PARALLEL PARSING BASED UPON GENERAL MULTIGENERATIVE GRAMMAR SYSTEMS

Zbyněk Sopuch
TID 2011
Supervisor: Alexander Meduna

Contents

- Multigenerative grammar systems
- Classification
- Synchronization
- Modes of n-languages
- Independent grammar parsing
- Keeping synchronization during parsing
- Parsing with simulation
- Parsing without simulation
- Issues during parsing of modes

Multigenerative grammar system (MGS)

- n-generative grammar system:
$(n+1)$-tuple $\Gamma=\left(G_{1}, G_{2}, \ldots, G_{n}, Q\right)$, where:
- $\mathrm{G}_{i} \ldots i=1 . . n$, a context free grammar
- Q ... a synchronization component
- The number of grammars can be reduce to 2 without any effect on a generative power

Classification of MGS

- Canonical multigenerative grammar systems
- G_{i} is a LL-grammar
- General multigenerative grammar systems - G_{i} is a classic context free grammar
- Hybrid multigenerative grammar systems G_{i} can be a classic CFG or a LL-grammar, but the type of each must be known

Synchronization of MGS

- Nonterminal-synchronized (n-MGN)
- Q is set of n-tuples of the form:

$$
\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right): \mathrm{A}_{i} \in \mathrm{~N}_{i}
$$

- Rule-synchronized ($n-\mathrm{MGR}$)
- Q is set of n-tuples of the form:

$$
\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right): \mathrm{p}_{i} \in \mathrm{P}_{i}
$$

- The generative power of $n-M G R$ and $n-M G N$ is the same (can be automatically convert).

n-language of n-MGN

- n-string $\chi=\left(x_{1}, x_{2 \prime}, \ldots, x_{n}\right)$, where $x_{i} \in\left(\mathrm{~N}_{\mathrm{i}} \cup \mathrm{T}_{\mathrm{i}}\right)^{*}$
- $\chi \Rightarrow \chi^{\prime}$ and $\chi \Rightarrow^{\star} \chi^{\prime}$ in the common way
- $\chi=\left(u_{1} A_{1} v_{1}, u_{2} A_{2} v_{21}, \ldots, u_{n} A_{n} v_{n}\right)$
- $\chi^{\prime}=\left(u_{1} x_{1} v_{1} u_{2} x_{2} v_{21}, \ldots, u_{n} x_{n} v_{n}\right)$
- $\mathrm{p}_{i}: A_{i} \rightarrow x_{i} \in \mathrm{P}_{i j}$ where $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \in \mathrm{Q}$
- If n-MGN Γ, then $n-L(\Gamma)=\left\{\left(w_{11}, w_{21} \ldots, w_{n}\right)\right.$,: $\left.\left(S_{1}, S_{2}, \ldots, S_{n}\right) \Rightarrow^{*}\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right\}$

