# Deciding Presburger Arithmetic <br> Using Finite Automata 

Michal Hečko, Ondřej Lengál, Vojta Havlena, Lukáš Holík

Faculty of Information Technology<br>Brno University of Technology

LTA23, Dec 2023

## Motivation - binary search correctness

$$
\begin{aligned}
\varphi: & \left(x_{\text {low }}>x_{\text {high }} \vee 0 \leq x_{\text {low }}<x_{\text {high }}<|A|\right) \wedge \\
& \left(x_{\text {low }} \leq x_{\text {high }} \rightarrow 0 \leq \frac{x_{\text {low }}+x_{\text {high }}}{2}<|A|\right)
\end{aligned}
$$

- The midpoint must be within array bounds

Are there valid assignments to $x_{\text {low }}$ and $x_{\text {high }}$ violating the assertion $\varphi$ ?


## Outline

First-order logic, theories and decision procedures

## Automata-based decision procedure

Amaya - a novel implementation $\mathcal{A}$-based decision procedure

Conclusion, future work

## First-order logic primer

First-order logic (FOL)

- collection of formal languages distinguished by $\langle\mathcal{F}, \mathcal{P}\rangle$
${ }^{1}$ recursively enumerable


## First-order logic primer

First-order logic (FOL)

- collection of formal languages distinguished by $\langle\mathcal{F}, \mathcal{P}\rangle$
- allows reasoning about properties and relations between elements of the domain of discourse
${ }^{1}$ recursively enumerable


## First-order logic primer

First-order logic (FOL)

- collection of formal languages distinguished by $\langle\mathcal{F}, \mathcal{P}\rangle$
- allows reasoning about properties and relations between elements of the domain of discourse
- a FOL theory $\mathcal{T}$ is given by its signature $\Sigma_{\mathcal{T}}$, and a set ${ }^{1}$ of closed formulae $A_{\mathcal{T}}$ called the axioms.

[^0]
## First-order logic primer

First-order logic (FOL)

- collection of formal languages distinguished by $\langle\mathcal{F}, \mathcal{P}\rangle$
- allows reasoning about properties and relations between elements of the domain of discourse
- a FOL theory $\mathcal{T}$ is given by its signature $\Sigma_{\mathcal{T}}$, and a set ${ }^{1}$ of closed formulae $A_{\mathcal{T}}$ called the axioms.

$$
\begin{aligned}
t::= & x \mid f\left(x_{1}, \ldots, x_{n}\right) \\
\varphi::= & p\left(t_{1}, \ldots t_{m}\right)\left|t_{1}=t_{2}\right| \\
& (\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \leftrightarrow \varphi)|(\varphi \rightarrow \varphi) \mid \\
& (\exists x \varphi) \mid(\forall x \varphi)
\end{aligned}
$$

for a variable $x \in \mathbb{X}$, a predicate symbol $p_{/ m} \in \mathcal{P}$, and a function symbol $f_{/ n} \in \mathcal{F}$.

[^1]Presburger arithmetic (PrA)

## Presburger arithmetic (PrA)

- FOL theory with the signature $\Sigma_{\text {PrA }}=\langle 0,1,+\rangle$


## Presburger arithmetic (PrA)

- FOL theory with the signature $\sum_{\operatorname{PrA}}=\langle 0,1,+\rangle$
- decidability established in 1929 by Presburger


## Presburger arithmetic (PrA)

- FOL theory with the signature $\Sigma_{\text {PrA }}=\langle 0,1,+\rangle$
- decidability established in 1929 by Presburger
- shown by quantifier elimination


## Presburger arithmetic (PrA)

- FOL theory with the signature $\Sigma_{\text {PrA }}=\langle 0,1,+\rangle$
- decidability established in 1929 by Presburger
- shown by quantifier elimination
- trivially extendable from $\mathbb{N}$ to $\mathbb{Z}$


