
Deciding Presburger Arithmetic
Using Finite Automata

Michal Hečko, Onďrej Lengál, Vojta Havlena, Lukáš Hoĺık

Faculty of Information Technology
Brno University of Technology

LTA23, Dec 2023

1 / 35

Motivation - binary search correctness

(xlow > xhigh ∨ 0 ≤ xlow < xhigh < |A|) ∧

(xlow ≤ xhigh → 0 ≤ xlow + xhigh
2

< |A|)

φ :

The midpoint must be within array bounds

Are there valid assignments to xlow
and xhigh violating the assertion φ?

SMT solver

SAT + Model
xlow = . . . , xhigh = . . .

UNSAT (no model)

2 / 35

Outline

First-order logic, theories and decision procedures

Automata-based decision procedure

Amaya - a novel implementation A-based decision procedure

Conclusion, future work

3 / 35

First-order logic primer

First-order logic (FOL)

▶ collection of formal languages distinguished by ⟨F ,P⟩

▶ allows reasoning about properties and relations between
elements of the domain of discourse

▶ a FOL theory T is given by its signature ΣT , and a set1 of
closed formulae AT called the axioms.

t ::= x | f (x1, . . . , xn)
φ ::= p(t1, . . . tm) | t1 = t2 |

(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ↔ φ) | (φ→ φ) |
(∃xφ) | (∀xφ)

for a variable x ∈ X, a predicate symbol p/m ∈ P, and a function
symbol f/n ∈ F .

1recursively enumerable
4 / 35

First-order logic primer

First-order logic (FOL)

▶ collection of formal languages distinguished by ⟨F ,P⟩
▶ allows reasoning about properties and relations between

elements of the domain of discourse

▶ a FOL theory T is given by its signature ΣT , and a set1 of
closed formulae AT called the axioms.

t ::= x | f (x1, . . . , xn)
φ ::= p(t1, . . . tm) | t1 = t2 |

(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ↔ φ) | (φ→ φ) |
(∃xφ) | (∀xφ)

for a variable x ∈ X, a predicate symbol p/m ∈ P, and a function
symbol f/n ∈ F .

1recursively enumerable
4 / 35

First-order logic primer

First-order logic (FOL)

▶ collection of formal languages distinguished by ⟨F ,P⟩
▶ allows reasoning about properties and relations between

elements of the domain of discourse

▶ a FOL theory T is given by its signature ΣT , and a set1 of
closed formulae AT called the axioms.

t ::= x | f (x1, . . . , xn)
φ ::= p(t1, . . . tm) | t1 = t2 |

(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ↔ φ) | (φ→ φ) |
(∃xφ) | (∀xφ)

for a variable x ∈ X, a predicate symbol p/m ∈ P, and a function
symbol f/n ∈ F .

1recursively enumerable
4 / 35

First-order logic primer

First-order logic (FOL)

▶ collection of formal languages distinguished by ⟨F ,P⟩
▶ allows reasoning about properties and relations between

elements of the domain of discourse

▶ a FOL theory T is given by its signature ΣT , and a set1 of
closed formulae AT called the axioms.

t ::= x | f (x1, . . . , xn)
φ ::= p(t1, . . . tm) | t1 = t2 |

(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ↔ φ) | (φ→ φ) |
(∃xφ) | (∀xφ)

for a variable x ∈ X, a predicate symbol p/m ∈ P, and a function
symbol f/n ∈ F .