III Example of n-MGN

- $\Gamma=\left(\mathrm{G}_{1,} \mathrm{G}_{2,} \mathrm{Q}\right)$ is $n-\mathrm{MGN}$, where:
- $G_{1}=\left(\left\{S_{1}, A_{1}\right\},\{a, b, c\}\right.$, $\left\{S_{1} \rightarrow a S_{1}, S_{1} \rightarrow a A_{1}, A_{1} \rightarrow b A_{1} c_{1} A_{1} \rightarrow b c_{1} S_{1}\right)$
- $G_{2}=\left(\left\{S_{2 \prime} A_{2}\right\},\{d\},\left\{S_{2} \rightarrow S_{2} A_{2 \prime} S_{2} \rightarrow A_{2 \prime} A_{2} \rightarrow d\right\}, S_{2}\right)$
- $\mathrm{Q}=\left\{\left(S_{1}, S_{2}\right),\left(A_{1}, A_{2}\right)\right\}$
- $L_{1}\left(G_{1}\right)=\left\{a^{n} b^{m} c^{m} \mid n>0, m>0\right\}$
- $L_{2}\left(G_{2}\right)=\left\{d^{n} \mid n>0\right\}$
- n-language $n-L(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}, d^{n}\right) \mid n>0\right\}$
- $\Gamma=\left(\mathrm{G}_{1 /} \mathrm{G}_{2,} \mathrm{Q}\right)$ is $n-\mathrm{MGN}$, where:
- $\mathrm{G}_{1}=\left(\left\{S_{2}, A_{1}\right\},\{a, b, c\}\right.$,
$\left\{S_{1} \rightarrow a S_{1}, S_{1} \rightarrow a A_{1}, A_{1} \rightarrow b A_{1} c_{1} A_{1} \rightarrow b c_{1} S_{1}\right)$
- $G_{2}=\left(\left\{S_{2}, A_{2}\right\},\{d\},\left\{S_{2} \rightarrow S_{2} A_{21} S_{2} \rightarrow A_{21} A_{2} \rightarrow d\right\}, S_{2}\right)$
- $\mathrm{Q}=\left\{\left(\mathrm{S}_{11}, \mathrm{~S}_{2}\right),\left(\mathrm{A}_{1}, A_{2}\right)\right\}$

|ll Example of n-MGR

- $\Gamma=\left(\mathrm{G}_{1,} \mathrm{G}_{2 \prime} \mathrm{Q}\right)$ is $n-\mathrm{MGR}$, where:
- $G_{1}=\left(\left\{S_{1}, A_{1}\right\},\{a, b, c\}\right.$, $\left\{1: S_{1} \rightarrow a S_{1}, 2: S_{1} \rightarrow a A_{1} 3: A_{1} \rightarrow b A_{1} c_{1}: A_{1} \rightarrow b c\right\}$, S_{1})
- $G_{2}=\left(\left\{S_{21} A_{2}\right\},\{d\}\right.$, $\left.\left\{1: S_{2} \rightarrow S_{2} A_{2}, 2: S_{2} \rightarrow A_{21} 3: A_{2} \rightarrow d\right\}, S_{2}\right)$
- $\mathrm{O}=\{(1,1),(2,2),(3,3),(4,3)\}$
- n-MGN: $\mathrm{Q}=\left\{\left(\mathrm{S}_{1}, S_{2}\right),\left(A_{1}, A_{2}\right)\right\}$
- n-language $n-L(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}, d^{n}\right) \mid n>0\right\}$

III Modes of n-language

- n-language \rightarrow language: n-ary operation \oplus

$$
L_{\oplus}=\left\{\oplus w_{1}, w_{2}, \ldots, w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}
$$

- Union:

$$
L_{\text {union }}(\Gamma)=\left\{w_{1}, w_{2}, \ldots, w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}
$$

- Concatenation:

$$
L_{\text {conc }}(\Gamma)=\left\{w_{1} w_{2} \ldots w_{n} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}
$$

- First component:

$$
L_{\text {first }}(\Gamma)=\left\{w_{1} \mid\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in n-L(\Gamma)\right\}
$$

Example of modes

- $n-L(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}, d^{n}\right) \mid n>0\right\}$
- Union:

$$
\square L_{\text {union }}(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}\right) \mid n>0\right\} \cup\left\{\left(d^{n}\right) \mid n>0\right\}
$$

- Concatenation:

$$
-L_{\text {conc }}(\Gamma)=\left\{\left(a^{n} b^{n} c^{n} d^{n}\right) \mid n>0\right\}
$$

- First component:

$$
\therefore L_{\text {first }}(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}\right) \mid n>0\right\}
$$

- The generative power is the same.

