
Dependency Grammars

Petr Horáček, Eva Zámečnı́ková and Ivana Burgetová
Department of Information Systems

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 00 Brno, CZ

FRVŠ MŠMT FR97/2011/G1



Outline

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 2 / 36



Outline

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 3 / 36



Outline

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 4 / 36



Topic

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 5 / 36



Dependency Grammars

Dependency Grammars

• Alternative to phrase structure grammars (PSG).
• Capture direct relations between words in a sentence.

• No phrasal nodes.

• The term dependency grammar actually covers many particular
formalisms.

• Theory of Structural Syntax (Tesnière, 1959) – considered the
starting point of modern dependency grammar theory

• Word Grammar (WG) (Hudson, 1984)
• Functional Generative Description (FGD) (Sgall et al., 1986)
• Meaning-Text Theory (MTT) (Mel’čuk, 1988)
• Extensible Dependency Grammar (XDG) (Debusmann et al., 2004)
• . . .

• Here we will discuss the common core points of these theories,
and compare dependency grammars and PSG.

Dependency Grammars 6 / 36



Dependency Grammars

Dependency Grammars

• Alternative to phrase structure grammars (PSG).
• Capture direct relations between words in a sentence.

• No phrasal nodes.

• The term dependency grammar actually covers many particular
formalisms.

• Theory of Structural Syntax (Tesnière, 1959) – considered the
starting point of modern dependency grammar theory

• Word Grammar (WG) (Hudson, 1984)
• Functional Generative Description (FGD) (Sgall et al., 1986)
• Meaning-Text Theory (MTT) (Mel’čuk, 1988)
• Extensible Dependency Grammar (XDG) (Debusmann et al., 2004)
• . . .

• Here we will discuss the common core points of these theories,
and compare dependency grammars and PSG.

Dependency Grammars 7 / 36



Dependency Grammars

Dependency Grammars

• Alternative to phrase structure grammars (PSG).
• Capture direct relations between words in a sentence.

• No phrasal nodes.

• The term dependency grammar actually covers many particular
formalisms.

• Theory of Structural Syntax (Tesnière, 1959) – considered the
starting point of modern dependency grammar theory

• Word Grammar (WG) (Hudson, 1984)
• Functional Generative Description (FGD) (Sgall et al., 1986)
• Meaning-Text Theory (MTT) (Mel’čuk, 1988)
• Extensible Dependency Grammar (XDG) (Debusmann et al., 2004)
• . . .

• Here we will discuss the common core points of these theories,
and compare dependency grammars and PSG.

Dependency Grammars 8 / 36



Topic

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 9 / 36



Phrase Structure Grammar

Definition
A phrase structure grammar (PSG) G is a quadruple
G = (N,T ,P,S), where
• N is a finite set of nonterminals,
• T is a finite set of terminals, N ∩ T = ∅
• P ⊆ (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗ is a finite relation – we call

each (x , y) ∈ P a rule (or production) and usually write it as

x → y ,

• S ∈ N is the start symbol.

Dependency Grammars 10 / 36



Phrase Structure Grammar

Derivation in PSG

Let G be a PSG. Let u, v ∈ (N ∪ T )∗ and p = x → y ∈ P. Then, we
say that uxv directly derives uyv according to p in G, written as
uxv ⇒G uyv [p] or simply

uxv ⇒ uyv

We further define⇒+ as the transitive closure of⇒ and⇒∗ as the
transitive and reflexive closure of⇒.

Generated Language

Let G be a PSG. The language generated by G is defined as

L(G) = {w : w ∈ T ∗,S ⇒∗ w}

Dependency Grammars 11 / 36



PSG – Derivation Tree

Example
S

NP-SBJ

NP

NNP

Vinken

VP

VBD

joined

NP

DT

the

NN

board

PP-CLR

IN

as

NP

DT

a

JJ

nonexecutive

NN

director
(Adapted from Penn Treebank)

Dependency Grammars 12 / 36



Dependency Tree

Example

.

joined

Vinken board

the

as

director

a nonexecutive

Dependency Grammars 13 / 36



Dependency Tree

Example

Vinken
��
joined

��
the

��
board�� as

		
a

��
nonexecutive ""director

��
.

Dependency Grammars 14 / 36



Dependency Grammars vs. PSG

Advantages

• Simplicity
• Easy to understand.
• Faster manual annotation of sentences in corpora (in PSG, the

trees are generally much more complicated, and we also need
some base set of grammar rules).

