
Czech LVCSR and language modelling

Ondřej Glembek

December 21, 2005

Abstract

This article presents an approach to an automatic indexing of lec-
tures being given by a native Czech speaker. The recorded digital
audio file is the input for the trained system, whose “knowledge” of
the speaker—in the form of the previous trainer—and the content of
the lectures—in the form of written lectures—is supposed to ensure
proper vocabulary word recognition and the audio-file indexing.

1 Introduction

With expansion and increasing accessibility of technological improve-
ments and inventions, every field of science is affected and gives high
potential to further evolution. Voice processing (with its high com-
putation system requirements) is directly dependent on hardware in-
novations, while other fields of science would profit of having a voice
processing tool by hand. There is a list of applications which de-
sire high-quality transparent voice processing features, such as speech
recognition, speaker identification, automatic indexing, etc. Their re-
quirements are posed on the type of use as well as on specific parameter
specifications. These dependencies force researchers to optimize and
find best solutions to their desired needs.

The point of interest in this paper is automatic indexing using large
vocabulary continuous speech recognition (LVCSR). Much has been
done in this field, however a special and concrete demand arose. The
task was to adapt an existing configuration to a concrete language,
concrete vocabulary, and (as much as possible) to a concrete person.

2 General principles

Let us first take a look at the basic principles of a voice recognition
system. The basic scheme is presented in Fig. 1. The system con-
sists of two parts—the trainer and the recognizer. In order to build a

1

Training Tools

Speech Data

Recogniser

Transcription

Unknown Speech Transcription

Figure 1: Recognition system schema

recognition system, we need to know, what kind of voice data we are
going to deal with. This knowledge is determined by two aspects—
who is speaking, and what the person is talking about. All of this is
gathered in the training phase where an appropriate model is created
using training utterances and their associated transcriptions. After
the system is trained, it is ready to “recognize speech” i.e., to assign a
transcription to an unknown speech.

The core of the system is a set of parametric models called the
Hidden Markov Models (HMM) and we refer to the system as being
HMM-based. It considers the speech signal as a message encoded in
a sequence of symbols—parameters (sometimes referred to as param-
eter vectors, features, or coefficients). This topic will be described in
Section 4.

Each HMM is a model of an acoustic unit, in our case a phoneme

or its context dependent variant.1 The principle is that one HMM
generates a sequence of parameters which are the building blocks of
the phoneme. An HMM model is actually a finite automaton of a
start state, the emitting states which generate the parameters, and an
end state. The start and end states are non-emitting i.e, they don’t
generate any parameters. The transitions between the states, as well
as the parameter generation are given by some probabilistic functions.
See Fig. 2 for an HMM schema.

The process of recognizing a sequence of units is then defined as
finding a sequence of HMMs (a path in an HMM space) that are most
likely to generate the input sequence of parameters O. Mathematically

I? = arg max
I

{P(SI |O)} (1)

1Many publications, including [4], start their speech recognition chapters by describing
isolated word recognition. There, words are the elementary acoustic units. However, in
the LVCSR systems, it is not possible to create an HMM for each single word.

2

where S is a set of all available acoustic units and I is a sequence of
indexes to S.

Unfortunately, there is no way to evaluate P(SI |O) directly, but
we can use Bayes formula:

P(S|O) =
P(O|S)P(S)

P(O)
(2)

where

• P(S) is the a-priori probability of the acoustic unit (which can
be determined by the language model).

• P(O) is the a-priori probability of the observation sequence. As it
is constant for any sequence, it does not affect the maximization
problem.

• P(S|O) is the probability of the sequence O given the unit S.
This probability is evaluated using the HMM.

2.1 HMMs in deep

Let’s take a deeper look at Figure 2. As mentioned before, HMM is a
finite automaton “generating” sequences of observation.

a12 a23 a34 a 45 a56

a22 a33 a44 a55

1 2 3 4 5 6

a24 a35

o1 o2 o3 o4 o5 o6

b2 o1() b5 o 6()b2 o 2() b3 o 3() b4 o 4() b4 o 5()

Markov
Model

M

Observation
Sequence

Figure 2: The Markov Generation Model

The aij symbols represent a probability of transition from state i

to state j. This way, the HMM body can be described by a transi-

tion matrix where rows and columns express the starting and ending
states, respectively. It has to be provided that

∑

j

aij = 1. (3)