1recursively enumerable
4 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩
▶ decidability established in 1929 by Presburger

▶ shown by quantifier elimination

▶ trivially extendable from N to Z
▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩

▶ decidability established in 1929 by Presburger
▶ shown by quantifier elimination

▶ trivially extendable from N to Z
▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩
▶ decidability established in 1929 by Presburger

▶ shown by quantifier elimination

▶ trivially extendable from N to Z
▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩
▶ decidability established in 1929 by Presburger

▶ shown by quantifier elimination

▶ trivially extendable from N to Z
▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩
▶ decidability established in 1929 by Presburger

▶ shown by quantifier elimination

▶ trivially extendable from N to Z

▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Presburger arithmetic (PrA)

▶ FOL theory with the signature ΣPrA = ⟨0, 1,+⟩
▶ decidability established in 1929 by Presburger

▶ shown by quantifier elimination

▶ trivially extendable from N to Z
▶ PrA nowadays refers to Th(Z, 0, 1,+)
▶ also known as linear integer arithmetic (LIA)

5 / 35

Decision procedures, SMT and SMT solvers

Decision procedure P(φ) for a theory T :

▶ an algorithm that returns SAT when there is a solution
(model) to φ, UNSAT otherwise

SMT solver:

▶ a tool implementing decision procedures for theories T1,
T2, . . . and their combinations

▶ typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

▶ quantifiers handled using quantifier instantiation

▶ actively employed in the industry, e.g., at AWS

▶ standardized input format SMTLIB

6 / 35

Decision procedures, SMT and SMT solvers

Decision procedure P(φ) for a theory T :

▶ an algorithm that returns SAT when there is a solution
(model) to φ, UNSAT otherwise

SMT solver:

▶ a tool implementing decision procedures for theories T1,
T2, . . . and their combinations

▶ typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

▶ quantifiers handled using quantifier instantiation

▶ actively employed in the industry, e.g., at AWS

▶ standardized input format SMTLIB

6 / 35

Decision procedures, SMT and SMT solvers

Decision procedure P(φ) for a theory T :

▶ an algorithm that returns SAT when there is a solution
(model) to φ, UNSAT otherwise

SMT solver:

▶ a tool implementing decision procedures for theories T1,
T2, . . . and their combinations

▶ typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

▶ quantifiers handled using quantifier instantiation

▶ actively employed in the industry, e.g., at AWS

▶ standardized input format SMTLIB

6 / 35

Decision procedures, SMT and SMT solvers

Decision procedure P(φ) for a theory T :

▶ an algorithm that returns SAT when there is a solution
(model) to φ, UNSAT otherwise

SMT solver:

▶ a tool implementing decision procedures for theories T1,
T2, . . . and their combinations

▶ typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

▶ quantifiers handled using quantifier instantiation

▶ actively employed in the industry, e.g., at AWS

▶ standardized input format SMTLIB

6 / 35

Decision procedures, SMT and SMT solvers

Decision procedure P(φ) for a theory T :

▶ an algorithm that returns SAT when there is a solution
(model) to φ, UNSAT otherwise

SMT solver:

▶ a tool implementing decision procedures for theories T1,
T2, . . . and their combinations

▶ typically a set of dedicated theory solvers combined using
the Nelson-Oppen approach

▶ quantifiers handled using quantifier instantiation

▶ actively employed in the industry, e.g., at AWS

▶ standardized input format SMTLIB

6 / 35

SMTLIB example

(set-logic LIA)

(declare-fun P () Int)

(assert

(and

(<= 0 P)

(forall ((x0 Int) (x1 Int))

(=>

(and (<= 0 x0) (<= 0 x1))

(not (= (+ (* x0 13) (* x1 17)) P))))

(forall ((R Int))

(=>

(forall ((x0 Int) (x1 Int))

(=>

(and (<= 0 x0) (<= 0 x1))

(not (= (+ (* x0 13) (* x1 17)) R))))

(<= R P)))))

(check-sat)
7 / 35

Outline

First-order logic, theories and decision procedures

Automata-based decision procedure

Amaya - a novel implementation A-based decision procedure

Conclusion, future work

8 / 35

Logic-automata connection

φA

▶ first A-based decision procedure is due to Büchi (1960) [2]

▶ Büchi developed the approach to show decidability of WS1S

▶ a direct construction PA for Presburger arithmetic given by
Boudet & Comon (1996) [1]