• Efficient parsing.

• Robustness and portability
• Can parse any sentence.
• Uniformly applicable to many languages.

• Permutations of words without affecting syntactic structure are
possible.

• Useful for free word order languages (such as Czech).

Disadvantages

• Less informative (but still useful in practice)
• There is less explicit information about the constituents of the

sentence (nonterminals in PSG).

Dependency Grammars 15 / 36



Dependency Grammars vs. PSG

Advantages

• Simplicity
• Easy to understand.
• Faster manual annotation of sentences in corpora (in PSG, the

trees are generally much more complicated, and we also need
some base set of grammar rules).

• Efficient parsing.
• Robustness and portability

• Can parse any sentence.
• Uniformly applicable to many languages.

• Permutations of words without affecting syntactic structure are
possible.

• Useful for free word order languages (such as Czech).

Disadvantages

• Less informative (but still useful in practice)
• There is less explicit information about the constituents of the

sentence (nonterminals in PSG).

Dependency Grammars 16 / 36



Dependency Grammars vs. PSG

Advantages

• Simplicity
• Easy to understand.
• Faster manual annotation of sentences in corpora (in PSG, the

trees are generally much more complicated, and we also need
some base set of grammar rules).

• Efficient parsing.
• Robustness and portability

• Can parse any sentence.
• Uniformly applicable to many languages.

• Permutations of words without affecting syntactic structure are
possible.

• Useful for free word order languages (such as Czech).

Disadvantages

• Less informative (but still useful in practice)
• There is less explicit information about the constituents of the

sentence (nonterminals in PSG).

Dependency Grammars 17 / 36



Dependency Grammars vs. PSG

Advantages

• Simplicity
• Easy to understand.
• Faster manual annotation of sentences in corpora (in PSG, the

trees are generally much more complicated, and we also need
some base set of grammar rules).

• Efficient parsing.
• Robustness and portability

• Can parse any sentence.
• Uniformly applicable to many languages.

• Permutations of words without affecting syntactic structure are
possible.

• Useful for free word order languages (such as Czech).

Disadvantages

• Less informative (but still useful in practice)
• There is less explicit information about the constituents of the

sentence (nonterminals in PSG).

Dependency Grammars 18 / 36



Topic

Introduction

Dependency Grammars vs. PSG

Dependency Formalism

Dependency Grammars 19 / 36



Dependency

Idea
Syntactic structure of a sentence consists of binary asymmetrical
relations between the words of the sentence.

• Words in dependency relation – various names in different
formalisms:

• Parent – Child
• Head – Modifier
• Governor – Dependent
• . . .

• Arrows from child to parent.
• May also be drawn in opposite direction, depending on authors.

Dependency Grammars 20 / 36



Dependency

Idea
Syntactic structure of a sentence consists of binary asymmetrical
relations between the words of the sentence.

• Words in dependency relation – various names in different
formalisms:

• Parent – Child
• Head – Modifier
• Governor – Dependent
• . . .

• Arrows from child to parent.
• May also be drawn in opposite direction, depending on authors.

Dependency Grammars 21 / 36



Dependency

Idea
Syntactic structure of a sentence consists of binary asymmetrical
relations between the words of the sentence.

• Words in dependency relation – various names in different
formalisms:

• Parent – Child
• Head – Modifier
• Governor – Dependent
• . . .

• Arrows from child to parent.
• May also be drawn in opposite direction, depending on authors.

Dependency Grammars 22 / 36



Dependency

Notation
• If w is child and v is its parent, we write

w → v

• If there is a path from w to v , we write

w →∗ v

(transitive closure)

Dependency Grammars 23 / 36



Dependency Tree – Properties

1 Single head – each word has one and only one parent (except
for the root node).

2 Connected – all words form a connected graph.

3 Acyclic – if wi → wj , wj →∗ wi never holds.
• The graph does not contain cycles.
• Note: wi denotes i-th word in sentence.

4 Projective – if wi → wj , then for all wk , where i < k < j , either
wk →∗ wi or wk →∗ wj holds.

• Non-crossing between dependencies.
• Some dependency formalisms allow non-projectivity.

Dependency Grammars 24 / 36



Dependency Tree – Properties

1 Single head – each word has one and only one parent (except
for the root node).

2 Connected – all words form a connected graph.

3 Acyclic – if wi → wj , wj →∗ wi never holds.
• The graph does not contain cycles.
• Note: wi denotes i-th word in sentence.

