Grammar Systems - Survey *TID 2007/2008*

•

Filip Goldefus

FIT, VUT BRNO, 2007

Contents of presentation

Contents:

- Introduction
- Cooperating distributed grammar systems
 - Hybrid Modes
 - Competence
- Colonies
 - Sequential model
 - Parallel model
- Computing with Membranes P Systems
- Conclusion
- References

Introduction

Early formal systems:

- Grammars and automata were modelling classic computing devices.
- Centralized devices computation with one central agent.

Grammar systems:

- Distributed computation more processors and computers.
- Distribution, parallelism, concurrency and communications.
- Increase of generative power.
- GS are functioning under specific protocols.

Cooperating distributed grammar system

CD grammar system of degree $n \ge 1$ is (n+3)-touple

$$\Gamma = (N, T, S, P_1, \dots, P_n)$$

where each P_1, \ldots, P_n is finite set of productions. Notation:

• *i*-th CF grammar $G_i = (N, T, S, P_i)$

Modes of derivation (\Rightarrow):

- \Rightarrow^t terminating derivation
- $\Rightarrow^{=k}$ k-step derivation
- $\Rightarrow^{\leq k}$ at most *k*-step derivation
- $\Rightarrow^{\geq k}$ at least k-step derivation

Hybrid Modes in CDGS

- $\Rightarrow^{(\geq k_1 \land \leq k_2)}$ When enabled, the component has to perform at least k_1 and at most k_2 derivation steps.
- $\Rightarrow^{(t \land \geq k)}$ When enabled, the component has to perform as many derivation steps as possible, and at least k steps.
- $\Rightarrow^{(t \wedge = k)}$ When enabled, the component has to perform as many derivation steps as possible, and exactly k steps.
- $\Rightarrow^{(t \land \leq k)}$ When enabled, the component has to perform as many derivation steps as possible, and at most k steps.

Hybrid Modes – Examples

Let $G = (N, T, S, P_1, P_2)$ is CD grammar system with

- $N = \{S, A, B, A', B'\}$,
- $T = \{a, b, c\}$,
- $P_1 = \{S \to S, S \to AB, A' \to A, B' \to B\}$ and
- $P_2 = \{A \to aA'b, B \to cB', A \to ab, B \to c\}.$

And e. g.:

- $L_{(t \wedge \ge 1)}(G) = \{a^n b^n c^m | n, m \ge 1\}$
- $L_{(t \wedge = 2)}(G) = \{a^n b^n c^n | n \ge 1\}$
- $L_f(G) = \emptyset, f \in \{=k, \ge k | k \ge 3\}$

CDGS - Competence

Domain of *i*-th component:

• $dom(P_i) = \{X \in N | X \to z \in P_i\}$

Component i is k-competent on word x iff:

• $clev_i(x) = |alph_N(x) \cap dom(P_i)| = k$

Cooperation levels:

•
$$x \Rightarrow_i^{\leq k-comp.} y$$
 iff $x = x_1 \Rightarrow_i \ldots \Rightarrow_i x_m = y$ and
• $clev_i(x_j) \leq k$ for $1 \leq j \leq m-1$ and $clev_i(x_j) = 0$ or
 $clev_i(x_j) > k.$

• Operations
$$\Rightarrow_i^{=k-comp.}$$
 and $\Rightarrow_i^{\geq k-comp.}$ are defined similarly.

CDGS – Competence - Example

 $G = (\{A, A', B, B', C, D\}, \{a, b, c\}, AB, P_1, \dots, P_8)$. Grammar works in ≤ 1 -comp. mode (= 1-comp. mode).

$$P_{1} = \{A \rightarrow aA'b, B' \rightarrow B', C \rightarrow C\}$$

$$P_{2} = \{A \rightarrow A, B \rightarrow B'c, C \rightarrow C\}$$

$$P_{3} = \{A' \rightarrow A, B \rightarrow B, C \rightarrow C\}$$

$$P_{4} = \{A' \rightarrow A', B' \rightarrow B, C \rightarrow C\}$$

$$P_{5} = \{A' \rightarrow C, B \rightarrow B\}$$

$$P_{6} = \{A \rightarrow A, A' \rightarrow A', B' \rightarrow D\}$$

$$P_{7} = \{B' \rightarrow B', C \rightarrow \varepsilon\}$$

$$P_{8} = \{D \rightarrow \varepsilon\}$$

L(G) = ?

CDGS - generative power

Notation:

• $CD_x(f)$ denotes class of CD grammars with x components.

Generative power of CD grammar systems:

$$L(CF) = L(CD_1(t)) = L(CD_2(t))$$

$$\subset$$

$$L(CD_3(t)) = L(CD_{\infty}(t)) = L(ET0L)$$

L(fRC, CF) = L(CD, CF, = 1)L(CD, CF, = 1) = L(RC, CF)

Colonies

A colony is a 3-tuple C = (V, T, F), where

- V is finite set of symbols.
- $T \subseteq V$ is set of terminals.
- $F = \{(S_i, F_i) | S_i \in V, F_i \subseteq (V S_i)^*, F_i \text{ is finite, } 1 \le i \le n\}.$

Generally:

- \Rightarrow^x elementary string operation of type x
- \Rightarrow^{x*} stays for a reflexive and transitive closure
- For C = (V, T, F) and axom $w_0 \in V^*$, $L_x(C, w_0) = \{v | w_0 \Rightarrow^{x^*} v, v \in T^*\}$
- COL_x denotes class of all languages generated by colonies with \Rightarrow^x .

