
Restricting Grammars with Tree Automata

VYPa 2023 – presentation abstract

Authors: Ján Mat’ufka (xmatuf00), Michal Pyš́ık (xpysik00)

One of the drawbacks of using context-free grammars (CFGs) in compiler design is their
ambiguity. This often leads compiler (and programming language) designers to refactor
grammars to eliminate unintended ambiguity. Another limiting factor is that context-
free languages (and their models) are not closed under intersection, complementation,
and difference. If the opposite were true, then it would be easier to construct intended
constraints encoding unwanted parsing possibilities and intersecting them with the initial
CFG.

Although such an approach is impossible in CFGs, it is feasible in tree automata (TAs).
Instead of a set of strings, TAs represent a set of parse trees. Ambiguous CFGs can
represent one string with multiple parse trees (obtained from the same grammar), whereas
a tree automaton will generate only a single parse tree from such a string, given a certain
set of rules (or none at all if the string cannot be generated from the original grammar).

The proposed approach shows a way to convert every CFG into a TA, such that the
set of trees from the TA language accepts every possible parse tree (or derivation tree)
representing derivation steps on words from the language generated by the CFG. By
converting initial (ambiguous) CFG into a TA and by creating TAs with the desired parse
tree restrictions, one can obtain a TA that will solve targeted ambiguities and thus create
a more desirable (less ambiguous) grammar.

Such an approach could be used to resolve precedence, associativity, dangling else, and
other language-specific simplifications. It is shown that imposing restrictions on CFGs
using tree automata can produce correct grammars with almost the same parsing time
(i.e., the parser using such a “restricted” grammar will perform well). It is also shown
that intersecting the “restriction” TA with the “grammar” TA will not introduce new
ambiguities. In the worst case, it will duplicate already existing ones.

Sources

[1] Adams, M. D. and Might, M. Restricting grammars with tree automata. Procee-
dings of the ACM on Programming Languages. Association for Computing Machinery
(ACM). october 2017, vol. 1, OOPSLA, p. 1–25. DOI: 10.1145/3133906. Available
at: https://dl.acm.org/doi/pdf/10.1145/3133906.

[2] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F. et al. Tree
Automata Techniques and Applications. 2007. Release October, 12th 2007. Available
at: http://www.grappa.univ-lille3.fr/tata.

1

mailto:xmatuf00@stud.fit.vutbr.cz
mailto:xpysik00@stud.fit.vutbr.cz
https://dl.acm.org/doi/pdf/10.1145/3133906
http://www.grappa.univ-lille3.fr/tata