▶ the time-complexity O(22
2n

) of PA established by
Durand-Gasselin & Habermehl (2010) [3]

9 / 35

Logic-automata connection

φA

▶ first A-based decision procedure is due to Büchi (1960) [2]

▶ Büchi developed the approach to show decidability of WS1S

▶ a direct construction PA for Presburger arithmetic given by
Boudet & Comon (1996) [1]

▶ the time-complexity O(22
2n

) of PA established by
Durand-Gasselin & Habermehl (2010) [3]

9 / 35

Logic-automata connection

φA

▶ first A-based decision procedure is due to Büchi (1960) [2]

▶ Büchi developed the approach to show decidability of WS1S

▶ a direct construction PA for Presburger arithmetic given by
Boudet & Comon (1996) [1]

▶ the time-complexity O(22
2n

) of PA established by
Durand-Gasselin & Habermehl (2010) [3]

9 / 35

Logic-automata connection

φA

▶ first A-based decision procedure is due to Büchi (1960) [2]

▶ Büchi developed the approach to show decidability of WS1S

▶ a direct construction PA for Presburger arithmetic given by
Boudet & Comon (1996) [1]

▶ the time-complexity O(22
2n

) of PA established by
Durand-Gasselin & Habermehl (2010) [3]

9 / 35

Constructing NFAs from atomic formulae - intuition

Idea: Any number x can be written as its least-significant
digit x0 and remaining digits x ′.

x = x0 + 10x ′

x ≤ 11

x ′ ≤ 1

x ′ ≤ 0

x0 : 1

x0 : 5

10 / 35

φatom 7→ A – binary encoding, coefficients
The previous observation is flexible:

▶ number encoding (basis) is arbitrary: Σ = {0, 1}n has
advantages (BDDs)

▶ variables can have coefficients

Automaton Aφ for φ : x − 2y ≤ 0

q1 q0 q−1

qf

x
y

[
?
1

]
x
y

[
?
0

]

x
y

[
0 1
0 1

]

x
y

[
1
0

]

x
y

[
0
1

]
x
y

[
?
0

]
x
y

[
?
1

]

x
y

[
0 1
0 ?

]
x
y

[
1
0

]
x
y

[
?
0

]

11 / 35

Beyond atomic formulae
The automaton Aψ for a formula ψ is created inductively by
mapping logical connectives to corresponding language operations:

▶ Aφ∧φ′ = Aφ ∩ Aφ′

▶ Aφ∨φ′ = Aφ ∪ Aφ′

▶ A¬φ = AC
φ

Existential quantification ∃x(φ) corresponds to projecting away
the track corresponding to variable x 2.

q0 q−1 q0 q−1

x
y

[
1
0

]
y
[
0
]

∃x

2Omitting technical details about padding
12 / 35

High-level example of A-based procedure

β’
s A

ST

Does β : ∃x(¬(3x + y ≤ 3 ∧ 2x − 4y ≤ 0)) have a model?

∃x

¬

∧

ψ : 3x + y ≤ 3 φ : 2x − 4y ≤ 0

parse(β)

L(A∃)
?

̸= ∅

A∃

AC

A∩

Aψ Aφ

(4) Complement(A∩)

(5) Projectionx(AC)

(6) DFS(A∃)

(3) Intersection(Aψ,Aφ)

(1) IneqToNFA(φ)
(2) IneqToNFA(ψ)

⇔

13 / 35

Outline

First-order logic, theories and decision procedures

Automata-based decision procedure

Amaya - a novel implementation A-based decision procedure

Conclusion, future work

14 / 35

Enter Amaya

q1

q2 q3

q4

q5

q6

ζ0

ζ1

ζ2, ζ0

ζ1ζ1, ζ0

ζ2
ζ0ζ0, ζ1

ζ0, ζ2

ζ1
ζ1, ζ2

q3

q1

Amaya

▶ LIA SMT solver based on finite
automata

▶ novel optimizations of the classical
A-based decision procedure

▶ implementation:
Python (7.7 KLOC),
C++ (8.3 KLOC)