## Presburger arithmetic (PrA)

- FOL theory with the signature $\Sigma_{\text {PrA }}=\langle 0,1,+\rangle$
- decidability established in 1929 by Presburger
- shown by quantifier elimination
- trivially extendable from $\mathbb{N}$ to $\mathbb{Z}$
- PrA nowadays refers to $\operatorname{Th}(\mathbb{Z}, 0,1,+)$
- also known as linear integer arithmetic (LIA)


## Decision procedures, SMT and SMT solvers

Decision procedure $\mathcal{P}(\varphi)$ for a theory $\mathcal{T}$ :

- an algorithm that returns SAT when there is a solution (model) to $\varphi$, UNSAT otherwise


## Decision procedures, SMT and SMT solvers

Decision procedure $\mathcal{P}(\varphi)$ for a theory $\mathcal{T}$ :

- an algorithm that returns SAT when there is a solution (model) to $\varphi$, UNSAT otherwise

SMT solver:

- a tool implementing decision procedures for theories $\mathcal{T}_{1}$, $\mathcal{T}_{2}, \ldots$ and their combinations


## Decision procedures, SMT and SMT solvers

Decision procedure $\mathcal{P}(\varphi)$ for a theory $\mathcal{T}$ :

- an algorithm that returns SAT when there is a solution (model) to $\varphi$, UNSAT otherwise

SMT solver:

- a tool implementing decision procedures for theories $\mathcal{T}_{1}$, $\mathcal{T}_{2}, \ldots$ and their combinations
- typically a set of dedicated theory solvers combined using the Nelson-Oppen approach


## Decision procedures, SMT and SMT solvers

Decision procedure $\mathcal{P}(\varphi)$ for a theory $\mathcal{T}$ :

- an algorithm that returns SAT when there is a solution (model) to $\varphi$, UNSAT otherwise

SMT solver:

- a tool implementing decision procedures for theories $\mathcal{T}_{1}$, $\mathcal{T}_{2}, \ldots$ and their combinations
- typically a set of dedicated theory solvers combined using the Nelson-Oppen approach
- quantifiers handled using quantifier instantiation


## Decision procedures, SMT and SMT solvers

Decision procedure $\mathcal{P}(\varphi)$ for a theory $\mathcal{T}$ :

- an algorithm that returns SAT when there is a solution (model) to $\varphi$, UNSAT otherwise

SMT solver:

- a tool implementing decision procedures for theories $\mathcal{T}_{1}$, $\mathcal{T}_{2}, \ldots$ and their combinations
- typically a set of dedicated theory solvers combined using the Nelson-Oppen approach
- quantifiers handled using quantifier instantiation
- actively employed in the industry, e.g., at AWS
- standardized input format SMTLIB


## SMTLIB example

```
(set-logic LIA)
(declare-fun P () Int)
```

(assert
(and

$$
(<=0 \mathrm{P})
$$

(forall ((x0 Int) (x1 Int))
(=>

$$
\text { (and }(<=0 \times 0) \quad(<=0 \times 1))
$$

$$
(\operatorname{not}(=(+(* x 013)(* x 1 \text { 17)) P)))) }
$$

(forall ((R Int))
(=>

$$
\begin{aligned}
& \quad(\text { forall }((x 0 \text { Int) (x1 Int)) } \\
& \quad(=> \\
& \quad(\text { and }(<=0 \text { x0) }(<=0 \quad x 1)) \\
& \quad(\text { not }(=(+(* x 013)(* x 117)) R)))) \\
& (<=R P))))
\end{aligned}
$$

(check-sat)

## Outline

First-order logic, theories and decision procedures

Automata-based decision procedure

Amaya - a novel implementation $\mathcal{A}$-based decision procedure

Conclusion, future work

## Logic-automata connection

## $\mathcal{A} \longleftrightarrow \varphi$

- first $\mathcal{A}$-based decision procedure is due to Büchi (1960) [2]


## Logic-automata connection

$$
\mathcal{A} \longleftrightarrow \varphi
$$

- first $\mathcal{A}$-based decision procedure is due to Büchi (1960) [2]
- Büchi developed the approach to show decidability of WS1S


