Generalized Phrase Structure Grammar

Petr Horáček, Eva Zámečníková and Ivana Burgetová

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, 612 00 Brno, CZ

FRVŠ MŠMT FR97/2011/G1

Outline

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Topic

Introduction

- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Motivation

Attempt to capture the generalizations made by transformations (in transformational grammar) within context-free grammar.

- We could avoid overgeneration resulting from unrestricted transformations.
- We could use parsing algorithms for CFG.
- (Gazdar et al., 1985)

Means

Mechanisms to recreate the effects of transformations within context-free formalism.

- Complex features
 - Capture long-distance dependencies without using movement rules.
- Metarules
 - Allow generalizations.

Definition

A phrase structure grammar (PSG) G is a quadruple G = (N, T, P, S), where

- *N* is a finite set of *nonterminals*,
- *T* is a finite set of *terminals*, $N \cap T = \emptyset$
- P ⊆ (N ∪ T)*N(N ∪ T)* × (N ∪ T)* is a finite relation we call each (x, y) ∈ P a rule (or production) and usually write it as

$$x \rightarrow y$$
,

• $S \in N$ is the *start symbol*.

Derivation in PSG

Let *G* be a PSG. Let $u, v \in (N \cup T)^*$ and $p = x \rightarrow y \in P$. Then, we say that *uxv* directly derives *uyv* according to *p* in *G*, written as $uxv \Rightarrow_G uyv[p]$ or simply

 $uxv \Rightarrow uyv$

We further define \Rightarrow^+ as the transitive closure of \Rightarrow and \Rightarrow^* as the transitive and reflexive closure of \Rightarrow .

Generated Language

Let *G* be a PSG. The language generated by *G* is defined as

$$L(G) = \{ w : w \in T^*, S \Rightarrow^* w \}$$

Definition

A context-free grammar is a PSG G = (N, T, P, S) such that every rule in *P* is of the form:

$$A \rightarrow x$$

where $A \in N$ and $x \in (N \cup T)^*$.

Components of GPSG

- Grammatical rule format
- 2 Theory of features
- 3 Properties of metarules
- 4 Theory of feature instantiation principles

Grammatical rule format

• We assume the standard interpretation of context-free phrase structure rules

(Chomsky normal form)

Topic

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Features

Components of GPSG

- 1 Grammatical rule format
- 2 Theory of features
- 3 Properties of metarules
- 4 Theory of feature instantiation principles

Features

- Two types of features:
 - Atom-valued
 - 2 Category-valued

Types of Features

- Atom-valued
- 2 Category-valued

Atom-valued Features

- Boolean values
- Symbols such as:
- [-INF] finite, an inflected verb eats
- [-INV] inverted

subject-auxiliary inversion, as in *Is John sick?*

to eat

[+INF] infinitival

Generalized Phrase Structure Grammar 11/31

Types of Features

- Atom-valued
- 2 Category-valued

Category-valued Features

- The value is something like a nonterminal symbol (which is itself a feature specification).
- SUBCAT feature that identifies the complement of the verb
- SLASH

SLASH Feature

- Represents missing constituent.
- Consider a normal transitive verb phrase VP.
- Then, VP[SLASH = NP], or VP/NP for short, represents this VP when it has an NP missing.
 - "VP with an NP gap"
- S/NP sentence with a missing NP, etc.

Example	
VP hit the floor	VP/NP <i>hit</i> [<i>e</i>] (as in <i>Who did John hit?</i>)

+WH Feature

- To handle *wh*-questions (*Who did John hit?*), we need another feature besides *SLASH*.
 - Encode the "questionlike" nature of these sentences.
- +*WH*

Example

Now we can differentiate the following NPs:

- WH[the man]
- e + WH[which man]
- 8 WH[John]
- +*WH*[*who*]

Feature Extension

• Extension of feature specification = larger feature specification containing it

Example

- Feature specification: {[+*N*], [+*V*]}
 - The category A adjective
- Possible extension: {[+*N*], [+*V*], [+*PRED*]}
 - Adjective in a predicative position

Mary is [{[+N],[+V],[+PRED]} intelligent]

Feature Unification

• Similar to the set union operation.

Example

- Feature specifications: $\{[+V], [+PRED]\}$ $\{[-N], [+V]\}$
- Unification: {[+*V*],[+*PRED*],[-*N*]}

• Note: If features contradict each other, unification is undefined.