15 / 35

Amaya: an interpreter’s perspective

•

Frontend Optimizer

Backend

•
SAT / UNSAT

SMTLIB

φ ∈ Th(Z, 0, 1,+)

φ′ ⇔ φ

A

16 / 35

Amaya: an interpreter’s perspective

•

Frontend Optimizer

Backend

•
SAT / UNSAT

SMTLIB

φ ∈ Th(Z, 0, 1,+)

φ′ ⇔ φ

A

Tasks
▶ rewrite mod-terms and div-terms

▶ disambiguate variables

▶ remove syntactic sugar such as
let-expressions, ite-expressions

17 / 35

Amaya: an interpreter’s perspective

•

Frontend Optimizer

Backend

•
SAT / UNSAT

SMTLIB

φ ∈ Th(Z, 0, 1,+)

φ′ ⇔ φ

A

Tasks
▶ push quantifiers as deep as

possible (antiprenexing)

▶ instantiate quantifiers

▶ strengthen variable bounds

▶ prune unsatisfiable AST branches

18 / 35

Amaya: an interpreter’s perspective

•

Frontend Optimizer

Backend

•
SAT / UNSAT

SMTLIB

φ ∈ Th(Z, 0, 1,+)

φ′ ⇔ φ

A

Tasks
▶ perform automata constructions

▶ minimize intermediate automata

▶ use state semantics to prune
automata states

▶ provide execution traces &
research data

19 / 35

Subset construction primer

q0

q1

q2

{q0} {q1, q2}

y : 0

y : 0

y : 0Determinization

L({q1, q2}) = L(q1) ∪ L(q2)

20 / 35

Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in |Σ|:
1: . . .
2: for each σ ∈ Σ do
3: . . .
4: end for
5: . . .

Σ = {0, 1}n where n is the number of variables.

▶ |Σ| grows exponentially with n

21 / 35

Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in |Σ|:
1: . . .
2: for each σ ∈ Σ do
3: . . .
4: end for
5: . . .

Σ = {0, 1}n where n is the number of variables.

▶ |Σ| grows exponentially with n

21 / 35

Backend - addressing performance bottlenecks

Time complexity of many automata constructions is linear in |Σ|:
1: . . .
2: for each σ ∈ Σ do
3: . . .
4: end for
5: . . .

Σ = {0, 1}n where n is the number of variables.

▶ |Σ| grows exponentially with n

21 / 35

MTBDDs - symbolic representation of automata

Binary-decision diagram
representing transitions from q0

q0 q1

q3

q2

x :
y :

[
0
1

]
,

[
0
0

]

x :
y :

[
0
0

]

x :
y :

[
1
∗

]

x :
y :

[
∗
∗

]

x :
y :

[
0
1

]

x :
y :

[
0
0

]
,

[
1
∗

]

x :
y :

[
∗
∗

]

x

y

{q1, q2} {q1} {q3}

M0

Amaya relies on the Sylvan library [4] to provide an MTBDD implementation.

22 / 35

MTBDD-based automata constructions

q0

q1

q2

q3

x :
y :

[
0
0

]
,

[
1
1

]
x :
y :

[
0
∗

]

x :
y :

[
0
0

]
,

[
1
∗

]

x :
y :

[
0
0

]
,

[
1
1

]

x :
y :

[
0
1

]

x :
y :

[
0
1

]

x :
y :

[
1
∗

]
x

y

{q0, q1, q2} {q1}

y

{q2} {q0, q2}

x

y

{q3}

y

⊥{q1}

x

y

⊥ {q2} {q3}

{q0, q1, q2}

{q0, q1, q2, q3}{q1, q2, q3} {q2, q3}

x :
y :

[
0
0

]

x :
y :

