Scattered Context Grammar

Petr Horáček, Eva Zámečníková and Ivana Burgetová

Department of Information Systems Faculty of Information Technology

Brno University of Technology Božetěchova 2, $61200 \mathrm{Brno}, \mathrm{CZ}$

BRNO UNIVERSITY OF TECHNOLOGY

- Introduction
- Introduction
- Transformational Scattered Context Grammars
- Introduction
- Transformational Scattered Context Grammars
- Scattered Context in English Syntax
- Introduction
- Transformational Scattered Context Grammars
- Scattered Context in English Syntax

Definition

A scattered context grammar (SCG) G is a quadruple $G=(N, T, P, S)$, where

- N is a finite set of nonterminals,
- T is a finite set of terminals, $N \cap T=\emptyset$
- P is a finite set of rules of the form

$$
\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right),
$$

where $A_{1}, \ldots, A_{n} \in N, x_{1}, \ldots, x_{n} \in(N \cup T)^{*}$,

- $S \in N$ is the start symbol.

Derivation step

Let $G=(N, T, P, S)$ be an SCG. For $u, v \in(N \cup T)^{*}, p \in P$ we define $u \Rightarrow v[p]$, if there is a factorization of $u=u_{1} A_{1} \ldots u_{n} A_{n} u_{n+1}$, $v=u_{1} x_{1} \ldots u_{n} x_{n} u_{n+1}$ and $p=\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$, where $u_{i} \in(N \cup T)^{*}$ for $1 \leq i \leq n$.

- Many common English sentences contain expressions and words mutually depending on each other, although they are not adjacent to each other in the sentence.

Example

He usually goes to work early.

- The subject (he) and the predicator (goes) are related.
- Many common English sentences contain expressions and words mutually depending on each other, although they are not adjacent to each other in the sentence.

Example

He usually goes to work early.

- The subject (he) and the predicator (goes) are related.
© He usually go to work early.
© I usually goes to work early.
- Ungrammatical sentences - the form of the predicator depends on the form of the subject.
- he...go, I. . . goes - illegal combinations
- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \text { go })
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.

- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \mathrm{go})
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.
> \Rightarrow We usually go to work early.

- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \mathrm{go})
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.
\Rightarrow We usually go to work early.

- The related words may occur far away from each other.

Example

He almost regularly goes to work early.

- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \mathrm{go})
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.
\Rightarrow We usually go to work early.

- The related words may occur far away from each other.

Example

> He almost regularly goes to work early.
> \Rightarrow We almost regularly go to work early.

- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \mathrm{go})
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.
\Rightarrow We usually go to work early.

- The related words may occur far away from each other.

Example

> He almost regularly goes to work early. \Rightarrow We almost regularly go to work early.

He usually, but not always, goes to work early.

Motivation

- Consider the scattered context rule:

$$
(\mathrm{He}, \text { goes }) \rightarrow(\mathrm{We}, \mathrm{go})
$$

- This rule checks if the subject is the pronoun he and if the verb go is in 3rd person singular.
- If the sentence satisfies this property, it can be transformed.

Example

> He usually goes to work early.
\Rightarrow We usually go to work early.

- The related words may occur far away from each other.

Example

> He almost regularly goes to work early. \Rightarrow We almost regularly go to work early.

He usually, but not always, goes to work early.
\Rightarrow We usually, but not always, go to work early.

Classification of verbs

(1) Auxiliary verbs

Classification of verbs

(1) Auxiliary verbs

- Modal verbs: can, may, must, will, shall, ought, need, dare

Classification of verbs

(1) Auxiliary verbs

- Modal verbs: can, may, must, will, shall, ought, need, dare
- Non-modal verbs: be, have, do

Classification of verbs

(1) Auxiliary verbs

- Modal verbs: can, may, must, will, shall, ought, need, dare
- Non-modal verbs: be, have, do
(2) Lexical verbs

Classification of verbs

(1) Auxiliary verbs

- Modal verbs: can, may, must, will, shall, ought, need, dare
- Non-modal verbs: be, have, do
(2) Lexical verbs
- In reality, these classes may overlap.
- For example, do appears as auxiliary verb in some sentences, as lexical verb in other sentences.

