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Motivation - binary search correctness

O (Xtow > Xnigh V' 0 < Xiow < Xnigh < |A]) A

Xjow + Xhigh
(Xiow < Xpigh — 0 < ——=

< |Al)

"* The midpoint must be within array bounds *~

Are there valid assignments to X,
and Xign violating the assertion ¢?

l

|SMT solver|

o~

SALSE oS UNSAT (no model)

Xlow = .+« Xhigh = + ..

2/35



Outline

First-order logic, theories and decision procedures
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First-order logic primer

First-order logic (FOL)
» collection of formal languages distinguished by (F,P)
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First-order logic primer

First-order logic (FOL)
» collection of formal languages distinguished by (F, P)

> allows reasoning about properties and relations between
elements of the domain of discourse

» a FOL theory 7 is given by its signature ¥, and a set! of
closed formulae Ay called the axioms.

to=x|f(x1,...,%n)

p(ty, ... tm) | t1 = t2 |

(=) [(eA@) [ (pV )| (g @) (p—¢)l
(3xp) | (Vxp)

S
1

for a variable x € X, a predicate symbol p,,, € P, and a function
symbol f/, € F.

!recursively enumerable
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Presburger arithmetic (PrA)

» FOL theory with the signature £p,4 = (0,1, +)

> decidability established in 1929 by Presburger
» shown by quantifier elimination

> trivially extendable from N to Z

» PrA nowadays refers to Th(Z,0,1,+)
> also known as linear integer arithmetic (LIA)

5/35



Decision procedures, SMT and SMT solvers

Decision procedure P(¢p) for a theory T

» an algorithm that returns SAT when there is a solution
(model) to ¢, UNSAT otherwise

6/35



Decision procedures, SMT and SMT solvers

Decision procedure P(¢p) for a theory T

» an algorithm that returns SAT when there is a solution
(model) to ¢, UNSAT otherwise

SMT solver:

» a tool implementing decision procedures for theories 77,
T2, ... and their combinations

6/35



Decision procedures, SMT and SMT solvers

Decision procedure P(¢p) for a theory T

» an algorithm that returns SAT when there is a solution
(model) to ¢, UNSAT otherwise

SMT solver:

» a tool implementing decision procedures for theories 77,
T2, ... and their combinations

> typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

6/35



Decision procedures, SMT and SMT solvers

Decision procedure P(¢p) for a theory T

» an algorithm that returns SAT when there is a solution
(model) to ¢, UNSAT otherwise

SMT solver:

» a tool implementing decision procedures for theories 77,
T2, ... and their combinations

> typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

» quantifiers handled using quantifier instantiation

6/35



Decision procedures, SMT and SMT solvers

Decision procedure P(¢p) for a theory T

» an algorithm that returns SAT when there is a solution
(model) to ¢, UNSAT otherwise

SMT solver:

» a tool implementing decision procedures for theories 77,
T2, ... and their combinations

> typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

» quantifiers handled using quantifier instantiation

v

actively employed in the industry, e.g., at AWS
» standardized input format SMTLIB
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SMTLIB example

(set-logic LIA)
(declare-fun P () Int)
(assert
(and
(<= 0 P)
(forall ((x0 Int) (x1 Int))
(=>
(and (<= 0 x0) (<= 0 x1))
(not (= (+ (x x0 13) (x x1 17)) P))))
(forall ((R Int))
(=>
(forall ((x0 Int) (x1 Int))
(=>
(and (<= 0 x0) (<= 0 x1))
(not (= (+ (*x x0 13) (* x1 17)) R))))
(<= R P)))))
(check-sat)
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Automata-based decision procedure

8/35



Logic-automata connection

A

Y

> first .A-based decision procedure is due to Biichi (1960) [2]
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Logic-automata connection

A

Y

> first .A-based decision procedure is due to Biichi (1960) [2]
» Biichi developed the approach to show decidability of WS1S

» a direct construction P 4 for Presburger arithmetic given by
Boudet & Comon (1996) [1]

> the time-complexity O(22") of P4 established by
Durand-Gasselin & Habermehl (2010) [3]
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Constructing NFAs from atomic formulae - intuition

Idea: Any number x can be written as its least-significant
digit xp and remaining digits x’.

x = xg + 10x’
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©Vatom —> A — binary encoding, coefficients
The previous observation is flexible:

» number encoding (basis) is arbitrary: ¥ = {0,1}" has
advantages (BDDs)

» variables can have coefficients

Automaton A, for p: x —2y <0
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Beyond atomic formulae
The automaton Ay, for a formula v is created inductively by

mapping logical connectives to corresponding language operations:

> Apng = Ap N Ay
> A, =AS

Existential quantification 3x(y) corresponds to projecting away

the track corresponding to variable x 2.