3

The bj(ot) are called emission probability density functions (PDFs)
and they give the likelihood that state j generates parameter vector
ot. This function can be either discrete (i.e., given by a table of values)
or continuous (i.e., described by a mathematical function). The latter
will be used in this project and is defined by a product of Gaussian
distributions:

bj(ot) =

P
∏

i=1

N (ot; µji, σji) =

P
∏

i=1

1

σji

√

(2π)
e
−

[ot−µji]2

2σ2
ji (4)

where P is the dimension of the parameter vector ot, µji is the mean,
and σji is the standard deviation, both for state j and parameter vec-
tor element i. Such equation assumes, that the parameters are not
correlated. Otherwise, a full covariance matrix equation is used:

bj(ot) =
1

√

(2π)P |Σj |
e−

1
2 (ot−µj)T

Σ
−1
j

(ot−µj), (5)

where µj is the mean vector, Σj is the covariance matrix and |Σj | is
its determinant.

This way, the model is defined by a transition matrix and the ma-
trices of means and standard deviations. In most recognition systems,
however, 1-Gaussian models do not suffice and therefore more Gaussian
distribution mixtures (sum of more weighted P -dimensional distribu-
tions) are used instead. Going even further, the parameter vectors
might be divided into streams, each having its own Gaussian mixture.

The probability that the model M generates a sequence of param-
eters O is given by a sequence X of states it passes. When we defined
the recognition as finding the best path, we need to determine the
unique probability that the model M generates a sequence O. There
are two possible ways to do this:

1. Baum-Welch probability is defined as sum of probabilities of all
possible paths through the model:

P(O|M) =
∑

{X}

P(O, X |M) (6)

2. Viterbi probability is defined as the maximum probability of all
possible paths through the model:

P?(O|M) = max
{X}

P(O, X |M) (7)

Figure 3 shows an example of the possible states transitions with
the best path depicted by the bold line.

The elegance of HMMs also lies in their non-emitting states. They
do not generate any parameters but they can be used to connect to

4

1

2

3

4

5

6

State

Speech
Frame
(Time)1 2 3 4 5 6

b3 o 4()

a35

Figure 3: Possible state sequences

another HMM. This way, more HMMs can be glued together and form
a complex HMM. The dictionary (see Section 5 for details) defines
possible connections of phoneme-level HMMs so complex word-level
models can be created and words can be recognized. When, in ad-
dition, a language model is used (see Sec. 6), the system is extended
by information about each word’s (i.e., complex model) probability of
occurrence so the probability maximization problem (i.e., the recogni-
tion) does not depend only on acoustic models, but is as well affected
by some grammar. The language model probability influence can be
controlled by a weight coefficient called the grammar scale factor.

Figure 4 illustrates an example of a complex HMM.

2.2 Context-dependent phonemes

One of the most serious problem of the phoneme-based approaches is
their context dependency. For instance, note the difference of n in the
word “not” and n in the “bank”. Let us now define context-dependent

phonemes as phonemes that depend on their neighbors. In this work,
we will use direct left and direct right context phonemes only i.e.,
the triphones. The triphone notation syntax is

$triphone = $l - $p + $r

where $l, resp. $r is the left, resp. the right context. Symbol $p
represents the phoneme. See the example below for the words’ “not”
and “bank” notation:

5

eighteent ee n

...

...

...

e eighty

eight

ey

Figure 4: An example of a complex HMM

not -> n+o n-o+t o-t

bank -> b+a b-a+n a-n+k n-k

The context dependent phonemes carry a number of difficulties.
For example:

• insufficient number of occurrences for the trainer in the training
data is available

• assuming P phonemes, there is possibly P 3 triphones (in our
system, this number is 10100), thus, it is impossible to train one
model for each single triphone.

3 Training the models

As described in previous sections, the models are defined by the tran-
sition matrix, the matrix of means, and the matrix of standard devia-
tions, which have to be computed in order to create the models. The
algorithm of creation is an iterative process. First a rough estimation
is done and then an algorithm of Baum-Welch re-estimation is applied.
It re-computes the P(O|M) using a forward-backward algorithm un-
til a desired accuracy is achieved. See [4] for a complete description
of the algorithm and a practical example can be found in [9]. Al-
though this training technique can produce high performance system,
improvements can be made using speaker adaptation, that is, further
re-estimation of the models using one speaker parameters only. This
issue is discussed in Section 8.