Paradigms of English Verbs

Classification of verbs

(1) Auxiliary verbs

- Modal verbs: can, may, must, will, shall, ought, need, dare
- Non-modal verbs: be, have, do
(2) Lexical verbs
- In reality, these classes may overlap.
- For example, do appears as auxiliary verb in some sentences, as lexical verb in other sentences.
- Inflectional forms of verbs are called paradigms.

Form	Paradigm	Person	Example Primary
	Present	Srd sg Other	She walks home. They walk home.
	Preterite		She walked home.
Secondary	Plain form	Gerund-participle Past participle	They should walk home. She is walking home. She has walked home.

- The only exception in English: be
- 9 paradigms in its neutral form.
- All primary forms have their negative contracted counterparts.
- Irrealis paradigm - in sentences of unrealistic nature.

I wish I were rich.

Form	Paradigm	Person	Neutral	Negative
Primary	Present	1st sg	$a m$	aren't
		3 rd sg	is	isn't
		Other	are	aren't
	Preterite	1st sg, 3rd sg	was	wasn't
		Other	were	weren't
	Irrealis	1st sg, 3rd sg	were	weren't
Secondary	Plain form		be	-
	Gerund-participle		being	-
	Past participle		been	-

- Great amount of inflectional variation

Non-reflexive				Reflexive
Nominative	Accusative		itive	
Plain		Dependent	Independent	
1	me	my	mine	myself
you	you	your	yours	yourself
he	him	his	his	himself
she	her	her	hers	herself
it	it	its	its	itself
we	us	our	ours	ourselves
you	you	your	yours	yourselves
they	them	their	theirs	themselves

- Introduction
- Transformational Scattered Context Grammars
- Scattered Context in English Syntax

Definition

A transformational scattered context grammar G is a quadruple $G=(N, T, P, I)$, where

- N is a finite set of nonterminals,
- T is a finite set of terminals, called the output vocabulary, $N \cap T=\emptyset$
- P is a finite set of rules of the form

$$
\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)
$$

where $A_{1}, \ldots, A_{n} \in N, x_{1}, \ldots, x_{n} \in(N \cup T)^{*}$,

- $I \subseteq N \cup T$ is the input vocabulary.

Transformation

Let $G=(N, T, P, S)$ be a transformational SCG. The transformation T that G defines from $K \subseteq I^{*}$ is defined as:

$$
T(G, K)=\left\{(x, y): x \Rightarrow_{G}^{*} y, x \in K, y \in T^{*}\right\}
$$

| Transformational SCG - Example

Define the transformational SCG $G=(N, T, P, I)$, where $N=\{A, B, C\}, T=\{a, b, c\}, I=\{A, B, C\}$ and $P=\{(A, B, C) \rightarrow(a, b b, c)\}$

Example

AABBCC

Define the transformational SCG $G=(N, T, P, I)$, where $N=\{A, B, C\}, T=\{a, b, c\}, I=\{A, B, C\}$ and $P=\{(A, B, C) \rightarrow(a, b b, c)\}$

Example

$A A B B C C \Rightarrow_{G} a A B b b c C$

Define the transformational SCG $G=(N, T, P, I)$, where $N=\{A, B, C\}, T=\{a, b, c\}, I=\{A, B, C\}$ and $P=\{(A, B, C) \rightarrow(a, b b, c)\}$

Example

$A A B B C C \Rightarrow_{G}$ a $A B b b c C \Rightarrow_{G}$ aabbbbcc

Define the transformational SCG $G=(N, T, P, I)$, where $N=\{A, B, C\}, T=\{a, b, c\}, I=\{A, B, C\}$ and $P=\{(A, B, C) \rightarrow(a, b b, c)\}$

Example

$A A B B C C \Rightarrow_{G}$ aABbbcC \Rightarrow_{G} aabbbbcc
$(A A B B C C, a a b b b b c c) \in T\left(G, l^{*}\right)$

Define the transformational SCG $G=(N, T, P, I)$, where $N=\{A, B, C\}, T=\{a, b, c\}, I=\{A, B, C\}$ and $P=\{(A, B, C) \rightarrow(a, b b, c)\}$

Example

$A A B B C C \Rightarrow_{G}$ aABbbcC \Rightarrow_{G} aabbbbcc
$(A A B B C C, a a b b b b c c) \in T\left(G, I^{*}\right)$