;[(IJ] Ix y[O}

20Omitting technical details about padding
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High-level example of A-based procedure

Does f3: 3x(~(3x +y < 3/ 2x — 4y < 0)) have a model? - T L(A3) £ 0
1(6) DFS(43)
Az
I(s) Projection, (A€)
.AC
1(4) Complement(An)
An

s

[1/1 3x+y < 3] [np (2x — 4y < 0] Ay~ ) Inter;éétfo_n(,;\,/,,Aw) A,

parse(d)

> | —

>
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Amaya - a novel implementation .A-based decision procedure
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Enter Amaya

» LIA SMT solver based on finite
automata

» novel optimizations of the classical
A-based decision procedure

» implementation:
Python (7.7 KLOC),
C+ (8.3 KLOCQ)
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Amaya: an interpreter’s perspective

[
SMTLIBl
R Ve Th(Z,0,1,4) (17T
' Frontend ! > Optimizer
¢ e
Backend |
4|
[ ]
SAT / UNSAT
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Amaya: an interpreter’s perspective

[
SMTLIBl
e 1 op € Th(Z,O,l,—i—) N o]
' Frontend > Optimizer
o e
Tasks [ A .
| | g 1 - R | | :
‘ rewrite mod-terms and div-terms : : BaCkend !
. » disambiguate variables | Nl '
i » remove syntactic sugar such as ; A[
: let-expressions, ite-expressions ;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
SAT / UNSAT
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Amaya: an interpreter’s perspective

[ ]
SMTLIBl
SRR V pe Th(Z,0,1,+) { ~ R
' Frontend | > Optimizer .
77777777777777777777777777 /;/ s
| Tasks 1
. » push quantifiers as deep as 1 o |
| possible (antiprenexing) 1 : Backend :
3 » instantiate quantifiers 1 [ l
. » strengthen variable bounds | A[
3 > prune unsatisfiable AST branches | °
****************************** SAT / UNSAT
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Amaya: an interpreter’s perspective

[ ]
SMTLIBl
R e e Th(Z,0,1,4) (T
' Frontend > Optimizer
| l | )
/
777777777777777777777777777777 e
' Tasks ;
N perform automata constructions R N
| minimize intermediate automata | | Backend !
' > use state semantics to prune | oLl '
; automata states | A[
. > provide execution traces & l
| research data l *
—————————————————————————————— SAT / UNSAT
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Subset construction primer

Determinization R @ y:0
L({q1, 2}) = L(q1) U L(2)
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Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in |X|:
1 ...
2. for each 0 € ¥ do
3:
4: end for
b: ...
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Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in |X|:
1 ...
2. for each 0 € ¥ do
3:
4: end for
b: ...

Y = {0,1}" where n is the number of variables.

> |X| grows exponentially with n
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MTBDDs - symbolic

representation of automata

. Mo

{a1, g2}

{a1}

{a3}

Binary-decision diagram
representing transitions from g

Amaya relies on the Sylvan library [4] to provide an MTBDD implementation.
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MTBDD-based automata constructions

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Part of the output DFA

, N
, ~
, N

¥ ¥
{q0, a1, 02} {quqz,qs}H{qz,qa}‘ {q0, a1, 92, a3}
MQO«qh‘D = Mooy My oy MQ




Duality between formulae and states

TFA A, for p:2x —y <0
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Duality between formulae and states

TFA A, for p: 2x —y <0
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A birth of a framework

» Having Post(p, o) where o € ¥ and ¢ is an atomic predicate
allows for an inductive definition of Post(1), o) for arbitrary 1

e.g.
Post(2x —y <3 Ay +2z<42)=
Post(2x —y < 3) A Post(y + 2z < 42)
T Use classical
Vi automata
/ ‘\ proc{edure
: A
‘,I § / \
[2x :
. I
o Yo Vy v
Construct using 7T : / \
state-formulae AL A s

reasoning \\\:\\\\\\ /*\ / \

26/35



Framework - structural subsumption

A state 91 V 2 V ¢3...19 can be rewritten into an equivalent
state ¥ V h3. ..k given Yo V 3. .. ¢ = 1.
» Testing ¢ = 9 is hard, therefore, we underapproximate using
structural subsumption =<