## Logic-automata connection



- first $\mathcal{A}$-based decision procedure is due to Büchi (1960) [2]
- Büchi developed the approach to show decidability of WS1S
- a direct construction $\mathcal{P}_{\mathcal{A}}$ for Presburger arithmetic given by Boudet \& Comon (1996) [1]


## Logic-automata connection



- first $\mathcal{A}$-based decision procedure is due to Büchi (1960) [2]
- Büchi developed the approach to show decidability of WS1S
- a direct construction $\mathcal{P}_{\mathcal{A}}$ for Presburger arithmetic given by Boudet \& Comon (1996) [1]
- the time-complexity $\mathcal{O}\left(2^{2^{2^{n}}}\right)$ of $\mathcal{P}_{\mathcal{A}}$ established by Durand-Gasselin \& Habermehl (2010) [3]


## Constructing NFAs from atomic formulae - intuition

Idea: Any number $x$ can be written as its least-significant digit $x_{0}$ and remaining digits $x^{\prime}$.

$$
x=x_{0}+10 x^{\prime}
$$


$\varphi_{\text {atom }} \mapsto \mathcal{A}$ - binary encoding, coefficients
The previous observation is flexible:

- number encoding (basis) is arbitrary: $\Sigma=\{0,1\}^{n}$ has advantages (BDDs)
- variables can have coefficients

Automaton $\mathcal{A}_{\varphi}$ for $\varphi: x-2 y \leq 0$


## Beyond atomic formulae

The automaton $\mathcal{A}_{\psi}$ for a formula $\psi$ is created inductively by mapping logical connectives to corresponding language operations:

- $\mathcal{A}_{\varphi \wedge \varphi^{\prime}}=\mathcal{A}_{\varphi} \cap \mathcal{A}_{\varphi^{\prime}}$
- $\mathcal{A}_{\varphi \vee \varphi^{\prime}}=\mathcal{A}_{\varphi} \cup \mathcal{A}_{\varphi^{\prime}}$
- $\mathcal{A}_{\neg \varphi}=\mathcal{A}_{\varphi}^{C}$

Existential quantification $\exists x(\varphi)$ corresponds to projecting away the track corresponding to variable $x^{2}$.


[^2]
## High-level example of $\mathcal{A}$-based procedure



## Outline

## First-order logic, theories and decision procedures

## Automata-based decision procedure

Amaya - a novel implementation $\mathcal{A}$-based decision procedure

## Conclusion, future work

## Enter Amaya



- LIA SMT solver based on finite automata
- novel optimizations of the classical $\mathcal{A}$-based decision procedure
- implementation:

Python (7.7 KLOC), C+ (8.3 KLOC)

Amaya: an interpreter's perspective


## Amaya: an interpreter's perspective



## Amaya: an interpreter's perspective



## Amaya: an interpreter's perspective



## Subset construction primer



## Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in $|\Sigma|$ :
1: ...
2: for each $\sigma \in \Sigma$ do
3:
4: end for
5: ...

## Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in $|\Sigma|$ :
1: ...
2: for each $\sigma \in \Sigma$ do
3:
4: end for
5: ...
$\Sigma=\{0,1\}^{n}$ where $n$ is the number of variables.

## Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in $|\Sigma|$ :
1: ...
2: for each $\sigma \in \Sigma$ do
3:
4: end for
5: ...
$\Sigma=\{0,1\}^{n}$ where $n$ is the number of variables.

- $|\Sigma|$ grows exponentially with $n$


## MTBDDs - symbolic representation of automata



## Binary-decision diagram representing transitions from $q_{0}$

Amaya relies on the Sylvan library [4] to provide an MTBDD implementation.

## MTBDD-based automata constructions



## Duality between formulae and states

TFA $\mathcal{A}_{\varphi}$ for $\varphi: 2 x-y \leq 0$


I


## Duality between formulae and states

TFA $\mathcal{A}_{\varphi}$ for $\varphi: 2 x-y \leq 0$


What can be gained by looking at states as formulae?