- If we restrict the input sentences to the language

$$
L=\left\{A^{n} B^{n} C^{n}: n \geq 1\right\}
$$

we get

$$
T(G, L)=\left\{\left(A^{n} B^{n} C^{n}, a^{n} b^{2 n} c^{n}\right): n \geq 1\right\}
$$

- Introduction
- Transformational Scattered Context Grammars
- Scattered Context in English Syntax

Notations

- T - the set of all English words including all their inflectional forms
- $T_{V} \subset T$ - the set of all verbs including all their inflectional forms
- $T_{V A} \subset T_{V}$ - the set of all auxiliary verbs including all their inflectional forms
- $T_{V p l} \subset T_{V}$ - the set of all verbs in plain form
- $T_{P P_{n}} \subset T$ - the set of personal pronouns in nominative

Notations

- T - the set of all English words including all their inflectional forms
- $T_{V} \subset T$ - the set of all verbs including all their inflectional forms
- $T_{V A} \subset T_{V}$ - the set of all auxiliary verbs including all their inflectional forms
- $T_{V p l} \subset T_{V}$ - the set of all verbs in plain form
- $T_{P P_{n}} \subset T$ - the set of personal pronouns in nominative

Verb paradigms:

- $\pi_{3 r d}(v)$ - the verb v in 3rd person singular present
- $\pi_{\text {pres }}(v)$ - the verb v in present (other than 3rd person singular)
- $\pi_{\text {pret }}(v)$ - the verb v in preterite

Notations

- T - the set of all English words including all their inflectional forms
- $T_{V} \subset T$ - the set of all verbs including all their inflectional forms
- $T_{V A} \subset T_{V}$ - the set of all auxiliary verbs including all their inflectional forms
- $T_{V p l} \subset T_{V}$ - the set of all verbs in plain form
- $T_{P P_{n}} \subset T$ - the set of personal pronouns in nominative

Verb paradigms:

- $\pi_{3 r d}(v)$ - the verb v in 3rd person singular present
- $\pi_{\text {pres }}(v)$ - the verb v in present (other than 3rd person singular)
- $\pi_{\text {pret }}(v)$ - the verb v in preterite
- We assume here that the set of all English words T is finite and fixed.
- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither, } \text { nor }\}\}
\end{aligned}
$$

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither }, \text { nor }\}\}
\end{aligned}
$$

Example
\langle neither $\rangle\langle$ thomas $\rangle\langle$ nor $\rangle\langle$ his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither, nor }\}\}
\end{aligned}
$$

Example

\langle neither $\rangle\langle$ thomas $\rangle\langle$ nor $\rangle\langle$ his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both \langle thomas \rangle and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither }, \text { nor }\}\}
\end{aligned}
$$

Example

\langle neither $\rangle\langle$ thomas $\rangle\langle$ nor $\rangle\langle$ his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both \langle thomas \rangle and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
$\Rightarrow{ }_{G}$ both thomas and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither, } \text { nor }\}\}
\end{aligned}
$$

Example

\langle neither $\rangle\langle$ thomas $\rangle\langle$ nor $\rangle\langle$ his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both \langle thomas \rangle and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
$\Rightarrow{ }_{G}$ both thomas and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both thomas and his \langle wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle

- We want to negate the clause.

Example

Neither Thomas nor his wife went to the party.
\Rightarrow Both Thomas and his wife went to the party.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\}$ and P is defined as:

$$
\begin{aligned}
P & =\{(\langle\text { neither }\rangle,\langle\text { nor }\rangle) \rightarrow(\text { both }, \text { and })\} \\
& \cup\{(\langle x\rangle) \rightarrow(x): x \in T-\{\text { neither, } \text { nor }\}\}
\end{aligned}
$$

Example

\langle neither $\rangle\langle$ thomas $\rangle\langle$ nor $\rangle\langle$ his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both \langle thomas \rangle and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
$\Rightarrow{ }_{G}$ both thomas and \langle his $\rangle\langle$ wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
\Rightarrow_{G} both thomas and his \langle wife $\rangle\langle$ went $\rangle\langle$ to $\rangle\langle$ the $\rangle\langle$ party \rangle
$\Rightarrow{ }_{G}^{5}$ both thomas and his wife went to the party

- Existential clause = clause that indicates an existence.
- Usually formed using the dummy subject there.
- In some cases, however, the dummy subject is not mandatory.