6

4 Speech parameterization

In order to be able to describe a time interval on the speech waveform,
we need to retrieve its parameters. The process of parameterization
splits into several stages.

Frame Period

Window Duration

block
n

block
n+1

.... etc

Parameter
Vector
Size

Speech Vectors or Frames

WINDOWSIZE

TARGETRATE

SOURCERATE

Figure 5: Parameter retrieval

4.1 Segmentation

When analyzing a discrete waveform in time, the characteristics of the
currently processed scalar sample cannot be retrieved. Therefore seg-
mentation of the waveform into constant-length intervals—windows—
is performed. The longer the interval is, the better it describes its
characteristics, however the resolution decreases and its attribute of
being “almost” stationary disappears. Therefore a compromise time
length has to be chosen. Furthermore, the intervals overlap in order
not to loose the boundary properties.

4.2 Pre-processing

Independent of what parameter kind is used, there are some pre-
processing operations that can be applied before performing the signal
analysis:

• DC mean can be removed from the source waveform. The DC
offset is usually added by the A–D convertor.

7

• pre-emphasizing the signal by applying the first order difference
equation in each window (i.e., boosting higher frequencies in the
signal spectrum).

• tapering of samples in each window by application of the Ham-

ming window.

In practice, all three of the above are usually applied.

4.3 Voice activity detection

Voice activity detection (VAD) is a process in which the signal is
scanned and segmented to regions of “silence” and “voice”. After
such segmentation, only the active regions are used for recognition
or other power-consuming process while the silent regions are ignored
and therefore a lot of resources can be saved.

The correctness of the VAD depends on the decision algorithm
which the VAD system uses for determining silence and voice. These
algorithms use various approaches, starting with simple amplitude
thresholding functions, going through signal spectrum analysis, and
ending with highly sophisticated systems (e.g, neural networks, HMMs).

4.4 Parameter retrieval

Uptill now, we haven’t exactly specified what the parameters are and
how they are retrieved. The choice lies on the user and his specific
needs. Among the possible kinds, there are:

• linear prediction coefficients

• filterbank coefficients

• cepstral features

• perceptual linear prediction coefficients

In addition, the parameter stream can be extended by delta, accelera-
tion, and third differential coefficients.

Most often, cepstral features in the form of Mel-Frequency Cep-
stral Coefficients (MFCCs) are required. In this project, MFCCs are
the “core parameters” used for the speech recognition. Filterbank co-
efficients are used in the supporting layer algorithms, though.

No matter what kind of parameters is used, there lies a detailed
underlying theory behind each. Let us look at the ones used in this
project.

4.4.1 Filterbank analysis

The human ear resolves frequencies non-linearly across the audio spec-
trum and empirical evidence suggests to design and use a similar non-

8

linear front-end in order to improve recognition performance. Filter-
bank provides a straightforward way to obtaining the non-linear fre-
quency resolution. However, filterbank amplitudes are highly corre-
lated and thus, the use of cepstral features is practically mandatory
and inevitable if the data is to be used in a HMM based recognizer
with diagonal covariances.

Fig. 6 illustrates the general form of a filterbank, which gives ap-
proximately equal resolution on a mel-scale2. The filters used are
tri-angular and they are equally spaced along the mel-scale. To im-
plement such filterbank, the window is transformed using a Fourier
transformation and the magnitude (or alternatively power) is taken.
The magnitude coefficients are then binned by correlating them with
each triangular filter (i.e., each FFT magnitude coefficient is multiplied
by the corresponding filter gain and the results are accumulated). Each
bin, then, holds a weighted sum representing the spectral magnitude
in that filterbank channel.

m1 mP

freq

1

m j... ... Energy in
Each Band

MELSPEC

Figure 6: Mel-Scale Filter Bank

4.4.2 Cepstral analysis

Currently, cepstral coefficients are the most often used parameters in
speech recognition. They are indicated by setting the target to Mel-
Frequency Cepstral Coefficients (MFCCs). They are realized by dis-
crete cosine transform (DCT) with mathematical notation

cmf (n) =

N
∑

i=1

log mi cos
(

n(i − 0.5)
π

N

)

, (8)

where N is the number of filterbank channels mi.

2Mel-scale is a logarithmic-like function corresponding to the human ear frequency
sensitivity.