## A birth of a framework

- Having $\operatorname{Post}(\varphi, \sigma)$ where $\sigma \in \Sigma$ and $\varphi$ is an atomic predicate allows for an inductive definition of $\operatorname{Post}(\psi, \sigma)$ for arbitrary $\psi$ e.g.

$$
\operatorname{Post}(2 x-y \leq 3 \wedge y+2 z \leq 42)=
$$

$$
\operatorname{Post}(2 x-y \leq 3) \wedge \operatorname{Post}(y+2 z \leq 42)
$$



## Framework - structural subsumption

A state $\psi_{1} \vee \psi_{2} \vee \psi_{3} \ldots \psi_{k}$ can be rewritten into an equivalent state $\psi_{2} \vee \psi_{3} \ldots \psi_{k}$ given $\psi_{2} \vee \psi_{3} \ldots \psi_{k} \Rightarrow \psi_{1}$.

- Testing $\varphi \Rightarrow \psi$ is hard, therefore, we underapproximate using structural subsumption $\preceq_{s}$

$$
\begin{aligned}
\vec{a}_{1} \cdot \vec{x}_{1} \leq c_{1} \preceq_{s} \vec{a}_{2} \cdot \vec{x}_{2} \leq c_{2} & \stackrel{\text { def }}{\Leftrightarrow} \vec{a}_{1}=\vec{a}_{2} \wedge \vec{x}_{1}=\vec{x}_{2} \wedge c_{1} \leq c_{2} \\
\vec{a}_{1} \cdot \vec{x}_{1}=c_{1} \preceq_{s} \vec{a}_{2} \cdot \vec{x}_{2}=c_{2} & \stackrel{\text { def }}{\Leftrightarrow} \vec{a}_{1}=\vec{a}_{2} \wedge \vec{x}_{1}=\vec{x}_{2} \wedge c_{1}=c_{2} \\
\vec{a}_{1} \cdot \vec{x}_{1} \equiv_{m_{1}} c_{1} \preceq_{s} \vec{a}_{2} \cdot \vec{x}_{2} \equiv_{m_{2}} c_{2} & \stackrel{\text { def }}{\Leftrightarrow} \vec{a}_{1}=\vec{a}_{2} \wedge \vec{x}_{1}=\vec{x}_{2} \wedge c_{1}=c_{2} \wedge m_{1}=m_{2}
\end{aligned}
$$

(Can be extended to arbitrary $\psi$ )


## Framework - rewriting into equivalent formulae

A formula $\psi$ can be rewritten into an equivalent $\psi^{\prime}$ whenever suitable.

$$
\begin{gathered}
\psi: \exists y, m\left(f_{0} \leq y \wedge m \leq f_{1}+42 \wedge y \leq-1 \wedge m \geq 0 \wedge m \leq 0 \wedge m \equiv_{7} y\right) \\
\mid m=0 \\
\downarrow \begin{array}{l} 
\\
\psi^{\prime}: \exists y\left(f_{0} \leq y \wedge 0 \leq f_{1}+42 \wedge y \leq-1 \wedge 0 \equiv_{7} y\right) \\
\mid y=-7 \\
\downarrow
\end{array} \\
\psi^{\prime \prime}: f_{0} \leq-7 \wedge 0 \leq f_{1}+42
\end{gathered}
$$

And continue building the automaton using $\operatorname{Post}\left(\psi^{\prime \prime}, \sigma\right)$.