[
0
1

]
x :
y :

[
1
0

]
x :
y :

[
1
1

]

M1

M0

M2

x

y

{q0, q1, q2}

y

{q0, q1, q2, q3}{q2, q3}{q1, q2, q3}

Mq0,q1,q2 = M0 ⋄∪ M1 ⋄∪ M2

Input NFA Part of the output DFA

23 / 35

Duality between formulae and states

TFA Aφ for φ : 2x − y ≤ 0

0 −1 −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1
0 1

2x − y ≤ −12x − y ≤ 0 2x − y ≤ −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1 ̸=
0 1

⇔

24 / 35

Duality between formulae and states

TFA Aφ for φ : 2x − y ≤ 0

0 −1 −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1
0 1

2x − y ≤ −12x − y ≤ 0 2x − y ≤ −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1
0 1

⇔

Classical procedure sees states opaquely

What can be gained by looking at states as formulae?

25 / 35

A birth of a framework
▶ Having Post(φ, σ) where σ ∈ Σ and φ is an atomic predicate

allows for an inductive definition of Post(ψ, σ) for arbitrary ψ
e.g.

Post(2x − y ≤ 3 ∧ y + 2z ≤ 42) =

Post(2x − y ≤ 3) ∧ Post(y + 2z ≤ 42)

¬

∨

...

∃x

ψ0

∧

...

∀y

∧

ψ1 ψ2

¬

∨

∧

ψ3 ψ4

ψ5

Construct using
state-formulae

reasoning

Use classical
automata
procedure

26 / 35

Framework - structural subsumption

A state ψ1 ∨ ψ2 ∨ ψ3 . . . ψk can be rewritten into an equivalent
state ψ2 ∨ ψ3 . . . ψk given ψ2 ∨ ψ3 . . . ψk ⇒ ψ1.

▶ Testing φ⇒ ψ is hard, therefore, we underapproximate using
structural subsumption ⪯s

a⃗1 · x⃗1 ≤ c1 ⪯s a⃗2 · x⃗2 ≤ c2
def⇔ a⃗1 = a⃗2 ∧ x⃗1 = x⃗2 ∧ c1 ≤ c2

a⃗1 · x⃗1 = c1 ⪯s a⃗2 · x⃗2 = c2
def⇔ a⃗1 = a⃗2 ∧ x⃗1 = x⃗2 ∧ c1 = c2

a⃗1 · x⃗1 ≡m1 c1 ⪯s a⃗2 · x⃗2 ≡m2 c2
def⇔ a⃗1 = a⃗2 ∧ x⃗1 = x⃗2 ∧ c1 = c2 ∧m1 = m2

(Can be extended to arbitrary ψ)

∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

27 / 35

Framework - rewriting into equivalent formulae

A formula ψ can be rewritten into an equivalent ψ′ whenever
suitable.

ψ : ∃y ,m(f0 ≤ y ∧m ≤ f1 + 42 ∧ y ≤ −1 ∧m ≥ 0 ∧m ≤ 0 ∧m ≡7 y)

ψ′ : ∃y(f0 ≤ y ∧ 0 ≤ f1 + 42 ∧ y ≤ −1 ∧ 0 ≡7 y)

ψ′′ : f0 ≤ −7 ∧ 0 ≤ f1 + 42

m = 0

y = −7

And continue building the automaton using Post(ψ′′, σ).