9

MFCCs give good discrimination and lend themselves to a number
of manipulation. In comparison to classical filtration where spectra
were multiplied, thus hiding the factor components, the MFCCs’ log
domain turns the multiplication into much simpler addition, which
can be removed by subtracting the cepstral mean value from the input
vectors3.

5 The Dictionary

The dictionary determines the way in which each word is expanded to
the level of phonemes. It is a list of records, each containing a single
word and its attributes needed for the recognition4.

Each line of the dictionary file follows this format:

WORD [’[’OUTSYM’]’] [PRONPROB] P1 P2 P3 P4

where WORD represents the word, followed by the optional parameters
OUTSYM and PRONPROB, where OUTSYM is the symbol to output when
that word is recognized5 and PRONPROB is the pronunciation prob-
ability (0.0–1.0) as one word might have more than pronunciation.
P1, P2, . . . is the sequence of phonemes or HMMs to be used in rec-
ognizing that word. The output symbol and the pronunciation proba-
bility are optional. If an output symbol is not specified, the name of
the word itself is output. If a pronunciation probability is not speci-
fied then a default of 1.0 is assumed. Empty square brackets, [], can
be used to suppress any output when that word is recognized (e.g., a
silence or a noise). For example, a dictionary might contain

bit b ih t

but b ah t

dog [woof] d ao g

cat [meow] k ae t

start [] sil

end [] sil

If a word has more than one pronunciation, then multiple records are
added:

the th iy

the th ax

3This process is called Cepstral Mean Normalization (CMN). The mean is estimated
by computing the average of each cepstral parameter across each input speech file.

4Uptill now we haven’t talked about the HTK tool yet, however we will start to demon-
strate the problems in the context of HTK and give an appropriate explanation where
necessary for future research.

5HTK requires this to be enclosed in square brackets, [and]

10

corresponding to the stressed and unstressed forms of the word “the”.
The dictionary can also include the context-dependent models. For

example, for the words bit and but, the records might be written as

bit b+ih b-ih+t ih-t

but b+ah b-ah+t ah-t

There are tools available in the HTK that can perform the context ex-
pansion automatically, however it might be helpful to set these records
explicitly as performance increases.

To summarize this section, the dictionary tells the recognition sys-
tem about all possible phoneme combinations in the meaning of build-
ing blocks for possible words.

6 The Language model

Language model, in our context, is a list of pairs, whose first field is
an n-gram (i.e., sequence of n symbols), and the second field is a num-
ber representing a probability of occurrence (the n-gram probability)6.
Such facility is called the n-gram language model (LM) and is used to
predict each symbol in the sequence given its n − 1 predecessors.

The creation of LM assumes that the probability of a specific n-gram
occurrence in the input text can be estimated from the frequency of
its previous occurrence in some training text. The process of building
the LM is done in three stages.

1. The appropriate training text is scanned and the n-grams are
counted and stored in a database of gram files.

2. Classification, mapping, and sequencing is performed.

3. The counts are used to compute the desired probabilities.

Later in the text, we will talk about two similar things—the n-gram counts
and LM itself. The difference between these two facilities is in the num-
ber associated with the n-gram. While n-gram count gives an integer
occurrence count (i.e., how many times the n-gram occurred in the
scanned text), the LM gives a logarithmic probability of the n-gram
occurrence.

To be able to say, how good the LM is, we can define a measure
called perplexity. It expresses the similarity between the LM and a
model that would be created from an unseen text-set. In simple words,
the smaller the test-set perplexity, the better the model. The theory
of the LMs is broad and is well described in [4].

Let’s go back to the previous paragraph. Note the word appropriate

in point 1. The reason that we have included it there, is that the use

6The physical order in a file is a little different. The first field is occupied by the
probability and the rest of the record is reserved for the n-gram.

11

of an essentially static and finite training text makes it difficult to
generate a single LM, which would be well-matched to varying test
material. Suppose, we have a well trained LM on newspaper text.
Such LM would be a good predictor for the dictating news reports
but when used with a predictor for a recipe-book, it would give poor
results.

This issue is the point of interest of this paper. The idea is to use
sophisticated techniques in LM training. See Section 10 for details on
our approach to Czech LM trining.

