Regulated Pushdown Automata Alexander Meduna

Faculty of Information Technology Brno University of Technology Brno, Czech Republic, Europe

Fundamental References

- Meduna Alexander, Kolář Dušan: Regulated Pushdown Automata, *Acta Cybernetica*, Vol. 2000, No. 4, p. 653-664
- Meduna Alexander, Kolář Dušan:
 One-Turn Regulated Pushdown Automata and Their Reduction, *Fundamenta Informatica*, Vol. 2002, No. 16, p. 399-405

3/22

Inspiration: Regulated Grammars

• Grammar G:

1. $S \rightarrow AC$ 2. $A \rightarrow aAb$ 3. $A \rightarrow ab$ 4. $C \rightarrow Cc$ 5. $C \rightarrow c$

• $\Xi = \{1\}\{24\}^*\{35\}$

4/22			
Regulated Grammars 1/2			
• Grammar G:	• Without Ξ , <i>G</i>		
1. $S \rightarrow AC$	generates aabbccc:		
$2. A \rightarrow aAb$	$S \Rightarrow AC$	[1]	
3. $A \rightarrow ab$	$\Rightarrow aAbC$	[2]	
4. $C \rightarrow Cc$	$\Rightarrow aAbCc$	[4]	
5. $C \rightarrow c$	$\Rightarrow aabbCc$	[3]	
$\Xi = \{1\}\{24\}^*\{35\}$	$\Rightarrow aabbCcc$	[4]	
	$\Rightarrow aabbccc$	[5]	

1 100

 $L(G) = \{a^n b^n c^m : n, m \ge 1\}$

5/22

Regulated Grammars 2/2

- with Ξ , G does not generate *aabbccc*, because $124345 \notin \Xi = \{1\}\{24\}^*\{35\}$
- with Ξ , G generates *aabbcc*:
 - $S \Rightarrow AC$ [1]
 - $\Rightarrow aAbC$ [2]
 - $\Rightarrow aAbCc$ [4]
 - $\Rightarrow aabbCc$ [3]
 - \Rightarrow aabbcc [5]

and $12435 \in \Xi$

 $L(G, \Xi) = \{a^n b^n c^n \colon n \ge 1\}$

PDA: Notation

• A PDA is based on a finite set of rules of the form:

7/22

New Concept: Regulated PDAs

- **PDA** *M*:
- 1. $Ssa \rightarrow Sas$ 2. $asa \rightarrow aas$ 3. $asb \rightarrow q$ 4. $aqb \rightarrow q$ 5. $Sqc \rightarrow Sq$ 6. $Sqc \rightarrow f$
- $\Xi = \{12^m 34^n 5^n 6: m, n \ge 0\}$

8/22			
Regulated PDAs 1/2			
• PDA <i>M</i> :	• Without Ξ, M		
1. $Ssa \rightarrow Sas$	accepts aabbccc:		
2. $asa \rightarrow aas$	Ssaabbccc		
3. $asb \rightarrow q$ 4. $aqb \rightarrow q$	\Rightarrow Sasabbccc [1]		
	\Rightarrow Saasbbccc [2]		
5. $Sqc \rightarrow Sq$	$\Rightarrow Saqbccc$ [3]		
· ·	$\Rightarrow Sqccc \qquad [4]$		
6. $Sqc \rightarrow f$ Ξ = {12 ^m 34 ⁿ 5 ⁿ 6: m, n ≥ 0}	$\Rightarrow Sqcc$ [5]		
	$\Rightarrow Sqc$ [5]		
	$\Rightarrow f$ [6]		
$L(M) = \{a^n b^n c^m \colon n, m \ge 1\}$			

Regulated PDAs 2/2

• with Ξ , M does not accept *aabbccc* because $1234556 \notin \Xi = \{12^m 34^n 5^n 6: m, n \ge 0\}$

• with Ξ , M accepts **aabbcc**: $S_{saabbcc} \Rightarrow Sa_{sabbcc}$ $\begin{bmatrix} 1 \end{bmatrix}$ \Rightarrow Saasbbcc [2] \Rightarrow Saqbcc [3] $\Rightarrow Sqcc$ [4] $\Rightarrow Sqc$ [5] $\Rightarrow f$ [6] and $123456 \in \Xi$ $L(M, \Xi) = \{a^n b^n c^n : n \ge 1\}$

Gist: Regulated PDAs

- Consider a pushdown automaton, M, and control language, Ξ .
- M accepts a string, x, if and only if Ξ contains a control string according to which M makes a sequence of moves so it reaches a final configuration after reading x.