Q.
Ly

€

- X<azdHm-n<lo & a=mA=Aa<ao

- - - - def - - -

A X1=C 5 d@X=0 S a=2ANX1=XNaq=0C
def

51')?15,,,1 c s 52')_(2Em2 O S A=BHLAXI=%ANct=CcAm =m

(Can be extended to arbitrary 1))

_ o Ix(7Tx < 250 V 7x < 246
{3){(7)( < 1000))—[]~>[jx(7x <500V 7x < 496)]—[]—»[ VTx < 248V Tx < 244)J
£ E
Ix(7x < 500) i Ix(7x < 250)
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Framework - rewriting into equivalent formulae

A formula 1) can be rewritten into an equivalent v’ whenever
suitable.

Y: Ay, ml<yAm<A+RAy<-1Am>0Am<0Am=7y)
m=20
¢ 3y(lo <y A0S A+42Ay < —1A0=7y)

y=-7

P f < —TAO< A +42

And continue building the automaton using Post(v)", o).
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Performance evaluation - state-of-the-art SMT solvers
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Performance evaluation - classical P4

amaya-runtime
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Performance evaluation - Frobenius coin problem

=60.0 [s]

Timeout:
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Conclusion, future work

32/35



Future work, open problems

Open problems:

» combination with other SMT theories, e.g., theory of
uninterpreted functions

» -~ existential second-order theory over automatic structures
» decidability of combinations x practical usefulness

> extending PrA with a predicate IsPow2(x) b= Jk(x = 2K)
» trivial, but O(-) is unknown

» Can the duality between states and formulae be used in
different theories, e.g., WS1S?

Engineering challenges:
» Parallelization based on formula structure

» Second-order DAGification of formula
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Conclusion

» PrA can be decided using finite
automata

» A-based approach exhibits
interesting properties wrt.
quantifiers

» automata-logic connection can be
used to improve the performance
of Pa(p)
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Thank you for your attention.

-~ o~

oo~

cocow~

|

SN E >

Questions?
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o~ oo

NN E >
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Optimizer: formula pruning, bound strengthening

}\ Simplified into

V2N /\

x>10 x > 10

><—

SN TN

=% Sy
\A\ Simplified into A/(/\:\‘
x<0 ¥ (L) V2
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Optimizer: formula pruning, bound strengthening
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Optimizer: antiprenexing

e n
Y S
'/L Antiprenexing L ox> 1'0/ {Eiyil

| Vo
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Formula monotonicity

A formula (X, y) is c-increasing w.r.t. y where ¢ € ZU{%o0} iff

L [(xX,01)] € [¥(X,y2)] forall y1 < y» < c and
2. [¥(X,y)] =0 forally > c.

For example, ¥(x, z, y) is 42-increasing w.r.t. y:

Vix—2z<3Nz<yAx—13y <2zAy <42

4/9



Monotonicity-based optimizations

Let ¥(X,y) be a 42-increasing w.r.t. y
> Jy(¥(X,y)) & ¥(x,42)

Jy(x —2z<3ANz<yAx—13y <2z Ay < 42)

()

x—2z2<3Nz<42ANx—13-42<2z
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Monotonicity-based optimizations

Let 9(X,y) be a 42-increasing w.r.t. y

> Jy(U(X,y) Ny =m k) < (X, c’) where
d=max{leZ|l=yk,l<c}

Jy(x —2z<3ANz<yAx—13y <2zANy <42 ANy =g 0)

0

x—2z<3ANz<306Ax—13-36 <2z
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Monotonicity-based optimizations - modulo linearization

Let (X, y) be a 17-increasing w.r.t. y

AM

504

40
Jy, m((X,y,m) ANy + m=37 12 A1 < m < 50)

:[]: 30

Jy,m(A((y>-19Ay <1llAy+m=12)V 20

(y> 1Ay <17Ay+m=49))
10\\

*20 —10 oY 10 2




amaya-old-runtime
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10° 10t
amaya-new-runtime

102
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