Scattered Context Grammar

Petr Horáček, Eva Zámečníková and Ivana Burgetová

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, 612 00 Brno, CZ

Outline

Introduction

Transformational Scattered Context Grammars

Scattered Context in English Syntax

Topic

Introduction

Transformational Scattered Context Grammars

Scattered Context in English Syntax

Scattered Context Grammar

Definition

A scattered context grammar (SCG) G is a quadruple G = (N, T, P, S), where

- N is a finite set of nonterminals,
- T is a finite set of *terminals*, $N \cap T = \emptyset$
- P is a finite set of rules of the form

$$(A_1,\ldots,A_n)\to(x_1,\ldots,x_n),$$

where
$$A_1, ..., A_n \in N, x_1, ..., x_n \in (N \cup T)^*$$
,

• $S \in N$ is the *start symbol*.

Derivation step

Let G=(N,T,P,S) be an SCG. For $u,v\in (N\cup T)^*$, $p\in P$ we define $u\Rightarrow v[p]$, if there is a factorization of $u=u_1A_1\ldots u_nA_nu_{n+1}$, $v=u_1x_1\ldots u_nx_nu_{n+1}$ and $p=(A_1,\ldots,A_n)\to (x_1,\ldots,x_n)$, where $u_i\in (N\cup T)^*$ for $1\leq i\leq n$.

Motivation

 Many common English sentences contain expressions and words mutually depending on each other, although they are not adjacent to each other in the sentence.

Example

He usually goes to work early.

- The subject (he) and the predicator (goes) are related.
 - He usually go to work early.
 - © I usually goes to work early.
- Ungrammatical sentences the form of the predicator depends on the form of the subject.
 - he...go, l...goes illegal combinations

Motivation

Consider the scattered context rule:

$$(\text{He, goes}) \rightarrow (\text{We, go})$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

He usually goes to work early. \Rightarrow We usually go to work early.

The related words may occur far away from each other.

Example

He almost regularly goes to work early.

⇒ We almost regularly go to work early.

He usually, but not always, goes to work early.

⇒ We usually, but not always, go to work early.

Paradigms of English Verbs

Classification of verbs

- Auxiliary verbs
 - Modal verbs: can, may, must, will, shall, ought, need, dare
 - Non-modal verbs: be, have, do
- 2 Lexical verbs
 - In reality, these classes may overlap.
 - For example, do appears as auxiliary verb in some sentences, as lexical verb in other sentences.
 - Inflectional forms of verbs are called paradigms.

Form	Paradigm	Person	Example
	Present	3rd sg	She walks home.
Primary		Other	They walk home.
	Preterite		She walked home.
	Plain form		They should walk home.
Secondary	Gerund-participle		She is walking home.
-	Past participle		She has walked home.

Paradigms of the Verb be

- The only exception in English: be
 - 9 paradigms in its neutral form.
 - All primary forms have their negative contracted counterparts.
 - Irrealis paradigm in sentences of unrealistic nature.

I wish I were rich.

Form	Paradigm	Person	Neutral	Negative
Primary		1st sg	am	aren't
	Present	3rd sg	is	isn't
		Other	are	aren't
	Preterite	1st sg, 3rd sg	was	wasn't
		Other	were	weren't
	Irrealis	1st sg, 3rd sg	were	weren't
Secondary	Plain form		be	_
	Gerund-participle		being	_
	Past participle		been	_

Personal Pronouns

Great amount of inflectional variation

	Reflexive			
Nominative	Nominative Accusative Genitive		nitive	-
Plain		Dependent	Independent	-
I	me	my	mine	myself
you	you	your	yours	yourself
he	him	his	his	himself
she	her	her	hers	herself
it	it	its	its	itself
we	us	our	ours	ourselves
you	you	your	yours	yourselves
they	them	their	theirs	themselves

Topic

Introduction

Transformational Scattered Context Grammars

Scattered Context in English Syntax

Transformational Scattered Context Grammar

Definition

A transformational scattered context grammar G is a quadruple G = (N, T, P, I), where

- N is a finite set of nonterminals,
- T is a finite set of terminals, called the output vocabulary,
 N ∩ T = ∅
- P is a finite set of rules of the form

$$(A_1,\ldots,A_n)\to(x_1,\ldots,x_n),$$

where
$$A_1, ..., A_n \in N, x_1, ..., x_n \in (N \cup T)^*$$
,

• $I \subseteq N \cup T$ is the *input vocabulary*.