28 / 35

Performance evaluation - state-of-the-art SMT solvers

10 1 100 101 102

amaya-new-runtime

10 1

100

101

102
{z

3/
cv

c5
/p

rin
ce

ss
}-

ru
nt

im
e

z3-runtime
cvc5-runtime
princess-runtime

29 / 35

Performance evaluation - classical PA

10 1 100 101 102

amaya-optimized-runtime

10 1

100

101

102

am
ay

a-
ru

nt
im

e

30 / 35

Performance evaluation - Frobenius coin problem

2,
3

3,
5

5,
7

7,
11

11
,1

3
13

,1
7

17
,1

9
19

,2
3

23
,2

9
29

,3
1

31
,3

7
37

,4
1

41
,4

3
43

,4
7

47
,5

3
53

,5
9

59
,6

1
61

,6
7

67
,7

1
71

,7
3

73
,7

9
79

,8
3

83
,8

9
89

,9
7

97
,1

01
10

1,
10

3
10

3,
10

7
10

7,
10

9
10

9,
11

3
11

3,
12

7
12

7,
13

1
13

1,
13

7
13

7,
13

9
13

9,
14

9
14

9,
15

1
15

1,
15

7
15

7,
16

3
16

3,
16

7
16

7,
17

3
17

3,
17

9
17

9,
18

1
18

1,
19

1
19

1,
19

3
19

3,
19

7
19

7,
19

9
19

9,
21

1
21

1,
22

3
22

3,
22

7
22

7,
22

9
22

9,
23

3
23

3,
23

9
23

9,
24

1
24

1,
25

1
25

1,
25

7
25

7,
26

3

Coin denominations

0

10

20

30

40

50

60

Ru
nt

im
e

[s
]

Timeout=60.0 [s]

amaya
lash
princess
z3
cvc5

31 / 35

Outline

First-order logic, theories and decision procedures

Automata-based decision procedure

Amaya - a novel implementation A-based decision procedure

Conclusion, future work

32 / 35

Future work, open problems

Open problems:
▶ combination with other SMT theories, e.g., theory of

uninterpreted functions
▶ ⇝ existential second-order theory over automatic structures
▶ decidability of combinations × practical usefulness

▶ extending PrA with a predicate IsPow2(x)
def⇔ ∃k(x = 2k)

▶ trivial, but O(·) is unknown
▶ Can the duality between states and formulae be used in

different theories, e.g., WS1S?

Engineering challenges:

▶ Parallelization based on formula structure

▶ Second-order DAGification of formula

33 / 35

Conclusion

q1

q2 q3

q4

q5

q6

ζ0

ζ1

ζ2, ζ0

ζ1ζ1, ζ0

ζ2
ζ0ζ0, ζ1

ζ0, ζ2

ζ1
ζ1, ζ2

q3

q1

Amaya

▶ PrA can be decided using finite
automata

▶ A-based approach exhibits
interesting properties wrt.
quantifiers

▶ automata-logic connection can be
used to improve the performance
of PA(φ)

34 / 35

q0 q1

q2q3

qf

y
z
m
v

0 0 1 1
0 0 ? ?
0 1 0 1
? 1 ? 1

y
z
m
v

0 0
1 1
0 1
? 1

y
z
m
v

0 0 1 1
? ? 1 1
0 1 0 1
? 1 ? 1

y
z
m
v

1 1
0 0
0 1
? 1

y
z
m
v

0 1
0 ?
1 1
0 0

y
z
m
v

0 1
0 ?
0 0
1 1

y
z
m
v

1
0
1
0

y
z
m
v

0
1
0
1

y
z
m
v

0 0 1 1
0 0 ? ?
0 1 0 1
0 ? 0 ?

y
z
m
v

1 1
0 0
0 1
0 ?

y
z
m
v

0 0
1 1
0 1
0 ?

y
z
m
v

0 0 1 1
? ? 1 1
0 1 0 1
0 ? 0 ?

y
z
m
v

1
0
0
1

y
z
m
v

0
1
1
1

y
z
m
v

0 0
1 1
0 1
0 ?

y
z
m
v

0 0
? ?
0 1
0 ?

y
z
m
v

0
?
1
0

y
z
m
v

0
1
1
0

Thank you for your attention.

Questions?

35 / 35

Optimizer: formula pruning, bound strengthening

∧

x ≥ 10 ∨

∃y

∧

x ≤ 0 ψ2

...
...

