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The Generative Power of Natural Languages

• What is generative power of natural languages?
• Are natural languages recursive or not?

Outline

1 Examining of the generative power of NL.
2 Inherent generative capacity of classical transformational

grammar as a formalism for language competence.
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Natural Languages and Chomsky Hierarchy

Chomsky Hierarchy

L3 ⊂ L2 ⊂ L1 ⊂ L0

• L3 . . . set of regular languages,
• L2 . . . set of context-free languages,
• L1 . . . set of context-sensitive languages and
• L0 . . . set of all phrase structure languages

• NL could not be described as regular languages, because
NL grammar must have self-embedding. (Chomsky, 1959)
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Natural Languages and Chomsky Hierarchy

Definition

A context-free grammar is self-embedding if there exists A ∈ V
such that

A⇒∗ αAβ

for some α, β ∈ (V ∪ X)+.

Theorem

A context-free language L is regular iff it possesses at least one
grammar which is not self-embedding.

• Regular languages can also have self-embedding
grammar.
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Example: Self-embedding

Self-embedding in English

• G1 . . . any grammar for X∗

• G2 . . . any self-embedding grammar (eg. S → ab, S → aSb)
• productions of grammar G are the union of those of G1

and G2 ⇒ it is self-embedding and is also a grammar for
the regular set X∗

Example

1 John believes that Mary wants Bill with all his heart.
2 John believes that Mary wants Bill to leave with all his heart.
3 John believes that Mary wants Bill to tell Sam to leave with

all his heart.
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Regularity of Natural Languages

Definition

We say, that two strings w1 and w2 are Myhill equivalent with
respect to the language L, w1 ≡L w2, if for all strings u, v of X∗

we have that
uw1v ∈ L⇔ uw2 ∈ L.

Proposition

1 If w1 ∈ L and w1 ≡L w2, then w2 ∈ L.
2 If w1 ≡L w2 and x ∈ X, then w1x ≡L w2x.

Proof.

1 Take u = v = ε in definition above.

2 For any u, v ∈ X∗:

u(w1x)v ∈ L ⇔ uw1(xv) ∈ L

⇔ uw2(xv) ∈ L since w1 ≡L w2

⇔ u(w2x)v ∈ L

Thus w1 ≡L w2.
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Regularity of Natural Languages

Theorem

A language L is regular if and only if the number of Myhill
equivalence classes for L is finite.

Proof.

Assume that L has a finite set Q of equivalence classes. We use
these classes as states of a finite state machine. By previous
Proposition, following definitions of δ : Q × X → Q and F ⊂ Q are
well defined - they do not depend on the choice of
representative w from the equivalence class [w] in Q.

• ε([w ], x) = [wx ] • [w ] ∈ F ⇔ w ∈ L

If we now let q0 = [ε], the Myhill equivalence class of the empty
string, we have that M = (Q,q0, ε, F) accepts L:

ε∗(q0,w) = [w ]

and thus w ∈ T (M) iff [w ] ∈ F iff w ∈ L.
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Example

Example

The violation of the finitness property.

• Language {anbn|n ≥ 1}
• bn . . . different equivalence class for each choice of n.

A dependency in natural language:

1 The dog died.
[SNP VP]

2 The boy that the dog bit died.
[S[NPNP[SNP VP]]VP]

3 The boy that the dog that the horse kicked bit died.
[S[NPNP[S[NPNP[SNP VP]]]VP]VP]

• a . . . NP • b . . . V

⇒ English must have infinitely many Myhill equivalence classes
and so it is not regular.
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Transformational Grammars

• Transformational grammars generate the class of natural
languages.

• They generate not only NL, but also unnatural languages.

Transformational rule
• the type of rule that can generate certain construction
• altering of the structure generated by phrase structure rules

by moving, adding or deleting in the string
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Transformational Grammars

Transformational grammar TG

• TG has three parts
1 Phrase structure grammar G – base,
2 a set of transformations T and
3 a set of restrictions on these transformations R.