Topic

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Metarules

Components of GPSG

- 1 Grammatical rule format
- 2 Theory of features
- O Properties of metarules
- 4 Theory of feature instantiation principles

Metarules

- Metarule function from lexical rules to lexical rules.
- Metarules generate related phrase structure rules.
- Similar function to transformations in transformational grammar.

Passive Metarule

Example

John washes the car. \Rightarrow The car is washed by John.

- We could write rules to generate the second sentence directly.
- Problem with such approach: no generalization

Passive Metarule

 $VP \rightarrow W NP \Rightarrow VP[PASSIVE] \rightarrow W(PP[+by])$

- For every context-free rule introducing VP as an NP and some variable number of constituents (including the verb) indicated by W, another context-free rule is introduced, such that:
 - 1 VP is marked with [+PASSIVE] feature (atom-valued)
 - 2 NP present in the active form is missing
 - optimal PP is introduced, marked with [by] feature (atom-valued)
 - "selects preposition by"
- W varying parameter standard rewrite rules produced when W is instantiated

Passive Metarule

 Notice that the passive metarule makes no reference to the subject of the sentence – this is because the semantics for the verb will be different for different instantiations.

Topic

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Components of GPSG

- Grammatical rule format
- 2 Theory of features
- 3 Properties of metarules
- 4 Theory of feature instantiation principles

Theory of Feature Instatiation Principles

- Metarules capture generalizations made by local transformations in a transformational grammar.
- This will allow us to handle long-distance dependencies.

HEAD and FOOT Features

- Phrase structure rules specify that one category is the head of the phrase.
- Head the category-defining element of the phrase
- Foot the complement of the phrase

Example

- $\mathsf{NP}\to\mathsf{N}\ \mathsf{Comp}$
 - Head: N
 - Foot: Comp

Sets of Features

1 HEAD features = $\{N, V, PLURAL, PERSON, PAST, BAR, ... \}$

2 FOOT features = $\{SLASH, WH\}$

HEAD Features

- Properties of the head elements of rules
- Values: + or -

HEAD Feature Principle

The *HEAD* features of a child node must be identical to the *HEAD* features of the parent.

FOOT Features

- Encode more complex information about the movement of wh-phrases and NPs
- Values: categories

FOOT Feature Principle

The *FOOT* features instantied on a parent category in a tree must be identical to the unification of the instantiated *FOOT* feature specifications in all its children.

Topic

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples

Example

Who drives a Honda? What does John drive e?

- In transformational grammar, we introduce a transformational rule to move the *wh*-phrase *who* or *what* from the deep structure position (marked with a "trace" *e*) to the front of the sentence.
- In GPSG, we can generate the sentence without using transformations.

Idea

- Encode the "movement" information on the node of the tree directly.
- Pass this information up and down the tree using features.

Example: wh-questions

• First, consider a simple sentence such as the following

Example		
John drives a Honda.		
 The rules necessary to build such sentence are: 		

S	\rightarrow	NP VP
VP	\rightarrow	TV NP

• TV - transitive verb, which takes NP as its subject

 $TV = \{[+V], [-N], [SUBCAT = NP]\}$

- In order to generate *wh*-movement sentence, we assign the value *NP* to the feature *SLASH* on the VP node.
 - This indicates that there is a constituent missing.

Example: wh-questions

- In GPSG, according to the FOOT feature principle, rule of the form VP \rightarrow NP SP implies rule of the form

 $VP/NP \ \rightarrow \ NP/NP$

• Similarly, the rule S \rightarrow NP VP allows two other rules:

 $\begin{array}{rccc} S/NP & \rightarrow & NP \; VP/NP \\ S/NP & \rightarrow & NP/NP \; VP \end{array}$

- Using the two features *WH* and *SLASH*, we can account for the *wh*-questions.
- Assume that the rules for expanding the sentence are given as follows

$$egin{array}{ccc} {\sf S} &
ightarrow & {\sf NP} \ {\sf VP} \ {\sf S} &
ightarrow & {\sf NP} \ {\sf S}/{\sf NP} \end{array}$$

- We can add the [+*WH*] feature to S applying the *FOOT* feature principle, the information will be transmitted down the tree.
- Note: WH cannot cooccur with SLASH

Example: wh-questions

James Allen: *Natural Language Understanding*, The Benjamin/Cummings Publishing Company. Inc., 2005

- Gerald Gazdar, Ewan H. Klein, Geoffery K. Pullum, Ivan A. Sag: Generalized Phrase Structure Grammar, Harvard University Press, 1985
- Robert N. Moll, Michael A. Arbib, A. J. Kfoury: An Introduction to Formal Language Theory, Springer-Verlag, 1988