
Processing of Logic Programming Languages
A presentation by Julie Gyselová and Luděk Burda

In this presentation, we will introduce logic programming languages and the core principles
of their processing as described in Compiler Design: Virtual Machines by Reinhard Wilhelm
and Helmut Seidl.

A logic program written in a logic programming language consists of a sequence of
clauses (made of predicates and variable assignments) and a query that asks whether a
particular statement is satisfiable for at least one variable assignment. The logic program
yields a binary answer (Yes or No) if there are no unbound variables in the query. If there is
an unbound variable in the query, the result of the logic program is all possible assignments
of the unbound variable for which the statement is satisfiable. The main idea of processing
such programs is to convert the logic program into a procedural one.

The book introduces a virtual machine that consists of a program store with a program
counter that points to the instruction that is going to be processed next, a stack with a stack
pointer that points to the topmost occupied location on the stack, and a frame pointer which
points to the stack frame where local variables of the current call are located, and a heap in
which representations of values are stored. Representations of variables in the heap
correspond to their addresses on the stack. Unbound variables are symbolically represented
as self-references within the heap.

The virtual machine implements an instruction for each type of node the program consists
of, such as atoms, variables, or predicates. Within each node, terms are allocated in the
heap and processed in a post-order, which ensures that references to successors are always
readily available on the stack.

Literals (such as predicate calls or variable unifications) in logic languages are processed
similarly to procedure calls in imperative languages. A key part of translating literals is
unification, which finds the most general substitution of variables so that two terms become
equal. A crucial part of translating predicates and clauses predicates consist of is
backtracking, which explores different solutions.