Transformation

Let G = (N, T, P, S) be a transformational SCG. The transformation T that G defines from $K \subseteq I^*$ is defined as:

$$T(G, K) = \{(x, y) : x \Rightarrow_G^* y, x \in K, y \in T^*\}$$

Transformational SCG – Example

Define the transformational SCG
$$G = (N, T, P, I)$$
, where $N = \{A, B, C\}$, $T = \{a, b, c\}$, $I = \{A, B, C\}$ and $P = \{(A, B, C) \rightarrow (a, bb, c)\}$

Example

 $AABBCC \Rightarrow_G aABbbcC \Rightarrow_G aabbbbcc$

 $(AABBCC, aabbbbcc) \in T(G, I^*)$

If we restrict the input sentences to the language

$$L = \{A^n B^n C^n : n > 1\},$$

we get

$$T(G, L) = \{(A^n B^n C^n, a^n b^{2n} c^n) : n \ge 1\}$$

Topic

Introduction

Transformational Scattered Context Grammars

Scattered Context in English Syntax

Notation

Notations

- T the set of all English words including all their inflectional forms
- $T_V \subset T$ the set of all verbs including all their inflectional forms
- T_{VA} ⊂ T_V the set of all auxiliary verbs including all their inflectional forms
- $T_{Vpl} \subset T_V$ the set of all verbs in plain form
- T_{PPn} ⊂ T the set of personal pronouns in nominative

Verb paradigms:

- $\pi_{3rd}(v)$ the verb v in 3rd person singular present
- $\pi_{pres}(v)$ the verb v in present (other than 3rd person singular)
- $\pi_{pret}(v)$ the verb v in preterite
- We assume here that the set of all English words T is finite and fixed.

Example 1: Clauses with *neither* and *nor*

We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.

⇒ Both Thomas and his wife went to the party.

```
Set G = (N, T, P, I), where N = I = \{\langle x \rangle : x \in T\} and P is defined as: P = \{(\langle \text{neither} \rangle, \langle \text{nor} \rangle) \rightarrow (\text{both}, \text{and})\}\cup \{(\langle x \rangle) \rightarrow (x) : x \in T - \{\text{neither}, \text{nor}\}\}
```

Example 2: Existential Clauses

- Existential clause = clause that indicates an existence.
- Usually formed using the dummy subject there.
- In some cases, however, the dummy subject is not mandatory.

Example

A nurse was present.

⇒ There was a nurse present.

Set G = (N, T, P, I), where $N = I = \{\langle x \rangle : x \in T\} \cup \{X\}$ (X is a new symbol such that $X \notin T \cup I$) and P is defined as:

$$\begin{array}{ll} P &=& \{(\langle x \rangle, \langle \mathsf{is} \rangle) \to (\mathsf{there is} \; x \; X, \varepsilon), \\ && (\langle x \rangle, \langle \mathsf{are} \rangle) \to (\mathsf{there are} \; x \; X, \varepsilon), \\ && (\langle x \rangle, \langle \mathsf{was} \rangle) \to (\mathsf{there was} \; x \; X, \varepsilon), \\ && (\langle x \rangle, \langle \mathsf{were} \rangle) \to (\mathsf{there were} \; x \; X, \varepsilon) \colon x \in T\} \\ && \cup & \{(X, \langle x \rangle) \to (X, x) \colon x \in T\} \\ && \cup & \{(X) \to (\varepsilon)\} \end{array}$$

Example 2: Existential Clauses


```
P = \{(\langle x \rangle, \langle \mathsf{is} \rangle) \to (\mathsf{there is} \ x \ X, \varepsilon), \\ (\langle x \rangle, \langle \mathsf{are} \rangle) \to (\mathsf{there are} \ x \ X, \varepsilon), \\ (\langle x \rangle, \langle \mathsf{was} \rangle) \to (\mathsf{there was} \ x \ X, \varepsilon), \\ (\langle x \rangle, \langle \mathsf{were} \rangle) \to (\mathsf{there were} \ x \ X, \varepsilon) \colon x \in T\} \\ \cup \{(X, \langle x \rangle) \to (X, x) \colon x \in T\} \\ \cup \{(X) \to (\varepsilon)\}
```

```
\langle a \rangle \langle nurse \rangle \langle was \rangle \langle present \rangle

\Rightarrow_G there was a X \langle nurse \rangle \langle present \rangle

\Rightarrow_G there was a X \langle nurse \rangle \langle present \rangle

\Rightarrow_G there was a X \langle nurse \rangle \langle present \rangle

\Rightarrow_G there was a nurse present
```

Example 3: Interrogative Clauses

- Two ways of transforming declarative clauses into interrogative depending on the predicator.
- Predicator is auxiliary verb simply swap the subject and the predicator.