4 Projective – if wi → wj , then for all wk , where i < k < j , either
wk →∗ wi or wk →∗ wj holds.

• Non-crossing between dependencies.
• Some dependency formalisms allow non-projectivity.

Dependency Grammars 25 / 36



Dependency Tree – Properties

1 Single head – each word has one and only one parent (except
for the root node).

2 Connected – all words form a connected graph.

3 Acyclic – if wi → wj , wj →∗ wi never holds.
• The graph does not contain cycles.
• Note: wi denotes i-th word in sentence.

4 Projective – if wi → wj , then for all wk , where i < k < j , either
wk →∗ wi or wk →∗ wj holds.

• Non-crossing between dependencies.
• Some dependency formalisms allow non-projectivity.

Dependency Grammars 26 / 36



Dependency Tree – Properties

1 Single head – each word has one and only one parent (except
for the root node).

2 Connected – all words form a connected graph.

3 Acyclic – if wi → wj , wj →∗ wi never holds.
• The graph does not contain cycles.
• Note: wi denotes i-th word in sentence.

4 Projective – if wi → wj , then for all wk , where i < k < j , either
wk →∗ wi or wk →∗ wj holds.

• Non-crossing between dependencies.
• Some dependency formalisms allow non-projectivity.

Dependency Grammars 27 / 36



Projective Dependency Tree

Example

Vinken
��
joined

��
the

��
board�� as

		
a

��
nonexecutive ""director

��
.

• There is no crossing of dependencies.
• For example, all the words between “joined” and “.” finally

depend on either “joined” or “.”
• nonexecutive→∗ joined

Dependency Grammars 28 / 36



Non-projective Dependency Tree

Example

I
��
ate

��
a
��
cake�� yesterday

		
which

��
was

~~
delicious
}}

.

• There are crossing dependencies.
• yesterday→ ate
• was→ cake

Dependency Grammars 29 / 36



Dependency Tree with Labels

• We may want to know not only which word depends on which,
but also how.

• We can assign labels to dependencies.

Example

Vinken

subj
  
joined

punct

��
the

det
��
board

obj

�� as

adv

��
a

det

��
nonexecutive

adj
##director

obj

��
.

Dependency Grammars 30 / 36



Dependency Tree with Labels

• We may want to know not only which word depends on which,
but also how.

• We can assign labels to dependencies.

Example

Vinken

subj
  
joined

punct

��
the

det
��
board

obj

�� as

adv

��
a

det

��
nonexecutive

adj
##director

obj

��
.

Dependency Grammars 31 / 36



Root Node

• In PSG, the root node of derivation tree is given by the starting
nonterminal of the grammar.

• Usually corresponds to the whole sentence.

• What should be the root of dependency tree?
• There is nothing like nonterminal symbols in dependency

grammars.

• Different authors use different notations.
• For example, the root node can be:

• Punctuation mark (“.”) – we use this notation
• Verb
• Some abstract root symbol

Dependency Grammars 32 / 36



Root Node

• In PSG, the root node of derivation tree is given by the starting
nonterminal of the grammar.

• Usually corresponds to the whole sentence.

• What should be the root of dependency tree?
• There is nothing like nonterminal symbols in dependency

grammars.

• Different authors use different notations.
• For example, the root node can be:

• Punctuation mark (“.”) – we use this notation
• Verb
• Some abstract root symbol

Dependency Grammars 33 / 36



References

Ralph Debusmann, Denys Duchier, Geert-Jan Kruijff:
Extensible Dependency Grammar: A New Methodology,
Proceedings of the Workshop on Recent Advances in
Dependency Grammar, p. 78-85, 2004

Richard Hudson:
Word Grammar,
Blackwell, 1984

Igor Mel’čuk:
Dependency Syntax: Theory and Practice,
State University of New York Press, 1988

Lucien Tesnière:
Éléments de syntaxe structurale,
Editions Klincksieck, 1959

Petr Sgall, Eva Hajičová, Jarmila Panevová, Jacob Mey:
The meaning of the sentence in its semantic and pragmatic
aspects,
Springer, 1986

Dependency Grammars 34 / 36



Thank you for your attention!



End


	Introduction
	Dependency Grammars vs. PSG
	Dependency Formalism