Example

A nurse was present.
\Rightarrow There was a nurse present.

- Existential clause = clause that indicates an existence.
- Usually formed using the dummy subject there.
- In some cases, however, the dummy subject is not mandatory.

Example

A nurse was present.
\Rightarrow There was a nurse present.

Set $G=(N, T, P, I)$, where $N=I=\{\langle x\rangle: x \in T\} \cup\{X\}(X$ is a new symbol such that $X \notin T \cup I$) and P is defined as:

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow \text { (there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow \text { (there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow(\text { there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow \text { (there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup \quad & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example
$\langle a\rangle\langle$ nurse $\rangle\langle$ was $\rangle\langle$ present \rangle

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow(\text { there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow(\text { there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup \quad & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

```
Example
〈a〉〈nurse〉〈was〉〈present〉
\(\Rightarrow{ }_{G}\) there was a \(X\) 〈nurse \(\rangle\langle\) present〉
```

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow(\text { there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow(\text { there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup \quad & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

$\langle a\rangle\langle$ nurse〉〈was〉〈present〉
$\Rightarrow{ }_{G}$ there was a X 〈nurse〉 \langle present〉
\Rightarrow_{G} there was a X nurse＜present〉

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow(\text { there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow(\text { there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup \quad & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

〈a〉〈nurse〉〈was〉〈present〉
$\Rightarrow{ }_{G}$ there was a X 〈nurse〉 \langle present〉
\Rightarrow_{G} there was a X nurse＜present〉
$\Rightarrow G$ there was a X nurse present

$$
\begin{aligned}
P= & \{(\langle x\rangle,\langle\text { is }\rangle) \rightarrow(\text { there is } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { are }\rangle) \rightarrow(\text { there are } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { was }\rangle) \rightarrow(\text { there was } x X, \varepsilon), \\
& (\langle x\rangle,\langle\text { were }\rangle) \rightarrow \text { (there were } x X, \varepsilon): x \in T\} \\
\cup & \{(X,\langle x\rangle) \rightarrow(X, x): x \in T\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

$\langle a\rangle\langle$ nurse $\rangle\langle$ was $\rangle\langle$ present \rangle
$\Rightarrow{ }_{G}$ there was a X 〈nurse〉 \langle present〉
\Rightarrow_{G} there was a X nurse＜present〉
$\Rightarrow{ }_{G}$ there was a X nurse present
\Rightarrow_{G} there was a nurse present

- Two ways of transforming declarative clauses into interrogative depending on the predicator.
- Two ways of transforming declarative clauses into interrogative depending on the predicator.
(1) Predicator is auxiliary verb - simply swap the subject and the predicator.

Example

> He is mowing the lawn. \Rightarrow Is he mowing the lawn?

- Two ways of transforming declarative clauses into interrogative depending on the predicator.
(1) Predicator is auxiliary verb - simply swap the subject and the predicator.

Example

> He is mowing the lawn. \Rightarrow Is he mowing the lawn?
(2) Predicator is lexical verb - add the dummy do (in the correct form) to the beginning of the clause.

Example

She usually gets up early.
\Rightarrow Does she usually get up early?

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle he $\rangle\langle$ is $\rangle\langle$ mowing $\rangle\langle$ the $\rangle\langle$ lawn \rangle

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle he $\rangle\langle$ is $\rangle\langle$ mowing \rangle the $\rangle\langle$ lawn \rangle \Rightarrow_{G} is he X 〈mowing〉〈the〉〈lawn〉

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P_{n}}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

〈he〉〈is〉〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X 〈mowing〉〈the〉〈lawn〉
$\Rightarrow{ }_{G}$ is he X mowing 〈the〉〈lawn〉

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P_{n}}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

〈he〉〈is〉〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X 〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing 〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing the 〈lawn〉

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P_{n}}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

〈he〉〈is〉〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X 〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing 〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing the 〈lawn〉
\Rightarrow_{G} is he X mowing the lawn

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P_{n}}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup \quad & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle he $\rangle\langle$ is $\rangle\langle$ mowing $\rangle\langle$ the $\rangle\langle$ lawn \rangle
\Rightarrow_{G} is he X 〈mowing〉〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing 〈the〉〈lawn〉
\Rightarrow_{G} is he X mowing the 〈lawn〉
\Rightarrow_{G} is he X mowing the lawn
\Rightarrow_{G} is he mowing the lawn

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{p r e t}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{p r e s}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle she $\rangle\langle$ usually $\rangle\langle$ gets $\rangle\langle u p\rangle\langle$ early \rangle

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{v}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle she $\rangle\langle$ usually $\rangle\langle$ gets $\rangle\langle u p\rangle\langle$ early \rangle
\Rightarrow_{G} does she $\langle u s u a l l y\rangle$ get $X\langle u p\rangle\langle$ early \rangle

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{p r e t}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle she $\rangle\langle$ usually $\rangle\langle$ gets $\rangle\langle u p\rangle\langle$ early \rangle
\Rightarrow_{G} does she $\langle u s u a l l y\rangle$ get $X\langle u p\rangle\langle$ early \rangle
\Rightarrow_{G} does she usually get $X\langle$ up $\rangle\langle$ early \rangle

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{\text {pret }}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle she $\rangle\langle$ usually $\rangle\langle$ gets $\rangle\langle$ up $\rangle\langle$ early \rangle
\Rightarrow_{G} does she 〈usually get $X\langle u p\rangle\langle$ early \rangle
\Rightarrow_{G} does she usually get $X\langle$ up \rangle (early \rangle
\Rightarrow_{G} does she usually get X up \langle early \rangle

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P_{n}}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{p r e t}(v)\right\rangle\right) \rightarrow(\text { did } p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{\text {pres }}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

Example

\langle she $\rangle\langle$ usually $\rangle\langle$ gets $\rangle\langle$ up $\rangle\langle$ early \rangle
\Rightarrow_{G} does she 〈usually \rangle get $X\langle u p\rangle\langle$ early \rangle
\Rightarrow_{G} does she usually get $X\langle$ up \rangle 〈early \rangle
\Rightarrow_{G} does she usually get X up \langle early \rangle
\Rightarrow_{G} does she usually get X up early

$$
\begin{aligned}
P= & \left\{(\langle p\rangle,\langle v\rangle) \rightarrow(v p, X): v \in T_{V A}, p \in T_{P P n}\right\} \\
\cup & \left\{\left(\langle p\rangle,\left\langle\pi_{p r e t}(v)\right\rangle\right) \rightarrow(\operatorname{did} p, v X),\right. \\
& \left(\langle p\rangle,\left\langle\pi_{3 r d}(v)\right\rangle\right) \rightarrow(\text { does } p, v X), \\
& \left.\left(\langle p\rangle,\left\langle\pi_{p r e s}(v)\right\rangle\right) \rightarrow(\text { do } p, v X): v \in T_{V p l}-T_{V A}, p \in T_{P P n}\right\} \\
\cup & \{(\langle x\rangle, X) \rightarrow(x, X), \\
& \left.(X,\langle y\rangle) \rightarrow(X, y): x \in T-T_{V}, y \in T\right\} \\
\cup & \{(X) \rightarrow(\varepsilon)\}
\end{aligned}
$$

```
Example
<she\rangle\langleusually\rangle\langlegets\rangle\langleup\rangle\langleearly\rangle
#}\mp@subsup{G}{G}{}\mathrm{ does she <usually> get X <up><early>
=>G}\mp@subsup{G}{G}{}\mathrm{ does she usually get }X\mathrm{ <up〉\early>
=>}\mp@subsup{}{G}{}\mathrm{ does she usually get }X\mathrm{ up <early>
=>}\mp@subsup{G}{G}{}\mathrm{ does she usually get }X\mathrm{ up early
=>G}\mathrm{ does she usually get up early
```

- So far, we have assumed that the set of English words is finite.
- Reasonable assumption in practice - we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Generation of Grammatical Sentences

- So far, we have assumed that the set of English words is finite.
- Reasonable assumption in practice - we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Example

Your grandparents are all your grandfathers and all your grandmothers.

Generation of Grammatical Sentences

- So far, we have assumed that the set of English words is finite.
- Reasonable assumption in practice - we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Example

Your grandparents are all your grandfathers and all your grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Generation of Grammatical Sentences

- So far, we have assumed that the set of English words is finite.
- Reasonable assumption in practice - we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Example

Your grandparents are all your grandfathers and all your grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Your great-great-grandparents are all your great-great-grandfathers and all your great-great-grandmothers.
:
:

- So far, we have assumed that the set of English words is finite.
- Reasonable assumption in practice - we all commonly use a finite and fixed vocabulary in everyday English.
- From theoretical point of view, the set of all well-formed English words is infinite.

Example

Your grandparents are all your grandfathers and all your grandmothers.

Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Your great-great-grandparents are all your great-great-grandfathers and all your great-great-grandmothers.
:
$L=\left\{\right.$ your $\{\text { great- }\}^{i}$ grandparents are all your $\{\text { great }\}^{i}$ grandfathers and all your $\{\text { great }\}^{i}$ grandmothers : $\left.i \geq 0\right\}$

Introduce the $\mathrm{SCG} G=(N, T, P, S)$, where $T=$
\{all, and, are, grandfathers, grandmothers, grandparents, great-, your\}, $N=\{S, \#\}$, and P consists of these three productions:
$(S) \rightarrow$ (your \#grandparents are all your \#grandfathers and all your \#grandmothers),
$(\#, \#, \#) \rightarrow(\# g r e a t-, \#$ great-, \#great-),
$(\#, \#, \#) \rightarrow(\varepsilon, \varepsilon, \varepsilon)$

Example

S

Introduce the SCG $G=(N, T, P, S)$, where $T=$
\{all, and, are, grandfathers, grandmothers, grandparents, great-, your\}, $N=\{S, \#\}$, and P consists of these three productions:
$(S) \rightarrow$ (your \#grandparents are all your \#grandfathers and all your \#grandmothers),
(\#, \#, \#) \rightarrow (\#great-, \#great-, \#great-),
$(\#, \#, \#) \rightarrow(\varepsilon, \varepsilon, \varepsilon)$

Example

$S \Rightarrow_{G}$ your \#grandparents are all your \#grandfathers and all your \#grandmothers

Generation of Grammatical Sentences

Introduce the SCG $G=(N, T, P, S)$, where $T=$
\{all, and, are, grandfathers, grandmothers, grandparents, great-, your\}, $N=\{S, \#\}$, and P consists of these three productions:
$(S) \rightarrow$ (your \#grandparents are all your \#grandfathers and all your \#grandmothers),
$(\#, \#, \#) \rightarrow(\# g r e a t-$, \#great-, \#great-),
$(\#, \#, \#) \rightarrow(\varepsilon, \varepsilon, \varepsilon)$

Example

$S \Rightarrow_{G}$ your \#grandparents are all your \#grandfathers and all your \#grandmothers
\Rightarrow_{G} your \#great-grandparents are all your \#great-grandfathers and all your \#great-grandmothers

Generation of Grammatical Sentences

Introduce the SCG $G=(N, T, P, S)$, where $T=$
\{all, and, are, grandfathers, grandmothers, grandparents, great-, your\}, $N=\{S, \#\}$, and P consists of these three productions:
$(S) \rightarrow$ (your \#grandparents are all your \#grandfathers and all your \#grandmothers),
(\#, \#, \#) \rightarrow (\#great-, \#great-, \#great-),
$(\#, \#, \#) \rightarrow(\varepsilon, \varepsilon, \varepsilon)$

Example

$S \Rightarrow_{G}$ your \#grandparents are all your \#grandfathers and all your \#grandmothers
\Rightarrow_{G} your \#great-grandparents are all your \#great-grandfathers and all your \#great-grandmothers
$\Rightarrow G$ your great-grandparents are all your great-grandfathers and all your great-grandmothers

Sheila A. Greibach, John E. Hopcroft: Scattered Context Grammars, Journal of Computer and System Sciences, 3:233-247, 1969
Alexander Meduna, Jirí Techet:
Scattered Context Grammars and their Applications, WIT Press, 2010

Thank you for your attention!

End

