Regulated Pushdown

 Automata
Alexander Meduna

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic, Europe

Fundamental References

- Meduna Alexander, Kolář Dušan:

Regulated Pushdown Automata, Acta Cybernetica, Vol. 2000, No. 4, p. 653-664

- Meduna Alexander, Kolář Dušan:

One-Turn Regulated Pushdown Automata and Their Reduction, Fundamenta Informatica, Vol. 2002, No. 16, p. 399-405

Inspiration: Regulated Grammars

- Grammar G:

> 1. $S \rightarrow A C$
> 2. $A \rightarrow a A b$
> 3. $A \rightarrow a b$
> 4. $C \rightarrow C c$
> 5. $C \rightarrow c$

- $\Xi=\{1\}\{24\}^{*}\{35\}$

Regulated Grammars 1/2

- Grammar G: - Without $\boldsymbol{E}, \boldsymbol{G}$

1. $S \rightarrow A C$
2. $A \rightarrow a A b$
3. $A \rightarrow a b$
4. $C \rightarrow C c$
5. $C \rightarrow c$
$\Xi=\{1\}\{24\}^{*}\{35\}$ generates aabbccc:

$$
\begin{aligned}
S & \Rightarrow A C \\
& \Rightarrow a A b C \\
& \Rightarrow a A b C c \\
& \Rightarrow a a b b C c \\
& \Rightarrow a a b b C c c \\
& \Rightarrow a a b b c c c
\end{aligned}
$$

$$
L(G)=\left\{a^{n} b^{n} c^{m}: n, m \geq 1\right\}
$$

5/22

Regulated Grammars 2/2

- with Ξ, G does not generate aabbccc, because

$$
124345 \notin \Xi=\{1\}\{24\} *\{35\}
$$

- with Ξ, G generates aabbcc:

$$
\begin{array}{cl}
\boldsymbol{S} \Rightarrow \boldsymbol{A} \boldsymbol{C} & {[1]} \\
\Rightarrow \boldsymbol{a} \boldsymbol{A b} \boldsymbol{C} & {[2]} \\
\Rightarrow \boldsymbol{a} \boldsymbol{A b} \boldsymbol{b} \boldsymbol{c} & \\
\Rightarrow \boldsymbol{a} \boldsymbol{b} \boldsymbol{b} \boldsymbol{C} \boldsymbol{c} \\
\Rightarrow \boldsymbol{a} \boldsymbol{a} \boldsymbol{b} \boldsymbol{c} \boldsymbol{c} & \\
\text { and } \mathbf{1 2 4 3 5} \in \Xi
\end{array}
$$

$$
L(G, \Xi)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

PDA: Notation

- A PDA is based on a finite set of rules of the form:

New Concept: Regulated PDAs

- PDA M :

$$
\begin{aligned}
& \text { 1. } S s a \rightarrow S a s \\
& \text { 2. } a s a \rightarrow a a s \\
& \text { 3. } a s b \rightarrow q \\
& \text { 4. } a q b \rightarrow q \\
& \text { 5. } S q c \rightarrow S q \\
& \text { 6. } S q c \rightarrow f \\
& \cdot \Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\}
\end{aligned}
$$

Regulated PDAs 1/2

- PDA M :

1. Ssa \rightarrow Sas
2. asa \rightarrow aas
3. asb $\rightarrow q$
4. $a q b \rightarrow q$
5. $S q c \rightarrow S q$
6. $S q c \rightarrow f$
$\Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\}$

- Without Ξ, M accepts aabbccc:

Ssaabbccc
\Rightarrow Sasabbccc [1]
\Rightarrow Saasbbccc [2]
\Rightarrow Saqbccc
\Rightarrow Sqccc
\Rightarrow Sqcc
$\Rightarrow S q c$
$\Rightarrow f$

$$
L(M)=\left\{a^{n} b^{n} c^{m}: n, m \geq 1\right\}
$$

9/22

Regulated PDAs 2/2

- with Ξ, M does not accept aabbccc because $1234556 \notin \Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\}$
- with Ξ, M accepts aabbct:

$$
\begin{aligned}
\text { Ssaabbcc } & \Rightarrow \text { Sasabbcc } \\
& \Rightarrow \text { Saasbbcc } \\
& \Rightarrow \text { Saqbec } \\
& \Rightarrow \boldsymbol{S q c c} \\
& \Rightarrow \boldsymbol{S q c} \\
& \Rightarrow \boldsymbol{f}
\end{aligned}
$$

and $123456 \in \Xi$

$$
L(M, \Xi)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

$10 / 22$

Gist: Regulated PDAs

- Consider a pushdown automaton, M, and control language, Ξ.
- M accepts a string, x, if and only if Ξ contains a control string according to which M makes a sequence of moves so it reaches a final configuration after reading x.