## Performance evaluation - state-of-the-art SMT solvers



## Performance evaluation - classical $\mathcal{P}_{\mathcal{A}}$



## Performance evaluation - Frobenius coin problem



## Outline

## First-order logic, theories and decision procedures

## Automata-based decision procedure

Amaya - a novel implementation $\mathcal{A}$-based decision procedure

Conclusion, future work

## Future work, open problems

Open problems:

- combination with other SMT theories, e.g., theory of uninterpreted functions
- $\rightsquigarrow$ existential second-order theory over automatic structures
$\rightarrow$ decidability of combinations $\times$ practical usefulness
$>$ extending $\operatorname{PrA}$ with a predicate $I s P o w 2(x) \stackrel{\text { def }}{\Leftrightarrow} \exists k\left(x=2^{k}\right)$
- trivial, but $\mathcal{O}(\cdot)$ is unknown
- Can the duality between states and formulae be used in different theories, e.g., WS1S?
Engineering challenges:
- Parallelization based on formula structure
- Second-order DAGification of formula


## Conclusion



## Thank you for your attention.

Questions?


## Optimizer: formula pruning, bound strengthening



Optimizer: formula pruning, bound strengthening


## Optimizer: antiprenexing



## Formula monotonicity

A formula $\psi(\vec{x}, y)$ is $c$-increasing w.r.t. $y$ where $c \in \mathbb{Z} \cup\{ \pm \infty\}$ iff

$$
\begin{aligned}
& \text { 1. } \llbracket \psi\left(\vec{x}, y_{1}\right) \rrbracket \subseteq \llbracket \psi\left(\vec{x}, y_{2}\right) \rrbracket \text { for all } y_{1} \leq y_{2} \leq c \text { and } \\
& \text { 2. } \llbracket \psi(\vec{x}, y) \rrbracket=\emptyset \text { for all } y>c \text {. }
\end{aligned}
$$

For example, $\psi(x, z, y)$ is 42-increasing w.r.t. $y$ :

$$
\psi: x-2 z \leq 3 \wedge z<y \wedge x-13 y \leq 2 z \wedge y \leq 42
$$

## Monotonicity-based optimizations

Let $\psi(\vec{x}, y)$ be a 42-increasing w.r.t. $y$

- $\exists y(\psi(\vec{x}, y)) \Leftrightarrow \psi(\vec{x}, 42)$

$$
\exists y(x-2 z \leq 3 \wedge z<y \wedge x-13 y \leq 2 z \wedge y \leq 42)
$$

$$
\Uparrow
$$

$$
x-2 z \leq 3 \wedge z<42 \wedge x-13 \cdot 42 \leq 2 z
$$

## Monotonicity-based optimizations

Let $\psi(\vec{x}, y)$ be a 42-increasing w.r.t. $y$

- $\exists y\left(\psi(\vec{x}, y) \wedge y \equiv_{M} k\right) \Leftrightarrow \psi\left(\vec{x}, c^{\prime}\right)$ where $c^{\prime}=\max \left\{\ell \in \mathbb{Z} \mid \ell \equiv_{M} k, \ell \leq c\right\}$

$$
\exists y\left(x-2 z \leq 3 \wedge z<y \wedge x-13 y \leq 2 z \wedge y \leq 42 \wedge y \equiv_{9} 0\right)
$$

$$
x-2 z \leq 3 \wedge z<36 \wedge x-13 \cdot 36 \leq 2 z
$$

Monotonicity-based optimizations - modulo linearization
Let $\psi(\vec{x}, y)$ be a 17 -increasing w.r.t. $y$



## Literature

[1] Alexandre Boudet and Hubert Comon.
Diophantine equations, presburger arithmetic and finite automata.
In Hélène Kirchner, editor, Trees in Algebra and Programming - CAAP '96, pages 30-43, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.
[2] J Richard Büchi.
Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(1-6), 1960.
[3] Antoine Durand-Gasselin and Peter Habermehl.
On the use of non-deterministic automata for presburger arithmetic.
In Paul Gastin and François Laroussinie, editors, CONCUR 2010 -
Concurrency Theory, pages 373-387, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[4] Tom van Dijk and Jaco van de Pol.
Sylvan: Multi-core decision diagrams.
In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 677-691, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.


[^0]:    ${ }^{1}$ recursively enumerable

[^1]:    ${ }^{1}$ recursively enumerable

[^2]:    ${ }^{2}$ Omitting technical details about padding

