammar rules of the form A → xB and A → x, A, B ∈ N, x ∈ Σ\*, along with ε-rules ensuring that each rule is simulated in exactly m + 1 steps,

$$\begin{array}{l} \blacktriangleright & \langle A, i, j \rangle x \rightarrow \langle i, j, 1, B \rangle \text{ for } A \rightarrow xB \in P, \\ \blacktriangleright & \langle i, j, k, B \rangle \rightarrow \langle i, j, k + 1, B \rangle, \ \langle i, j, m, B \rangle \rightarrow \langle B, i, j \rangle, \\ & \langle i, j, m, \varepsilon \rangle \rightarrow f_i; \end{array}$$

- The automaton constructed will contain the following kinds of rules:
  - Rules to generate a remainder (at the start of each island):

• 
$$s_i \rightarrow \langle i, 1 \rangle$$
,  $\langle i, j \rangle \rightarrow \langle i, j + 1 \rangle$ ;

 Rules to pair a given remainder with the corresponding computation within each island,

$$\blacktriangleright \quad \langle 1,m\rangle \to f_1, \ \langle i,m\rangle \to f_i \ \text{for} \ S \to x \in P,$$

$$s_i \to \langle A_{i1}, i, 1 \rangle, \ \langle i, j - 1 \rangle \to \langle A_{ij}, i, j \rangle \text{ for } \\ p_j : S \to A_{1j} \cdots A_{nj} \in P;$$

Rules to simulate grammar rules of the form A → xB and A → x, A, B ∈ N, x ∈ Σ\*, along with ε-rules ensuring that each rule is simulated in exactly m + 1 steps,

$$\begin{array}{l} \blacktriangleright \quad \langle A, i, j \rangle x \rightarrow \langle i, j, 1, B \rangle \text{ for } A \rightarrow xB \in P, \\ \flat \quad \langle i, j, k, B \rangle \rightarrow \langle i, j, k + 1, B \rangle, \ \langle i, j, m, B \rangle \rightarrow \langle B, i, j \rangle, \\ \langle i, j, m, \varepsilon \rangle \rightarrow f_i; \end{array}$$

Bridge rules:

$$\blacktriangleright f_i \to s_{i+1}.$$
Corollary:  $PRL_n = \mathcal{L}_e(GFA_n)$ 

- ▶  $\mathsf{PRL}_n = \mathcal{L}_e(\mathsf{GFA}_n)$
- Proof: See previous slides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Accepting Power

The following is known about the accepting power of n-PRLGs:

## Accepting Power

- The following is known about the accepting power of n-PRLGs:
- ▶  $\mathsf{REG} = \mathsf{PRL}_1 \subset \mathsf{PRL}_k \subset \mathsf{PRL}_{k+1} \subset \mathsf{CS}$  for any k > 1;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶  $\mathsf{PRL}_2 \subset \mathsf{CF};$
- ▶  $\mathsf{PRL}_n \not\subseteq \mathsf{CF}, \mathsf{CF} \not\subseteq \mathsf{PRL}_n, n \ge 3;$

## Accepting Power

- The following is known about the accepting power of n-PRLGs:
- ▶  $\mathsf{REG} = \mathsf{PRL}_1 \subset \mathsf{PRL}_k \subset \mathsf{PRL}_{k+1} \subset \mathsf{CS}$  for any k > 1;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶  $\mathsf{PRL}_2 \subset \mathsf{CF};$
- ▶  $\mathsf{PRL}_n \not\subseteq \mathsf{CF}, \mathsf{CF} \not\subseteq \mathsf{PRL}_n, n \ge 3;$
- Finally,  $PRL_n = \mathcal{L}_e(GFA_n)$  for all  $n \ge 1$ .

## Accepting Power: Summary

- $\mathcal{L}_e(\text{GFA}_n)$  equivalent to languages generated by *n*-PRLGs:
  - An infinite hierarchy between REG and CS;
  - For  $n \ge 3$  incomparable with CF.
- For compactness, El<sub>n</sub> will denote L<sub>e</sub>(GFA<sub>n</sub>) in the following diagram:

