LR Parsing

Petr Horáček, Eva Zámečníková, Ivana Burgetová and Alexander Meduna

Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, 61200 Brno, CZ

- LR Parsing Algorithm
- Construction of LR Table
- Handling Errors in LR Parsing

LR Parsers

- Left-to-right scan of tokens
- Rightmost derivation
- Uses right parse - reverse sequence of rules
- Bottom-up parsing
- Based on LR tables constructed from LR grammars
- LR grammar - context-free grammar for which LR table can be built

Advantages

- LR parsers are fast
- Easy way of handling syntax errors
- Ultimately powerful
- The family of LR languages equals the family of languages accepted by deterministic pushdown automata (DPDA)
- LR Parsing Algorithm
- Construction of LR Table
- Handling Errors in LR Parsing

LR table

Consider LR grammar $G=(N, T, P, S)$. Then G-based LR table consists of:

- G-based action part ${ }_{\text {G action }}$
- G-based goto part Ggoto
- Rows are denoted by the symbols of ${ }_{G} \Theta=\left\{\theta_{1}, \ldots, \theta_{m}\right\}$
- States of extended pushdown automata (LR parser is EPDA)
- Columns of ${ }_{G}$ action are denoted by the symbols of T
- Terminal symbols
- Columns of ${ }_{G}$ goto are denoted by the symbols of N
- Nonterminal symbols

Configuration of the parser

$$
\begin{gathered}
\triangleright q_{0} Y_{1} q_{1} \ldots Y_{m-1} q_{m-1} Y_{m} q_{m} \diamond v \triangleleft \\
\text { where } q_{i} \in{ }_{G} \Theta, Y_{i} \in N \cup T, v \in \operatorname{suffixes}(w), w \in L(G)
\end{gathered}
$$

Table: gaction

	t_{1}	\ldots	t_{i}	\ldots	t_{n}
θ_{1}					
\vdots					
θ_{1}	action $\left[\theta_{j}, t_{i}\right]$				
\vdots		$\cup P \cup\{\odot\}$ or blank			
θ_{m}					

Table: ggoto

	A_{1}	\ldots	A_{i}	\ldots	A_{k}
θ_{i}					
\vdots					
θ_{j}	goto $\left[\theta_{j}\right.$,	$\left.A_{i}\right]$		N or blank	
\vdots					
θ_{m}					

Operations LR-REDUCE and LR-SHIFT

LR-REDUCE

If

- $p: A \rightarrow X_{1} X_{2} \ldots X_{n} \in P$
- for some $n \geq 0, X_{j} \in N \cup T, 1 \leq j \leq n$
- $o_{0} X_{1} o_{1} X_{2} O_{2} \ldots o_{n-1} X_{n} o_{n}$ is the pushdown top
- o_{n} topmost, $o_{k} \in{ }_{G} \Theta, 0 \leq k \leq n$
then LR-REDUCE (p) replaces $o_{0} X_{1} o_{1} X_{2} o_{2} \ldots o_{n-1} X_{n} o_{n}$ with $A h$ on the pushdown top
- $h \in{ }_{G} \Theta$ is defined as $h={ }_{G} g o t o\left[o_{0}, A\right]$, otherwise REJECT

LR-SHIFT

- Let ins ${ }_{1}=t, t \in N \cup T$ and action $\left[p d_{1}, t\right]=o, o \in{ }_{G} \Theta$
- LR-SHIFT extends pushdown pd by to and advances to the next input
- to now occurs at the top of the pushdown (o is the topmost) and ins s_{1} refers to the input symbol occurring right behind t in the input string

Algorithm 1.1: LR Parser

- Input: An LR grammar, $G=(N, T, P, S)$, an input string $w, w \in T^{*}$ and G-based LR table.
- Output: ACCEPT if $w \in L(G)$, or REJECT if $w \notin L(G)$.

Method

```
pd:=\triangleright\mp@subsup{0}{1}{}
repeat
    case action[pd
        in }\mp@subsup{G}{\Theta}{}\Theta: LR-SHIF
        in P: LR-REDUCE (p) with p = action[pd
        \square : ~ R E J E C T ~ \{ \square ~ d e n o t e s ~ b l a n k ~ s y m b o l ~ ( u n d e f i n e d ~ a c t i o n ) \}
        <) : ACCEPT
    end case
until ACCEPT or REJECT
```


| LR Table Example

- Consider grammar G with the following rules:
1: $S \rightarrow S \vee A$
2: $S \rightarrow A$
3: $A \rightarrow A \wedge B$
4: $A \rightarrow B$
5: $B \rightarrow(S)$
6: $B \rightarrow i$
where S is the start symbol, $T=\{\vee, \wedge,(), i$,$\} and N=\{A, B\}$
Table: G-based LR table example

	\wedge	\vee	i	$($	$)$	\triangleleft	S	A	B
θ_{1}			θ_{6}	θ_{5}			θ_{2}	θ_{3}	θ_{4}
θ_{2}		θ_{7}				\cdot			
θ_{3}	θ_{8}	2			2	2			
θ_{4}	4	4			4	4			
θ_{5}			θ_{6}	θ_{5}			θ_{9}	θ_{3}	θ_{4}
θ_{6}	6	6			6	6			
θ_{7}			θ_{6}	θ_{5}				θ_{10}	θ_{4}
θ_{8}			θ_{6}	θ_{5}					θ_{11}
θ_{9}		θ_{7}			θ_{12}				
θ_{10}	θ_{7}	1			1	1			
θ_{11}	3	3			3	3			
θ_{12}	5	5		5	5				
			action part		goto part				

- Consider an expression

$$
i \wedge i \in L(G)
$$

- We make a parse by Algorithm 1.1
- The sequence of configurations is given in following table

Configuration	Table Entry	Parsing Action
$\triangleright \theta_{1} \diamond i \wedge i \triangleleft$	action $\left[\theta_{1}, i\right]=\theta_{6}$	LR-SHIFT (i)
$\triangleright \theta_{1} i \theta_{6} \diamond \wedge i \triangleleft$	action $\left[\theta_{6}, \wedge\right]=6$, goto $\left[\theta_{1}, B\right]=\theta_{4}$	LR-REDUCE(6)
$\triangleright \theta_{1} B \theta_{4} \diamond \wedge i \triangleleft$	action $\left[\theta_{4}, \wedge\right]=4$, goto $\left[\theta_{1}, A\right]=\theta_{3}$	LR-REDUCE(4)
$\triangleright \theta_{1} A \theta_{3} \diamond \wedge i \triangleleft$	action $\left[\theta_{3}, \wedge\right]=\theta_{8}$	LR-SHIFT (\vee)
$\triangleright \theta_{1} A \theta_{3} \wedge \theta_{8} \diamond i \triangleleft$	action $\left[\theta_{8}, i\right]=\theta_{8}$	LR-SHIFT (i)
$\triangleright \theta_{1} A \theta_{3} \wedge \theta_{8} i \theta_{6} \diamond \triangleleft$	action $\left[\theta_{6}, \triangleleft\right]=6$, goto $\left[\theta_{8}, B\right]=\theta_{11}$	LR-REDUCE(6)
$\triangleright \theta_{1} A \theta_{3} \wedge \theta_{8} B \theta_{11} \diamond \triangleleft$	action $\left[\theta_{11}, \triangleleft\right]=3, \operatorname{goto}\left[\theta_{1}, A\right]=\theta_{3}$	LR-REDUCE(3)
$\triangleright \theta_{1} A \theta_{3} \diamond \triangleleft$	action $\left[\theta_{3}, \triangleleft\right]=2, \operatorname{goto}\left[\theta_{1}, S\right]=\theta_{2}$	LR-REDUCE(2)
$\triangleright \theta_{1} S \theta_{2} \diamond \triangleleft$	ACCEPT	ACCEPT

- LR Parsing Algorithm
- Construction of LR Table
- Handling Errors in LR Parsing

Item

$$
A \rightarrow x \diamond y
$$

for each rule $A \rightarrow z$ and any two strings x and y such that $z=x y$

- x - handle prefix on the $p d$ top
- Start item: $A \rightarrow \diamond z$
- End item: $A \rightarrow Z \diamond$

Example

- Rule: $S \rightarrow S \vee A$
- Items: $S \rightarrow \diamond S \vee A, S \rightarrow S \diamond \vee A, S \rightarrow S \vee \diamond A, S \rightarrow S \vee A \diamond$

Convention

- ${ }_{G} l$ - set of all items for LR grammar G
- ${ }_{G} l_{\text {start }}$ - set of start items, ${ }_{G} I_{\text {start }} \subseteq{ }_{G} l$
- $G_{\text {end }}$ - set of end items, ${ }_{G} l_{\text {end }} \subseteq{ }_{G} l$
- ${ }_{G} \Omega=2^{{ }^{\prime} l}$ - state space
(1) Change the start symbol S to a new start symbol Z in G, and add a dummy rule $Z \rightarrow S$
- Every derivation in G now starts by applying $Z \rightarrow S$
(2) Initially, set ${ }_{G} \Theta=\emptyset,{ }_{G} W=\{\{Z \rightarrow \diamond S\}\}$
- ${ }_{G} W$ - auxiliary item set
(3) Repeat extensions I and II until no new item set can be included in ${ }_{G} W$

Extension I

- Let $I \in{ }_{G} W$. Suppose that u appears on the $p d$ top, and let $A \rightarrow u B v \in P$
- Observe: if $A \rightarrow u \diamond B v \in I$ and $B \rightarrow \diamond z \in{ }_{G} I_{\text {start }}$, then by using $B \rightarrow z$, the parser can reduce z to B
- Does not affect u on the $p d$ top because $B \rightarrow \diamond z$ is a start item
- Thus, add $B \rightarrow \diamond z$ into $/$
- Repeat until / can no longer be extended in this way
- Add the resulting / to ${ }_{G} \Theta$
repeat
if $A \rightarrow u \diamond B v \in I$ and $B \rightarrow z \in{ }_{G} R$ then include $B \rightarrow \diamond z$ into I
end if
until no change
include / into ${ }_{G} \Theta$

Extension II

- Based upon a relation ${ }_{G} \circlearrowleft$ from ${ }_{G} \Omega \times(N \cup T)$ to ${ }_{G} \Omega$:

$$
G \circlearrowleft(I, X)=\{A \rightarrow u X \diamond v \mid A \rightarrow u \diamond X v \in I, A \in N, u, v \in N \cup T\}
$$

- Let $I \in{ }_{G} W$ and $A \rightarrow u X \diamond v \in I$
- Consider a part of rightmost derivation in G in reverse order, during which a portion of the input string is reduced to X simulating this part, the parser obtains X on the pushdown
- Thus, for every $I \in{ }_{G} W$ and $X \in N \cup T$, extend ${ }_{G} W$ by ${ }_{G} \circlearrowleft(I, X)$ unless $G \circlearrowleft(I, X)$ is empty

```
for all }X\inN\cupT\mathrm{ with }G\circlearrowleft(I,X)\not=\emptyset\mathrm{ do
    include G\circlearrowleft(I,X) into G}
end for
```


Algorithm 2.1: Construction of ${ }_{G} \Theta$

- Input: An LR grammar, $G=(N, T, P, S)$, extended by the dummy rule $Z \rightarrow S$, where Z is the new start symbol.
- Output: ${ }_{G} \Theta$.
- Note: An auxiliary set ${ }_{G} W \subseteq{ }_{G} \Omega$ is used.

```
Method
set \({ }_{G} W=\{\{Z \rightarrow \diamond S\}\}\)
set \({ }_{G} \Theta=\emptyset\)
repeat
    for all \(I \in{ }_{G} W\) do
        repeat \{start of extension I\}
            if \(A \rightarrow u \diamond B v \in I\) and \(B \rightarrow z \in P\) then
                include \(B \rightarrow \diamond z\) into \(/\)
            end if
        until no change
        include I into \({ }_{G} \Theta\)
        for all \(X \in N \cup T\) with \(G \circlearrowleft(I, X) \neq \emptyset\) do \(\{\) start of extension II\}
            include \(G \circlearrowleft(I, X)\) into \({ }_{G} W\)
        end for
    end for
until no change
```


Example

- Consider cond G. Add a dummy rule $Z \rightarrow S$ and define Z as the start symbol

$$
\begin{array}{llll}
0: Z \rightarrow S & 1: S \rightarrow S \vee A & 2: S \rightarrow A & 3: A \rightarrow A \wedge B \\
4: A \rightarrow B & 5: B \rightarrow(S) & 6: B \rightarrow i &
\end{array}
$$

- Apply Algorithm 2.1. First, set ${ }_{\text {cond }} G \Theta=\emptyset,{ }_{G} W=\{\{Z \rightarrow \diamond S\}\}$
- By extension I, extend $\{Z \rightarrow \diamond S\} \in{ }_{G} W$ to: $\{Z \rightarrow \diamond S, S \rightarrow \diamond S \vee A, S \rightarrow \diamond A, A \rightarrow \diamond A \wedge B, A \rightarrow \diamond B, B \rightarrow \diamond(S)$, $B \rightarrow \diamond i\}$
- For $I=\{Z \rightarrow \diamond S, S \rightarrow S \vee A\}$, we have $G \circlearrowleft(I, S)=\{Z \rightarrow S \diamond, S \rightarrow S \diamond \vee A\}$
- Thus, by extension II, include $\{Z \rightarrow S \diamond, S \rightarrow S \diamond \vee A\}$ into ${ }_{G} W$
- Perform second iteration of I and II, and so on

Construction of ${ }_{G} \Theta$ - Example

Rules

$\begin{array}{llll}0: Z \rightarrow S & 1: S \rightarrow S \vee A & 2: S \rightarrow A & 3: A \rightarrow A \wedge B \\ 4: A \rightarrow B & \text { 5: } B \rightarrow(S) & 6: B \rightarrow i & \end{array}$
cond $G \Theta$ Item Sets
$\begin{array}{ll}\theta_{1} & \{Z \rightarrow \diamond S, S \rightarrow \diamond S \vee A, S \rightarrow \diamond A, A \rightarrow \diamond A \wedge B, A \rightarrow \diamond B, \\ \theta_{2} & B \rightarrow \diamond(S), B \rightarrow \diamond i\} \\ \theta_{3} & \{Z \rightarrow S \diamond, S \rightarrow S \diamond \vee A\} \\ \theta_{4} & \{S \rightarrow A \diamond, A \rightarrow A \diamond \wedge B\} \\ \theta_{5} & \{B \rightarrow B \diamond\} \\ \theta_{6} & B \rightarrow \diamond(S), S \rightarrow \diamond S \vee A, S \rightarrow \diamond A, A \rightarrow \diamond A \wedge B, A \rightarrow \diamond B, \\ \theta_{7} & \{B \rightarrow i \diamond\} \\ \theta_{8} & \{S \rightarrow S \vee A, A \rightarrow \diamond A \wedge B, A \rightarrow \diamond B, B \rightarrow \diamond(S), B \rightarrow \diamond i\} \\ \theta_{9} & \{B \rightarrow A \wedge \diamond B, B \rightarrow \diamond(S), B \rightarrow \diamond i\} \\ \theta_{10} & \{S \rightarrow(S \diamond), S \rightarrow S \diamond \vee A\} \\ \theta_{11} & \{A \rightarrow S \vee A \diamond A \rightarrow A \diamond \wedge B\} \\ \theta_{12} & \{B \rightarrow(S) \diamond\}\end{array}$
I. goto part

- Consider item $A \rightarrow u \diamond B v$, where $I \in{ }_{G} \Theta, A, B \in N$ and $u, v \in N \cup T$
- After reducing portion of the input string to B, parser extends the prefix u by B, so $u B$ occurs on the $p d$ top

```
if GO(\mp@subsup{0}{i}{},B)=\mp@subsup{0}{j}{}-G\mp@subsup{|}{\mathrm{ start, where }B\inN}{}\mathrm{ then}
        goto[ }\mp@subsup{0}{i}{},B]=\mp@subsup{0}{j}{
end if
```

II. action part - shift

- By analogy with I
if $G \circlearrowleft\left(\theta_{i}, b\right)=\theta_{j}-G l_{\text {start, }}$, where $b \in T$ then action $\left[\theta_{i}, b\right]=\theta_{j}$
end if

III. action part - reduction

- Consider a rule $p: A \rightarrow u \in P$ and $A \rightarrow u \diamond \in{ }_{G} l_{\text {end }}$
- A complete handle u on $p d$ top
- Parser reduces u to A provided that after the reduction, A is followed by terminal a that may legally occur after A in a sentential form

```
if }A->u\diamond\in\mp@subsup{0}{i}{},a\in\mathrm{ follow(A), p:A 
        action[0i,a]=p
end if
```

- Note that:
- Every derivation starts with $0: Z \rightarrow S$
- LR parser simulates rightmost derivations in reverse
- Input symbol $\triangleleft-$ all the input has been read
- Thus, if $Z \rightarrow S \diamond \in \theta_{i}$, set action $\left[\theta_{i}, \triangleleft\right]=$ () (parsing completed successfully)

```
if Z S S\diamond\in 访 then
    action[ }\mp@subsup{0}{i}{},\triangleleft]=
end if
```

- Input: An LR grammar $G=(N, T, P, S)$, in which Z and $0: Z \rightarrow S$ have the same meaning as in Algoritm 2.1, and ${ }_{G} \Theta$ constructed by Algorithm 2.1.
- Output: A G-based LR table, consisting of the action and goto parts.
- Note: We suppose that $A, B \in N, b \in T$ and $u, v \in(N \cup T)^{*}$ in this algorithm.

Method

denote the rows of action and goto with the members of ${ }_{G} \Theta$ denote the columns of action and goto with the members of T and N, respectively
\{continued on next slide\}

Algorithm 2.2: LR Table (2/2)

Method (cont.)

repeat
for all $\theta_{i}, \theta_{j} \in{ }_{G} \Theta$ do
if $G \circlearrowleft\left(\theta_{i}, B\right)=\theta_{j}-{ }_{G} l_{\text {start }}$, where $B \in N$ then $\operatorname{goto}\left[\theta_{i}, B\right]=\theta_{j}$
end if
if ${ }_{G} \circlearrowleft\left(\theta_{i}, b\right)=\theta_{j}-{ }_{G} l_{\text {start, }}$, where $b \in T$ then action $\left[\theta_{i}, b\right]=\theta_{j}$
end if
if $A \rightarrow u \diamond \in \theta_{i} \cap{ }_{G} l_{\text {end }}, a \in$ follow $(A), i: A \rightarrow u \in P$ then action $\left[\theta_{i}, a\right]=i$
end if
end for
until no change
if $Z \rightarrow S_{\diamond} \in \theta_{i}$ then
$\operatorname{action}\left[\theta_{i}, \triangleleft\right]=$ © $\{$ success $\}$
\{all the other entries remain blank and, thereby, signalize
a syntax error\}
end if

Example

- Consider again cond G

$$
\begin{array}{llll}
0: Z \rightarrow S & 1: S \rightarrow S \vee A & 2: S \rightarrow A & 3: A \rightarrow A \wedge B \\
4: A \rightarrow B & 5: B \rightarrow(S) & 6: B \rightarrow i &
\end{array}
$$

- Consider ${ }_{\text {cond }} G \Theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{12}\right\}$ (obtained in previous example)
- According to the first if statement in Algorithm 2.2, goto $\left[\theta_{1}, S\right]=\theta_{2}$ because $S \rightarrow \diamond S \vee \boldsymbol{A} \in \theta_{1}$ and $S \rightarrow S \diamond \vee \boldsymbol{A} \in \theta_{2}$
- Second if statement: action $\left[\theta_{2}, \vee\right]=\theta_{7}$ because $S \rightarrow S \diamond \vee A \in \theta_{2}$ and $S \rightarrow S \vee \diamond A \in \theta_{7}$
- Third if statement: action $\left[\theta_{10}, \vee\right]=2$ because $2: S \rightarrow A \diamond \in \theta_{10}$ and $V \in$ follow (A)
- Repeat until there is no change
- Set action $\left[\theta_{2}, \triangleleft\right]=$ because θ_{2} contains $Z \rightarrow$ S \diamond

Construction of LR Table - Example

Table: G-based LR table example

- Construction of LR Table
- Handling Errors in LR Parsing

Error detection

No valid continuation for the portion of the input thus far scanned

- More exact than in precedence parsing
- Detection of all possible errors by using action part
- We can reduce the size of goto part by removing unneeded blank entries

LR error recovery methods

- Panic-mode LR Error Recovery
- Ad-hoc Recovery

Method

- Try to isolate the shortest possible erroneous substring,
- skip this substring, and
- resume parsing process
- Basic idea of this method: we have selected set of nonterminals ${ }_{G} O$ representing major pieces of program such as expressions or statements
- Find the shortest string $u v$, where:
- $u \in(N \cup T)^{*}$ is obtained from the current pushdown top $x \in\left((N \cup T)_{G} \Theta\right)^{*}$ by deletion of all pushdown symbols
- v is the shortest input prefix followed by input symbol a from follow (A), where $A \in O$ and $A_{r m} \Rightarrow^{*} u v$
- Let x be preceded by $o \in{ }_{G} \Theta$ and goto $[0, A]=\theta$
- To recover, this method replaces x with $A \theta$ on the pushdown and skips the input prefix v
- After this it resumes the parsing process from action $[\theta, a]$
- Resembles the way the precedence parser handles the table-detected errors
- This method considers each blank action entry, which signalize error
- We decide the most probable mistake that led to particular error and according to this we design recovery procedure
- Typical recovery routines: modify the pushdown or input by changing, inserting or deleting some symbols
- Modification has to avoid infinite loops
- Each blank entry is filled with the reference to the corresponding recovery routine

Ad-hoc Recovery Example

- Consider again the grammar G :

$$
\begin{array}{lll}
1: S \rightarrow S \vee A & 2: S \rightarrow A & 3: A \rightarrow A \wedge B \\
4: A \rightarrow B & 5: B \rightarrow(S) & 6: B \rightarrow i
\end{array}
$$

where S is the start symbol, $T=\{\vee, \wedge,(), i$,$\} and N=\{A, B\}$

- As an expression we take
- The parsing process for this input is interrupted after six steps \Rightarrow RECOVERY
- We update the action part of table by filling the blank entries by recovery routines, the goto part of LR table stays the same
- The construction of recovery procedures needs sophisticated approach

Table: G-based LR table example

θ_{1}	(1) (1) $\theta_{6} \theta_{5}$ (2) (1)
θ_{2}	(1) θ_{7} (3) (3) (2) ©
θ_{3}	$\theta_{8} 22$ (3) (3) 22
θ_{4}	44 (3) (3) 4
θ_{5}	(1) (1) $\theta_{6} \theta_{5}$ (2) (1)
θ_{6}	66 (3) 3 66
θ_{7}	(1) (1) $\theta_{6} \theta_{5}$ (2) (1)
θ_{8}	(1) (1) $\theta_{6} \theta_{5}$ (2) (1)
$\theta 9$	(1) θ_{7} (3) (3) θ_{12} (1)
θ_{10}	$\theta_{7} 1$ (3) (3)
θ_{11}	3 3 (3) (3) 3
θ_{12}	5 5 (3) (3)

- The description of recovery procedures (1) through (4)
- Consider string $i \vee$ (as an input
(1) diagnostic: missing i or (, recovery: insert $i \theta_{6}$ onto the pushdown
(2) diagnostic: unbalanced), recovery: delete the input)
(3) diagnostic: missing operator, recovery: insert $\vee \theta_{5}$ onto the pushdown
(4) diagnostic: missing), recovery: insert) θ_{6} onto the pushdown

Then we can make LR parse. After the input is finaly accepted there are saved error reports with the information about used recovery processes.