Example

He is mowing the lawn.

⇒ Is he mowing the lawn?

Predicator is lexical verb – add the dummy do (in the correct form) to the beginning of the clause.

Example

She usually gets up early.

⇒ Does she usually get up early?

Example 3: Interrogative Clauses


```
\begin{array}{ll} P &=& \{(\langle p\rangle, \langle v\rangle) \rightarrow (vp, X) \colon v \in T_{VA}, p \in T_{PPn}\} \\ & \cup & \{(\langle p\rangle, \langle \pi_{pret}(v)\rangle) \rightarrow (\operatorname{did}\, p, vX), \\ & & (\langle p\rangle, \langle \pi_{3rd}(v)\rangle) \rightarrow (\operatorname{does}\, p, vX), \\ & & & (\langle p\rangle, \langle \pi_{pres}(v)\rangle) \rightarrow (\operatorname{do}\, p, vX) \colon v \in T_{Vpl} - T_{VA}, p \in T_{PPn}\} \\ & \cup & \{(\langle x\rangle, X) \rightarrow (x, X), \\ & & & (X, \langle y\rangle) \rightarrow (X, y) \colon x \in T - T_{V}, y \in T\} \\ & \cup & \{(X) \rightarrow (\varepsilon)\} \end{array}
```

Example 3: Interrogative Clauses


```
\begin{array}{ll} P &=& \{(\langle p \rangle, \langle v \rangle) \rightarrow (vp, X) \colon v \in T_{VA}, p \in T_{PPn}\} \\ & \cup & \{(\langle p \rangle, \langle \pi_{pret}(v) \rangle) \rightarrow (\operatorname{did} p, vX), \\ & & & (\langle p \rangle, \langle \pi_{3rd}(v) \rangle) \rightarrow (\operatorname{does} p, vX), \\ & & & & (\langle p \rangle, \langle \pi_{pres}(v) \rangle) \rightarrow (\operatorname{do} p, vX) \colon v \in T_{Vpl} - T_{VA}, p \in T_{PPn}\} \\ & \cup & \{(\langle x \rangle, X) \rightarrow (x, X), \\ & & & & (X, \langle y \rangle) \rightarrow (X, y) \colon x \in T - T_{V}, y \in T\} \\ & \cup & \{(X) \rightarrow (\varepsilon)\} \end{array}
```

Generation of Grammatical Sentences

- So far, we have assumed that the set of English words is finite.
 - Reasonable assumption in practice we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Example

Your grandparents are all your grandfathers and all your grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

:

 $L = \{\text{your } \{\text{great-}\}^i \text{grandparents are all your } \{\text{great}\}^i \text{grandfathers}$ and all your $\{\text{great}\}^i \text{grandmothers} : i \ge 0\}$

Generation of Grammatical Sentences


```
Introduce the SCG G=(N,T,P,S), where T=\{\text{all, and, are, grandfathers, grandmothers, grandparents, great-, your}\}, N=\{S,\#\}, and P consists of these three productions: (S) \quad \rightarrow \quad \text{(your \#grandparents are all your \#grandfathers} \\ \qquad \qquad \text{and all your \#grandmothers)}, \\ (\#,\#,\#) \quad \rightarrow \quad (\#\text{great-},\#\text{great-}), \\ (\#,\#,\#) \quad \rightarrow \quad (\varepsilon,\varepsilon,\varepsilon)
```

- $S \Rightarrow_G$ your #grandparents are all your #grandfathers and all your #grandmothers
- \Rightarrow_G your #great-grandparents are all your #great-grandfathers and all your #great-grandmothers
- \Rightarrow_G your great-grandparents are all your great-grandfathers and all your great-grandmothers

References

Sheila A. Greibach, John E. Hopcroft:

Scattered Context Grammars,

Journal of Computer and System Sciences, 3:233-247, 1969

Alexander Meduna, Jiří Techet: Scattered Context Grammars and their Applications, WIT Press, 2010