Parsing for general MGR

- $\Gamma=\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{n}, \mathrm{Q}\right)$
- n-language $\rightarrow n$-string $\chi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- $x_{1} \rightarrow \mathrm{G}_{1,} x_{2} \rightarrow \mathrm{G}_{2 \prime} x_{3} \rightarrow \mathrm{G}_{3^{\prime}} \ldots$
- The strings can be assigned to appropriate grammars
- If the strings are parsed independently like CFG: If the parsing of at least one fails, whole parsing fails But if all parsing succeed, the whole parsing can fail

Example of the issue in

 an independent parsing- $\Gamma=\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{Q}\right)$ is n-MGN, where:
- $\mathrm{G}_{1}=\left(\left\{S_{11}, A_{1}\right\},\{a, b, c\}\right.$,

$$
\left.\left\{S_{1} \rightarrow a S_{1}, S_{1} \rightarrow a A_{1}, A_{1} \rightarrow b A_{1} c, A_{1} \rightarrow b c\right\}, S_{1}\right)
$$

- $G_{2}=\left(\left\{S_{21} A_{2}\right\},\{d\},\left\{S_{2} \rightarrow S_{2} A_{21} S_{2} \rightarrow A_{21} A_{2} \rightarrow d\right\}, S_{2}\right)$
- $\mathrm{Q}=\left\{\left(\mathrm{S}_{1}, S_{2}\right),\left(A_{1}, A_{2}\right)\right\}$
- $L_{1}\left(G_{1}\right)=\left\{a^{n} b^{m} c^{m}\right\}, L_{2}\left(G_{2}\right)=\left\{d^{n}\right\}$
- n-language $n-L(\Gamma)=\left\{\left(a^{n} b^{n} c^{n}, d^{n}\right)\right\}$
- aabbbccc $\in L_{1,}$ dd $\in L_{2,}$ (aabbbccc, dd) $\notin n-L(\Gamma)$
- Missing a synchronization which is forbidding some derivations

Inclusion of synchronization

- After the parsing phase
- Independent parsing of CFGs with back verification of synchronization
- Useful for the modes first component and union
- During the parsing phase
- Inclusion of synchronization to process of parsing
- Can be used for the mode concatenation

Back verification of synchronization

Figure 1: Back verification of synchronization.

Issues of back verification

- Different parse trees for one string
- The helpful limitation:

There must be tree of the same height for each string.

- Halting problem (cycle in a parsing)
- Can be partly solved: if there is at least one grammar with limited number of parse trees (without cycle or deterministic...), we can use it for generating of all possible heights of trees => all other trees have to have the same height as one of its parse tree
- My solution in my Master's thesis was based on using a CYK normal form, but it was connected with decrease of generative power, because we can't generate strings of some length with binary rules

Issue of slowing rules

Figure 2: Two different trees for the same string

Involving a synchronization during the parsing phase

Figure 3: Controlling of synchronization during the parsing phase

Issues of ,yin-the-middle ${ }^{\text {r }}$ verification

- No mathematical prove - yet
- Significant reduction in the number of parsing trees, but not only one tree
- Cycles in the parsing are still possible
- All part of n-string are necessary
- It's an issue with modes of n-languages

Issues in the parsing of modes of n-languages

- The biggest issues is lost of context between the grammars and strings from n-strings
- Except of the mode of the first component, we don't know which grammar generated that string
- Except of the mode of concatenation, there is only one string from n-string to parse
- => it's necessary to use simulation

Parsing of n-languages in the mode of first component

Figure 4: Using simulation to verification in the mode of the first component

Parsing with other modes

- Union: Almost the same as the mode of the first component
- there is unknown which grammar is the right one
=> all grammars have to be tested
- Concatenation: Each string have to be spited into the n substrings and tested like n-string \rightarrow there are many possibilities how to split

|| Conclusion

- There is a lot of issues and no formal proves
- It's not deterministic => less effective
- The number of possible parse trees can be significantly reduced, but not to only one

1. Čermák, M.: Multi-Languages and Systems of Formal Models. Brno, FIT BUT, 2010
2. Lukáš, R., Meduna, A.: Multigenerative grammar systems. Brno, FIT BUT, 2006
3. Meduna, A., Sopuch, Z.: Parallel multigenerative CYK-based parsing. Brno, FIT BUT, 2011

Questions?

THANK YOU FOR YOUR ATTENTIONS