Definition: Regulated PDA 1/4

A pushdown automaton is a 7-tuple $M=(Q, \Sigma, \Omega, R, s, S, F)$, where

- Q is a finite set of states,
- Σ is an input alphabet,
- Ω is a pushdown alphabet,
$-R$ is a finite set of rules of the form: Apa $\rightarrow w q$, where
$A \in \Omega, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}, w \in \Omega^{*}$
$\cdot s \in Q$ is the start state
- $S \in \Omega$ is the start symbol
- $F \subseteq Q$ is a set of final states

Definition: Regulated PDA 2/4

- Let Ψ be an alphabet of rule labels. Let every rule $A p a \rightarrow w q$ be labeled with a unique $\rho \in \Psi$ as

$$
\rho . A p a \rightarrow w q .
$$

- A configuration of M, χ, is any string from $\Omega^{*} Q \Sigma^{*}$
- For every $x \in \Omega^{*}, y \in \Sigma^{*}$, and $\rho . A p a \rightarrow w q \in R$, M makes a move from configuration x Apay to configuration $x w q y$ according to ρ, written as

$$
x A p a y \Rightarrow x w q y[\rho]
$$

Definition: Regulated PDA 3/4

- Let χ be any configuration of $M . M$ makes zero moves from χ to χ according to ε, written as

$$
\chi \Rightarrow^{0} \chi[\varepsilon]
$$

- Let there exist a sequence of configurations $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ for some $n \geq 1$ such that $\chi_{i-1} \Rightarrow \chi_{i}\left[\rho_{i}\right]$, where $\rho_{i} \in \Psi$, for $i=1, \ldots, n$, then M makes n moves from χ_{0} to χ_{n} according to $\left[\rho_{1} \ldots \rho_{n}\right]$, written as

$$
\chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]
$$

Definition: Regulated PDA 3/4

- If for some $n \geq 0, \chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]$, we write

$$
\chi_{0} \Rightarrow^{*} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]
$$

- Let Ξ be a control language over Ψ, that is, $\Xi \subseteq \Psi^{*}$. With Ξ, M accepts its language, $L(M, \Xi)$, as

$$
L(M, \Xi)=\left\{w: w \in \Sigma^{*}, S s w \Rightarrow^{*} f[\sigma], \sigma \in \Xi\right\}
$$

Language Families

- LIN - the family of linear languages
-CF - the family of context-free languages
- RE - the family of recursively enumerable languages
- RPD (REG) - the family of languages accepted by PDAs regulated by regular languages
- RPD(LIN) - the family of languages accepted by PDAs regulated by linear languages

Theorem 1 and its Proof $1 / 2$

$R P D(R E G)=C F$

Proof:

I. $C F \subseteq R P D(R E G)$ is clear.
II. $\operatorname{RPD}(R E G) \subseteq C F$:

- Let $L=L(M, \Xi)$, PDA

Regular language

- Let $\Xi=L(G), G$ - regular grammar based on rules: $\boldsymbol{A} \rightarrow \boldsymbol{a B}, \boldsymbol{A} \rightarrow \boldsymbol{a}$

Theorem 1 and its Proof $2 / 2$

Transform M regulated by Ξ to a PDA N as follows:

1) for every $a . C q b \rightarrow x p$ from M and
every $\boldsymbol{A} \rightarrow a \boldsymbol{B}$ from G, add $C<q A>b \rightarrow x<p B>$ to N
2) for every $a \cdot C q b \rightarrow x p$ from M and every $A \rightarrow a$ from G, New symbol add $C<q A>b \rightarrow x<p f>$ to N
3) The set of final states in N : $\{\langle p\rangle\rangle: p$ is a final state in $M\}$

Theorem 2

$R P D(L I N)=R E$

Proof:

- See [Meduna Alexander, Kolář Dušan:

Regulated Pushdown Automata, Acta Cybernetica,Vol. 2000, No. 4, p. 653-664]

19/22

Simplification of RPDAs $1 / 2$

I. consider two consecutive moves made by a pushdown automaton, M.
If during the first move M does not shorten its pushdown and during the second move it does, then M makes a turn during the second move.

- A pushdown automaton is one-turn if it makes no more than one turn during any computation starting from an initial configuration.

One-Turn PDA: Illustration

$21 / 22$

Simplification of RPDAs 2/2

II. During a move, an atomic regulated PDA changes a state and, in addition, performs exactly one of the following actions:

1. pushes a symbol onto the pushdown
2. pops a symbol from the pushdown
3. reads an input symbol

Theorem 3

- Every $L \in R E$ is accepted by an atomic one-turn PDA regulated by Ξ, where $\Xi \in L I N$.

Proof:

- See [Meduna Alexander, Kolář Dušan:

One-Turn Regulated Pushdown Automata and Their Reduction, Fundamenta Informatica,Vol. 2002, No. 16, p. 399-405]

End

