
Compiler Optimizations
for Parallel Programs

Authors: Andrés Morilla (xmoril01), Tomáš Kučma (xkucma00)

Optimizations are an important part of practically every compiler. Unlike application-specific
optimizations, which have to be done manually, often requiring extensive expertise and non-
trivial time investment, compiler optimizations are generic enough to be automatically appli-
cable in a wide variety of cases while having a significant impact.

This makes them one of the simplest ways to increase computational performance at minimal
cost. Therefore, how well these optimizations can be performed by the compiler is an important
factor when choosing and evaluating compilers. However, from the perspective of compiler
development, implementing these automatic optimizations is impeded by various difficulties.
Many problems require parallelism to be solved in a reasonable time. This need is highlighted
even more because, in recent years, the growth of core frequencies in new CPUs has slowed
down significantly. One of the ways that this is compensated for is by increasing the number
of cores, which require parallelism for maximal utilization. This poses a challenge to compilers,
as they are generally designed with sequential execution in mind.

Abstractions are used to ensure compiler compatibility with parallel programs — for exam-
ple, by representing parallel parts of a program with a single function call. This obfuscates
the actual code and limits the possibilities for automatic optimizations. This presentation will
explain how compiler parallelism awareness can help us counteract these issues, where it is
unnecessary, and what particular challenges parallelism awareness brings. The specifics of the
problem will be explained using the intermediate representation code of the LLVM compiler
toolchain — LLVM-IR.