7 Recognition and LVCSR

7.1 The Network

The recognition network is a list of sequences of words that can be
recognized and it controls the operation of decoding. It is compiled
from word-level network, a dictionary and a set of HMMs. A word-level
network typically represents either a task grammar which defines all of
the legal word sequences explicitly or a word loop which simply puts
all words of the vocabulary in a loop and therefore allows any word to
follow any other word. Such configuration allows for continuous speech

recognition which accepts any word as an input. An example of such
network is shown in Fig. 7.

Word-loop networks are often—including our experiments—augmented
by an LM. Networks can also be used to define phone recognizers and
various types of word-spotting systems, which is not the topic of this
work.

ax

b iy

b iy n

a

be

been

etc

Figure 7: Recognition Network for Continuous Word Recognition

12

7.2 Recognition

Recognition problem of finding a solution to Eq. 1 is usually solved
by maximizing the Viterbi probability. This problem is usually imple-
mented using token passing approach. In addition, we will treat the
probabilities in a logarithmic manner to avoid floating point out-of-
range problems. The key steps of the algorithm are as follows:

1. Initialize: set tokens in all initial states (usually one state) to
zero.

2. Iterate:

(a) Pass a copy of every token in state i to all connecting states
j, incrementing the logarithmic probability of the copy by
log aij + log bj [ot].

(b) Examine the tokens in all states and discard all but the one
with the highest probability

(c) If end-of-word state is observed then:

i. language model probability is picked from the LM, scaled
by the grammar scale factor and added to the token’s
probability field

ii. a parameter called the word insertion penalty is added
to the token’s probability field

iii. the word is written to the token’s list of words

3. Terminate Examine the tokens in the ending state N and dis-
card all but the one with the highest probability, whose value is
equal to logP?(O|M). The token’s list of words is then equal to
the recognized word sequence.

The behavior of tokens can be controlled by a constraint called
pruning. Pruning sets a threshold, which excludes all tokens, whose
value is worse than the best token minus the pruning value. It can be
set either hardly (i.e., we set the final number), or softly (i.e., we set
the starting number, which can be increased by given step in case that
success is not achieved, until a final limit is reached).

Sometimes, we are not interested in the best path only but we would
like to obtain a lattice of hypotheses. This is achieved by storing more
than just the best token in the end-of-word state. A word-level graph
is created this way. An example is shown in Fig. 8. The edges express
the hypotheses and store not only the word, but they may also hold
its acoustic and language costs.

7.3 Operation modes

The recognizer input control in the form of the network allows three
modes of operation, all of which will be used in the work:

13

SIL

SIL

I
I

I

SIL

SIL

SIL

SIL

MOVE

MOVE

HAVE

HAVE

HAVE
VERY

VERY

VERY

VERY

VEAL

VERY OFTEN

OFTEN

FINE

FINE
FAST

HAVE IT

IT

Figure 8: Lattice sample

1. Recognition

This is the standard operation, described in previous chapter. In
recognition, the recognition network is compiled from a task-level
word network.

2. Forced alignment

Here, the recognition network is created from a word transcrip-
tion and a dictionary. The output is a lower level (phoneme)
transcription aligned in time. This mode will be useful during
speech adaptation which requires the phoneme-level transcrip-
tion as input.

3. Lattice rescoring

In this case, the network is a lattice generated previously by
a recognizer. This mode will be useful during experiments as
rescoring is less resource and time consuming than recognizing.
Rescoring is then used to quickly evaluate the performance and
effectiveness of recognition techniques.

7.4 Recognizer output

The recognizer can give its output in two forms. Either we want the
real best path in the form of a label file, or we might want to experiment
or tune the system using the lattices.

• The label file, or the master label file, is a structured text file
of recognized blocks, where the first level holds the recognized
block—the block’s name is specified here as well—and the second
level (i.e., the content of the block), is the transcription it self.
The transcription has the following structure:

14

start_frame end_frame recognized_word

• Sometimes, however, we want to see deeper into the process of
recognition. It would be nice to see not only the best path in
the search but maybe bigger variety of probable paths could be
interesting. In that case we want to create the lattices (see Fig. 8
for illustration). The structure, or better say the size of the graph
is given by the parameters passed to the decoder.

