◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

String-Partitioning Systems

Rudolf Schönecker

April 4, 2006

(日) (日) (日) (日) (日) (日) (日)

String partitioning system - basics

Definition (SPS)

is a quadruple $M = (Q, \Sigma, s, R)$, where Q is a finite set of states, Σ is an alphabet containing a special symbol, #, called a *bounder*, $s \in Q$ is a start state and $R \subseteq Q \times I \times \{\#\} \times Q \times \Sigma^*$ is a finite relation whose members are called *rules*, for some set of positive integers *I*.

Definition (Rules)

A rule $(q, n, \#, p, x) \in R$, where $n \in I$, $q, p \in Q$ and $x \in \Sigma^*$, is written as $q_n \# \to px$ hereafter.

String partitioning system - basics

occur(w, W) - the nr. of occurrences of symbols from W in w

Definition (k-limited configuration)

is any string $x \in \mathsf{Q}\Sigma^*$ such that $occur(x,\#) \leq k$

Definition (derivation step)

Let pu # v, quxv be two *k*-limited configuration $u, v \in \Sigma^*$, occur(u, #) = n - 1 and $p_n \# \to qx \in R$.

- *M* makes a *derivation step* from pu # v to quxv by using $p_n \# \to qx$, symbolically written $pu \# v_d \Rightarrow quxv [p_n \# \to qx]$ in *M* and
- M makes a reduction step from quxv to pu#v by using
 p_n# → qx, symbolically written quxv_r ⇒ pu#v[p_n# → qx]
 in M.

String partitioning system - basics

Let $_{d} \Rightarrow^{*}$ and $_{r} \Rightarrow^{*}$ denote the transition and reflexive closure of $_{d} \Rightarrow$ and $_{r} \Rightarrow$, respectively.

Definition (SPS language)

The *language derived* by *M*, *L*(*M*, $_d \Rightarrow$), is defined as $L(M, _d \Rightarrow) = \{w \mid s \#_d \Rightarrow^* qw, q \in Q, w \in (\Sigma - \{\#\})^*\}.$

The *language reduced* by *M*, *L*(*M*, $_r \Rightarrow$), is defined as $L(M, _r \Rightarrow) = \{w \mid qw _r \Rightarrow^* s\#, q \in Q, w \in (\Sigma - \{\#\})^*\}.$

・ロト・西ト・西ト・西ト・日・

(日) (日) (日) (日) (日) (日) (日)

String partitioning system - example

Example

 $M = (\{s, p, q, f\}, \{a, b, c, \#\}, s, R)$, where *R* contains:

•
$$s_{1}\# \to p \#\#$$

• $p_{1}\# \to q a\#b$
• $q_{2}\# \to p \#c$
• $p_{1}\# \to f ab$
• $f_{1}\# \to f c$

 $L(M, _d \Rightarrow) = L(M, _r \Rightarrow) = \{a^n b^n c^n \mid n \ge 1\}, \quad Ind(M) = 2$

String partitioning system - example

Example (Example of derivation of string aaabbbccc)

 $s\#_{d} \Rightarrow p\#\#[1]_{d} \Rightarrow qa\#b\#[2]_{d} \Rightarrow pa\#b\#c[3]_{d} \Rightarrow$ $qaa\#bb\#c[2]_{d} \Rightarrow paa\#bb\#cc[3]_{d} \Rightarrow faaabbb\#cc[4]_{d} \Rightarrow$ faaabbbccc[5].

Example (Example of reduction of string aaabbbccc)

 $\begin{array}{l} \textit{faaabbbccc} \ r \Rightarrow \ \textit{faaabbb} \# \textit{cc} \ [5] \ r \Rightarrow \ \textit{paa} \# \textit{bb} \# \textit{cc} \ [4] \ r \Rightarrow \\ \textit{qaa} \# \textit{bb} \# \textit{c} \ [3] \ r \Rightarrow \ \textit{pa} \# \textit{b} \# \textit{c} \ [2] \ r \Rightarrow \ \textit{qa} \# \textit{b} \# \ [3] \ r \Rightarrow \\ \textit{p} \# \# \ [2] \ r \Rightarrow \ \textit{s} \# \ [1]. \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PG definition

Definition (Programmed grammar)

is a quadruple, G = (V, T, P, S), where

- V is a total alphabet
- **2** $T \subseteq V$ is an alphabet of terminals
- 3 $S \in (V T)$ is the start symbol
- P is a finite set of rules of the form $q: A \rightarrow v, g(q)$
 - $q: A \rightarrow v$ is a context free rule labeled by q
 - g(q) is a set of rule labels associated with this rule
 - after q-application a rule labeled by a label from g(q) has to be applied

Finite index definition

Definition (G = (V, T, P, S)**,** N = V - T**)**

For $D: S = w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_r = w \in T^*$, for $w \in T^*$ in G:

- $Ind(D, G) = max \{occur(w_i, N) \mid 1 \le i \le r\}$
- Ind(w, G) = min { Ind(D, G) | D is a derivation for w in G}

•
$$Ind(G) = \sup \{Ind(w, G) \mid w \in L(G)\}$$

For a language *L* in the family $\mathcal{L}(X)$ of languages generated by grammars of some type *X*, we define:

• $Ind_X(L) = inf \{Ind(G) \mid L(G) = L, G \text{ is of type } X\}$

For a family $\mathcal{L}(X)$, we set

•
$$\mathcal{L}_k(X) = \{L \mid L \in \mathcal{L}(X) \text{ and } Ind_X(L) \le k\}, k \ge 1$$

•
$$\mathcal{L}_{fin}(X) = \bigcup_{n \geq 1} L_n(X)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

PG generative power

Summary (Generative power)

For programmed grammars stands:

•
$$\mathcal{L}(2) \subset \mathcal{L}(P, CF) \subset \mathcal{L}(1)$$

For programmed grammars of index k stands:

•
$$\mathcal{L}_k(P, CF) \subset \mathcal{L}_{k+1}(P, CF)$$
, for all $k \ge 1$

•
$$\mathcal{L}(CF) - \mathcal{L}_{\mathit{fin}}(P, CF)
eq \emptyset$$

• $\mathcal{L}_{fin}(P, CF)$ is incomparable towards $\mathcal{L}(CF)$

Results

Lemma ($\mathcal{L}_k(P, CF) \subseteq \mathcal{L}_k(SPS, d \Rightarrow)$ **)**

For every programmed grammar of index k, G, there is a string-partitioning system of index k, H, such that $L_k(G) = L_k(H, a \Rightarrow)$.

Lemma ($\mathcal{L}_k(SPS, _d \Rightarrow) \subseteq \mathcal{L}_k(P, CF)$)

For every string-partitioning system of index k, H, exists equivalent programmed grammar of index k, G, such that $L_k(G) = L_k(H, _d \Rightarrow)$.

Main result

$$\mathcal{L}_k(SPS, d \Rightarrow) = \mathcal{L}_k(P, CF)$$
, for every $k \ge 1$.

Infinite hierarchy of languages

 $\mathcal{L}_k(SPS, CF) \subset \mathcal{L}_{k+1}(SPS, CF)$, holds for all $k \ge 1$.

Proof:

Because of $\mathcal{L}_k(P, CF) \subset \mathcal{L}_{k+1}(P, CF)$, for all $k \ge 1$, and $\mathcal{L}_k(SPS, d \Rightarrow) = \mathcal{L}_k(P, CF)$, for every $k \ge 1$.

・ロト・西ト・ヨト・ヨー シタぐ