∧

x ≥ 10 ∨

∃y

∧

⊥ ψ2

...
...

Simplified into

Simplified into

1 / 9

Optimizer: formula pruning, bound strengthening

∧

x ≥ 10 ∨

∃y

∧

x ≤ 0 ψ2

...
...

∧

x ≥ 10 ∨

...
...

Simplified into

2 / 9

Optimizer: antiprenexing

Does not contain y

∃y

∧

x ≥ 10 ∨

...
...

...

∧

x ≥ 10 ∃y

∨

...
...

...

Antiprenexing

3 / 9

Formula monotonicity

A formula ψ(x⃗ , y) is c-increasing w.r.t. y where c ∈ Z∪{±∞} iff

1. Jψ(x⃗ , y1) K ⊆ Jψ(x⃗ , y2) K for all y1 ≤ y2 ≤ c and

2. Jψ(x⃗ , y) K = ∅ for all y > c .

For example, ψ(x , z , y) is 42-increasing w.r.t. y :

ψ : x − 2z ≤ 3 ∧ z < y ∧ x − 13y ≤ 2z ∧ y ≤ 42

4 / 9

Monotonicity-based optimizations

Let ψ(x⃗ , y) be a 42-increasing w.r.t. y

▶ ∃y(ψ(x⃗ , y)) ⇔ ψ(x⃗ , 42)

∃y(x − 2z ≤ 3 ∧ z < y ∧ x − 13y ≤ 2z ∧ y ≤ 42)

x − 2z ≤ 3 ∧ z < 42 ∧ x − 13 · 42 ≤ 2z
⇔

5 / 9

Monotonicity-based optimizations

Let ψ(x⃗ , y) be a 42-increasing w.r.t. y

▶ ∃y(ψ(x⃗ , y) ∧ y ≡M k) ⇔ ψ(x⃗ , c ′) where
c ′ = max{ℓ ∈ Z | ℓ ≡M k , ℓ ≤ c}

∃y(x − 2z ≤ 3 ∧ z < y ∧ x − 13y ≤ 2z ∧ y ≤ 42 ∧ y ≡9 0)

x − 2z ≤ 3 ∧ z < 36 ∧ x − 13 · 36 ≤ 2z
⇔

6 / 9

Monotonicity-based optimizations - modulo linearization

Let ψ(x⃗ , y) be a 17-increasing w.r.t. y

∃y ,m(ψ(x⃗ , y ,m) ∧ y +m ≡37 12 ∧ 1 ≤ m ≤ 50)

∃y ,m(ψ ∧ ((y ≥ −19 ∧ y ≤ 11 ∧ y +m = 12) ∨
(y ≥ −1 ∧ y ≤ 17 ∧ y +m = 49))

⇔

y

m

−20 −10 10 20

10

20

30

40

50

0

7 / 9

10 1 100 101 102

amaya-new-runtime

10 1

100

101

102

am
ay

a-
ol

d-
ru

nt
im

e

8 / 9

Literature

[1] Alexandre Boudet and Hubert Comon.

Diophantine equations, presburger arithmetic and finite automata.

In Hélène Kirchner, editor, Trees in Algebra and Programming — CAAP
’96, pages 30–43, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[2] J Richard Büchi.

Weak second-order arithmetic and finite automata.

Mathematical Logic Quarterly, 6(1-6), 1960.

[3] Antoine Durand-Gasselin and Peter Habermehl.

On the use of non-deterministic automata for presburger arithmetic.

In Paul Gastin and François Laroussinie, editors, CONCUR 2010 -
Concurrency Theory, pages 373–387, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[4] Tom van Dijk and Jaco van de Pol.

Sylvan: Multi-core decision diagrams.

In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 677–691, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

9 / 9

	First-order logic, theories and decision procedures
	Automata-based decision procedure
	Amaya - a novel implementation A-based decision procedure
	Conclusion, future work
	Appendix