• deep structures – the set of derivation trees generated by
G

• restrictions of R specify that some transformations in T are
obligatory

• surface structures – the set of trees which may be obtained
from deep structures by successively applying
transformations from T according the rules from R.

• L(TG) – a set of strings we may read off the surface
structures.
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Transformational Grammar

• We will consider grammars with context-free bases.

Lemma

A transformational grammar can perform arbitrary
homomorphisms, and in particular, ε-homomorphisms.

Proof.

Proof demonstration:

• Substitution map g : X∗ → 2Y∗
as a map where

• g(ε) = ε

• and for each n ≥ 1
• g(a1 . . .an) = g(a1)g(a2) . . .g(an).

If g(a) contains only one element Y ∗ for each a ∈ X , then g is
called a homomorphism.

Example on the next page is a part of this proof demonstration.
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Transformational Grammar – Example

Example

Transformation: change that→my own and dog→ white cat.
• g(that) = my own
• g(dog) = white cat

For
• That dog likes that food.

the resulting string will be:

• My own white cat likes my own food.

When we allow ε-homomorphism, that is g(a) = ε, we can do
arbitrary deletion by adding:
• g(that) = ε

Result of transformation will be:
• Dog likes food.
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Transformational Grammar

Lemma

Let G1,G2 be any CFGs. Then there exists a transformational
grammar TG, such that TG can perform the intersection of the
languages of G1 and G2.
That is,

L(TG) = (L(G1) ∩ L(G2))

The Generative Power of Natural Languages 16 / 25



Transformational Grammar

Proof.

Proof outline:
• TG with a context-free base
• TG has only one S production S → S1µS2$

• S1 and S2 - start symbols for grammars G1 and G2, respectively.

• T1 - transformation perfoming intersection between two
CFGs.

Transformation T1

SD: X x µ X y $ w
1 2 3 4 5 6 7 ⇒

SC: 2 3 5 6 7 + 1
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Transformational Grammar

Proof.

For generating just the intersection, transformation T2 is needed:

T2 : µ$→ ε.

Transformation T2
SD: x µ $ y

1 2 3 4 ⇒
SC: 1 4
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Transformational Grammar

Example

Example demonstrates how rules T1 and T2 work.

Let G1,G2 be two context-free grammars
• L(G1) = {anbncm,n,m ≥ 1}.
• L(G2) = {anbmcm,n,m ≥ 1}.

The transformational grammar generates just the intersection of
these two languages, namely:

anbncn,n ≥ 1

which is not context-free.
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Transformational Grammar

Example

Assume the string aabbccµaabbcc$.

• Apply T1 until there is no structural description that fits the
rule.

• After all successful applications of T1

• string = µ$aabbcc
• Apply rule T2:

• string = aabbcc; aabbcc ∈ {anbncn;n ≥ 1}

Now assume the string aabbbcccµaabbbccc.
• T1 applies since there is unequal numbers of b’s.
• But then T2 can not apply since the markers are not

adjacent.
• Thus, the string is not generated by the grammar.
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Generative Capacity of TG

Theorem

There is an undecidable set S of the natural numbers N, such
that S can be generated by some context-free based
transformational grammar.

Proof.

Proof outline:
We can construct an undecidable set S ⊆ N as being
homomorphic image of the intersection ot two context-free
languages.
That is:

L = φ(L1 ∩ L2),

where L1 and L2 are context-free languages and φ is
a homomorphism.
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Conclusion

Question

If we consider transformational grammars as a model for
constraining the form of natural languages, why should the
model generate languages as powerful and unconstrained as
undecidable sets?

Answer
• We can consider that by restricting the base rules of the

transformational grammar even more tightly than to the
context-free, we might keep the resulting language
recursive.

• From the results is clear that if we want to restrict the
generative power of transformational grammars, it will be
necessary to constrain the form of the rules themselves
rather than the base.
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