8 Speaker adaptation

Even though the training of the system can be done very precisely,
there is always a gap caused by not knowing the speaker (i.e., we don’t
know the parameters of his/her vocal tract). If we, however, have
the information, we can adapt the trained models to that speaker and
improve the system’s performance. This turns the speaker independent

recognizer into a speaker dependent system.
Speaker adaptation can be performed in different modes. If a real

transcription of the adaptation data is given, then we talk about it as
supervised adaptation, while there are techniques which don’t require
labeled data and are called unsupervised adaptation. Another classifi-
cation could be considered when we have a single block of adaptation
data (static adaptation) or the data is coming in batches (incremental

adaptation).
It was a planned part of this project to transcribe some of the

wave data, and perform an adaptation using these data. Concerning
the above modes, our adaptation can be classified as supervised static

adaptation, so we will concentrate the theory explanation just in this
scope. The full description is in [4].

There are two techniques of adaptation, the first of which is max-

imum likehood linear regression (MLLR) and the second is maximum

a-posteriori (MAP) adaptation. MLLR adaptation can be applied in
both incremental and static modes, while MAP supports only the static
mode.

A procedure called forced alignment usually needs to be done before
anything else is started. The problem is, that the transcribed data are
presented at word-level, while the HMMs are phoneme-based. The
forced alignment algorithm expands the words into context-dependent
phonemes using the dictionary, and assigns time stamps to them.

Model training is done in steps—iterations. With each iteration,
the model is more likely to fit the speaker’s voice, because the pre-
vious result7 is re-adapted by the training data. However, it has to

7in the meaning of models from the previous iteration. When talking about the first
iteration, the unadapted, original models are meant.

15

be provided, that the models are not over-trained. In that case (espe-
cially., when not enough training data is available), the models are very
unflexible. When the speaker’s voice changes only in a slight extent
(e.g., due to illness, acoustic environment, microphone set-up, etc.),
the models fail during the recognition by being too exact.

Let’s take a closer look at the two techniques.

8.1 MLLR

MLLR is based on computing a set of transformations that reduce the
mismatch or the difference between the initial model definition and the
adaptation data. More specifically, MLLR technique estimates a set
of linear transformations for the mean and the variance parameters of
a Gaussian mixture of the HMM system. The aim is to shift the the
component means and alter the variances in the initial system so that
each state in the HMM system is more likely to generate the adaptation
data.

MLLR technique can be applied in various manners depending on
the amount of available adaptation data. If only a “small” amount
of data is available, then a global transformation can be generated
(i.e., a global transform is applied to every Gaussian component in
the HMM model set). As more adaptation data are coming, improved
adaptation is possible by increasing the number of transformations.
Each transformation is now more specific and is applied only to a
certain groupings of Gaussian components (e.g., silence, vowels, stops,
glides, nasals, etc.—each can be transformed individually).

MLLR makes use of the regression class tree to group Gaussian
mixtures in the HMM set. The tree is constructed in a way that
acoustically similar models are clustered together. The deeper the
tree node (i.e., the cluster) is, the more specific group of model can
be clustered and adapted. Each terminal node (base regression class)
corresponds to one Gaussian component. The adaptation, then, is
performed in a top-down manner. The tree can grow as long as there
is enough data for each cluster.

8.2 MAP

This adaptation technique is sometimes referred to as Bayesian adap-
tation. MAP adaptation makes use of a prior knowledge about the
model parameter distribution. Therefore, if we know what the param-
eters of the model are likely to be (before observing any adaptation
data) using the prior knowledge, we might be able to make good use
of the limited adaptation data to obtain a decent MAP estimate. This
type of prior is also known as informative prior. For MAP adapta-
tion purposes, the informative priors that are generally used are the

16

speaker-independent model parameters.
The update formula for a single stream system for state j and

mixture m is:

µ̂jm =
Njm

Njm + τ
µ̄jm +

τ

Njm + τ
µjm (9)

where µjm is the speaker independent mean, µ̄jm is the mean of the
observed adaptation data, Njm is the occupation likehood of the adap-
tation data. The τ parameter represents a weighting of the a priori
knowledge to the adaptation speech data. The higher the τ is, the less
the speaker independent models are affected.

To point out the main idea, while MLLR moves all Gaussians spec-
ified by the regression tree, MAP transforms only those models, that
it has enough information about.

9 Overal System Diagram

The overall system schema is shown of Fig. 9. It comprises all units
that were discussed in the previous sections.

17

dictionary

lm

network

text corpusdictionary

lm

text corpusdictionary

lm

parameter
retriever

hmms

VAD

or

annotation

hmms

adaptation

latticestext file
index

...