11/22

Definition: Regulated PDA 1/4

- A pushdown automaton is a 7-tuple $M = (Q, \Sigma, \Omega, R, s, S, F)$, where
 - Q is a finite set of states,
 - Σ is an *input alphabet*,
 - Ω is a pushdown alphabet,
 - *R* is a *finite set of rules* of the form: $Apa \rightarrow wq$, where

 $A \in \Omega, p,q \in Q, a \in \Sigma \cup \{\varepsilon\}, w \in \Omega^*$

- $s \in Q$ is the start state
- $S \in \Omega$ is the *start symbol*
- $F \subseteq Q$ is a set of *final states*

12/22

Definition: Regulated PDA 2/4

• Let Ψ be an alphabet of *rule labels*. Let every rule $Apa \rightarrow wq$ be labeled with a unique $\rho \in \Psi$ as $\rho \cdot Apa \rightarrow wq$.

• A configuration of *M*, χ , is any string from $\Omega^* Q \Sigma^*$

• For every $x \in \Omega^*$, $y \in \Sigma^*$, and ρ . *Apa* \rightarrow *wq* $\in R$, *M* makes a move from configuration *xApay* to configuration *xwqy* according to ρ , written as *xApay* \Rightarrow *xwqy* [ρ]

13/22

Definition: Regulated PDA 3/4

- Let there exist a sequence of configurations $\chi_0, \chi_1, ..., \chi_n$ for some $n \ge 1$ such that $\chi_{i-1} \Rightarrow \chi_i [\rho_i]$, where $\rho_i \in \Psi$, for i = 1,...,n, then *M* makes *n* moves from χ_0 to χ_n according to $[\rho_1 ... \rho_n]$, written as $\chi_0 \Rightarrow^n \chi_n [\rho_1 ... \rho_n]$

Definition: Regulated PDA 3/4

• If for some
$$n \ge 0$$
, $\chi_0 \Rightarrow^n \chi_n [\rho_1 \dots \rho_n]$, we write $\chi_0 \Rightarrow^* \chi_n [\rho_1 \dots \rho_n]$

• Let Ξ be a *control language* over Ψ , that is, $\Xi \subseteq \Psi^*$. With Ξ , M accepts its language, $L(M, \Xi)$, as $L(M, \Xi) = \{ w : w \in \Sigma^*, Ssw \Rightarrow^* f[\sigma], \sigma \in \Xi \}$

Language Families

- *LIN* the family of linear languages
- *CF* the family of context-free languages
- **RE** the family of recursively enumerable languages
- *RPD***(***REG*) the family of languages accepted by PDAs regulated by regular languages
- **RPD(LIN)** the family of languages accepted by PDAs regulated by linear languages

Theorem 1 and its Proof 1/2

$$RPD(REG) = CF$$

Proof: I. $CF \subseteq RPD(REG)$ is clear.

II. $RPD(REG) \subseteq CF$:

• Let $\Xi = L(G)$, *G* - regular grammar based on rules: $A \rightarrow aB$, $A \rightarrow a$

Theorem 1 and its Proof 2/2

Transform *M* regulated by Ξ to a *PDA N* as follows:

1) for every $a.Cqb \rightarrow xp$ from M and every $A \rightarrow aB$ from G, add $C < qA > b \rightarrow x < pB >$ to N

2) for every $a.Cqb \rightarrow xp$ from M and every $A \rightarrow a$ from G, add $C < qA > b \rightarrow x < pf > to N$ New symbol

3) The set of final states in *N*: {<*pf*>: *p* is a final state in *M*}

Theorem 2

RPD(LIN) = RE

Proof:

• See [Meduna Alexander, Kolář Dušan: Regulated Pushdown Automata, *Acta Cybernetica*, Vol. 2000, No. 4, p. 653-664]

Simplification of RPDAs 1/2

I. consider two consecutive moves made by a pushdown automaton, *M*.

If during the first move *M* does not shorten its pushdown and during the second move it does, then *M* makes *a turn* during the second move.

• A pushdown automaton is *one-turn* if it makes no more than one turn during any computation starting from an initial configuration.

20/22

One-Turn PDA: Illustration

21/22

Simplification of RPDAs 2/2

II. During a move, an *atomic* regulated PDA changes a state and, in addition, performs exactly one of the following actions:

pushes a symbol onto the pushdown
 pops a symbol from the pushdown
 reads an input symbol

22/22

Theorem 3

• Every $L \in RE$ is accepted by an atomic one-turn PDA regulated by Ξ , where $\Xi \in LIN$.

Proof:

• See [Meduna Alexander, Kolář Dušan: One-Turn Regulated Pushdown Automata and Their Reduction, *Fundamenta Informatica*,Vol. 2002, No. 16, p. 399-405] End