...

decoder

Figure 9: The overall system schema

18

10 Research

The previous chapters describe an LVCSR system which was imple-
mented and used for research. The aim is to get recognition accuracy

as high as possible. This is achieved by improving and tuning all parts
of the system. We focused on language model training.

As every speech is specific for its vocabulary it is clear that the
language model needs to be adapted to it. The primary task was to
build an LVCSR system for automatic lecture indexing. The two main
problems connected with this task are

• every lecturer uses different vocabulary and way of expression

• every subject reflects different vocabulary

The first problem could be solved by creating an LM for every
lecturer and could be given to the LVCSR system as a parameter.
However such LM would have to be explicitly created which means the
person’s speech would have to be recorded and manually transcribed
into text form. On one hand, this task is very expensive. On the
other hand, once such LM is created, the lecturer can use it forever.
Currently, we don’t have possibilities to train such LM’s and thus we
will not consider this problem. Also, when a lecture is given, usually
only a special vocabulary is used which does not give the lecturer a lot
of freedom in usingsing his own way of expression.

The second problem can be solved by creating an LM either from
the transcribed spoken text or by parsing some written text. In our
project we perform the first of these options as manual transcription
was inevitable step for speaker adaptation. However in real world, this
moves us to the first problem discussed above. An option is to parse
available written text. This is extremely comfortable as usually plenty
of litarature to a given subject is available. The only difficulties might
be in parsing mathematical or other special symbols, for which parsers
are currently being developed.

The resulting LM covers most of the special vocabulary comprised
in the lecture, however the lecturer uses colloquial way of expression
and usually doesn’t strictly use the “literature language”. The point of
interest so far was to find out, how merging of LM’s improves recogni-
tion. The idea is to have a general LM, which models the most common
speech, and a special LM which is specific to the recognition task i.e.,
either to the speaker or the subject.

Merging of LM’s was done using the SRILM toolkit and the prin-
ciple lies in redistribution of probabilities of the special (lecture) LM
in the general LM. The merging can be scaled i.e., different weight can
be assigned to each LM. Let λ be the weight of the universal LM.

We have mixed the LMs and watched the perplexity and out-of-
vocabulary word rate on a testing set. The following table shows the

19

result.
Figure 10 illustrates the same results in graph, only for the per-

plexity, though.

Table 1: LM perplexity result

universal LM (λ) lecture LM perplexity OOV

0.00 1.00 173.322 1043
0.10 0.90 416.503 151
0.25 0.75 383.069 151
0.50 0.50 394.229 151
0.75 0.25 480.457 151
0.90 0.10 635.235 151
1.00 0.00 1213.53 368

It is interesting, that the lecture LM alone gave the smallest per-
plexity, while the universal LM application resulted in enormously high
perplexity. In [7], the authors observed the same thing.

We expected the trend of the perplexity to be increasing in all of
its extent, however, there is a “bump” at λ = 0.1. This is a critical
point, where mixing of the two LMs gave unexpected results, i.e. the
value of the n-gram probability was NAN. The reason is that the lowest
n-gram probabilities were so low, that decreasing their importance by
setting λ to 0.1 and not having them included in the lecture LM caused
the float-point numbers to cross to the zero values. Such result was
obviously unacceptable as the recognizer couldn’t handle that, so we
had to set pruning options.

The OOV parameter shows, that there are words in the testing
corpus, that none of the two LM contains. The universal LM alone did
better than the lecture LM alone, though. This result is caused by the
fact, that the lecture LM misses 1043 words, which it is supposed to
recognize. The universal LM’s vocabulary is not perfect as well, but
great improvement is noticeable. These numbers probably show that
the universal LM covers most of the basic vocabulary and only needs
to be refined by some small specialial text corpus.

Note that 0 < λ < 1 does not have any impact on the LM vocab-
ulary, only the LM perplexities are different. Mixing the LMs did not
eliminate any words from neither LM.

10.1 Results in Recognition

In this experiment, we wanted to find out, which of the (either mixed
or stand-alone) LMs would give the best results in decoding (i.e., the

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

λ

pe
rp

le
xit

y

Figure 10: Perplexity of LMs at different mixture Lambda

accuracy of decoding). We chose a single 32-Gaussian, MAP adapted
HMM set and we have run the decoding with constant parameter set-
tings. We set the grammar scale factor to 12 and the insertion penalty
to −10. We have run seven tests, each for different value of λ. The
following listing shows the result statistics and Fig. 11 illustrates the
accuracy in graph.

We see, that even though the lowest perplexity was measured when
λ = 0, the accuracy does not follow this trend. The expected result
was that the lower the perplexity would be, the higher accuracy would
be achieved. However, and [7] observed the same results, the opposite
(except for λ = 1) turned out to be true.

As for the stand-alone LMs, the universal LM shows better results
than the lecture LM. This is caused by the fact, that although the
lecture LM fits the testing data better, the universal LM covers much
more of the testing vocabulary and the recognizer is able to find the
missing words.

21

Table 2: LM perplexity result

λ Accuracy

0.00 35.76
0.10 42.37
0.25 43.86
0.50 45.60
0.75 46.89
0.90 46.93
1.00 43.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
34

36

38

40

42

44

46

48

λ

Ac
c[

%
]

Figure 11: LM accuracy according to λ

22

11 Conclusion

The paper gives an outline to large vocabulary speech recognition sys-
tem synthesis and introduces an approach to language model training.
The language model was created by merging the universal and special
models. With the primary configuration, we found out that using the
special LM gives the poorest results (accuracy of 35.76%) as it com-
prises very specific vocabulary. The best results were achieved when
the universal and special models were mixed with weights λ = 0.75
(accuracy of 46.89%). Such system was built and after acoustic adap-
tation, the highest reached accuracy was 63.01%.

There is an issue about Czech language as such. It belongs to a
group of inflexional languages and thus needs special treatment. The
words need to be split into logical sub units so that higher range of
words is modelled more efficiently. We are working on simple stem-
inflection models and we expect further improvements. Such models
are based on splitting the words into the stem and inflection which
gives the model some hierarchy so larger vocabulary can be comprised
in (pysically) smaller but more accurate language model.

23

References

[1] Černocký, J.: Hidden Markov Models – an Introduction

[Lecture background to the Digital Speech Processing
(CZR) course]. Brno University of Technology, Faculty
of Information Technology. Document accessible at URL
http://www.fit.vutbr.cz/~cernocky/oldspeech/lectures/hmm.pdf,
January 2005.

[2] Černocký, J.: Complements to Speech Recognition Using Hidden

Markov Models [Lecture background to the Digital Speech
Processing (CZR) course]. Brno University of Technology, Fac-
ulty of Information Technology. Document accessible at URL
http://www.fit.vutbr.cz/~cernocky/oldspeech/lectures/hmm.pdf,
January 2005.

[3] Černocký, J.: Cepstrálńı analýza řeči a jej́ı aplikace

[Lecture background to the Digital Speech Processing
(CZR) course]. Brno University of Technology, Faculty
of Information Technology. Document accessible at URL
http://www.fit.vutbr.cz/~cernocky/oldspeech/lectures/ceps.pdf,
January 2005.

[4] Young, S., Evermann, G., Hain, T., Kershaw, D., Odell, J., Ol-
lason, D., Povey, D., Valtchev, V., and Woodland, P.: The HTK

Book. Entropics Cambridge Research Lab., Cambridge, UK, 1996

[5] Moore, J., Kronenthal, M., Ashby, S.: Guidelines for AMI Speech

Transcriptions, 10 February 2005, Version 1.2

[6] Willet, D., Neukirchen, C., Rigoll, G.: DUCODER — THE

DUISBURG UNIVERSITY LVCSR STACKDECODER. Depart-
ment of Computer Science, Faculty of Electrical Engineering,
Gerhard-Mercator-University, Duisburg, Germany

[7] Park, A., Hazen, T.J., Glass, J.R.:Automatic Processing of Audio

Lectures for Information Retrieval: Vocabulary selection and Lan-

guage Modeling, MIT Computer Science and Artificial Intelligence
Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA, 2005

[8] URL: http://www.speech.sri.com

[9] Chalupńıček, K.: Test rozpoznávače z projektu COST 249 na

české databázi SpeechDat-E [Year project], Brno University of
Technology, Faculty of Electrical Engineering and Communica-
tion, 2001/2002

[10] Modlisation et Exprimentation pour le Traitement
des Informations et des Signaux Sonores METISS
[2004 research project activity reports], URL:
http://www.inria.fr/rapportsactivite/RA2004/metiss2004/metiss.html
(9.5.2005)

24