Sequential Colonies

For $x, y \in V^*$ we define basic derivation step:

• $x \Rightarrow^{b} y$ iff $x = x_1 S_i x_2$, $y = x_1 z x_2$ and $z \in F_i$ for some $i, 1 \le i \le n$. Example:

• $C = (\{A, B, a, b\}, \{a, b\}, \{(A, \{ab, aBb\}), (B, \{A\})), L_b(C, A)?$

Modification:

•
$$x \Rightarrow^{t} y \text{ iff } x = x_1 S_i x_2 S_i \dots x_m S_i x_{m+1}, x_1 x_2 \dots x_{m+1} \in (V - S_i)^*,$$

 $y = x_1 w_1 x_2 w_2 \dots w_m x_{m+1}$

Example:

• $C = (\{A, B, a\}, \{a\}, \{(A, \{BB\}), (B, \{A\}), (B, \{a\})\}), L_t(C, A)?$

Parallel Colonies

Informal definition:

- Several components are active in one derivation step of the colony
- If (S, F_i) and (S, F_j) are two components of C and if at least two symbols S appears in current string, then both components must be used.
- If only one S appears in current word and there are at least 2 components then only one *can* be used, there are two possibilities
 - derivation is blocked strongly parallel way of derivation \Rightarrow^{sp}
 - derivation continues weakly competetive parallel way of derivation ⇒^{wp}

Parallel Colonies – Examples

Strongly parallel:

- $C = (\{A, B, C, D, 0, 1\}, \{0, 1\}, \{(A, \{0B, 1C\}), (A, \{0C, 1B\}), (B, \{A, E\}), (C, \{A, E\}), (E, \{\varepsilon\}), (E, \{\varepsilon\})\}.$
- $L_{sp}(C, AA) = ?$

Weakly parallel:

- $C = (\{S, A, B, C, D, E, F, a, b, c\}, \{a, b, c\}, F)$
- $F = \{(S, \{ABC\}), (Y, \{Z\}), (Z, \{Y\}), (A, \{aD, X\}), (B, \{bE, X\}), (C, \{cF, X\}), (D, \{A\}), (E, \{B\}), (F, \{C\}), (X, \{\varepsilon\}), (X, \{\varepsilon\}), (X, \{\varepsilon\}), (X, \{Y\})\}$

•
$$L_{wp}(C,S) = ?$$

Colonies - Generative Power

Generative power:

 $COL_p = CF$ $COL_p \subset COL_{sp}$ $COL_p \subset COL_{wp}$ $COL_{sp} \subseteq MAT_{ac}$ $COL_{wp} \subset 1lET0L$

Open problems:

- What is relation between COL_{wp} and COL_{sp} ?
- Is the inclusion $COL_{sp} \subseteq MAT_{ac}$ proper?

P Systems

- Computability model distributed and parallel,
- based on notion of a *membrane structure*,
- variable number of components,
 - dissolvation of membrane,
- two modes of functionality
 - generating language
 - accepting word
- Types of P Systems
 - Transition P Systems
 - P System Based on Rewriting

Membrane Structures

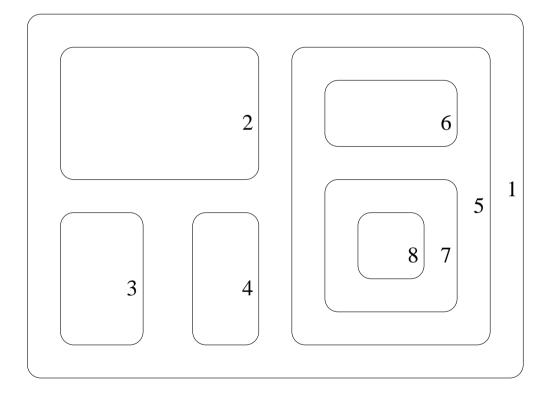
Language of Membrane Structures (MS) is recurrently defined over alphabet $\{[,]\}$:

- $[,]\in MS$,
- if $\mu_1, \ldots, \mu_n \in MS$, $n \geq 1$, then $[\mu_1, \ldots, \mu_n] \in MS$,
- nothing else in MS.

The *depth* of a membrane structure μ , denoted by $dep(\mu)$ is defined recurrently as follows:

- if $\mu = []$, then $dep(\mu) = 1$,
- if $\mu = [\mu_1 \dots \mu_n]$, for some $\mu_1, \dots, \mu_n \in MS$ then $dep(\mu) = max\{dep(\mu_i) | 1 \le i \le n\} + 1.$

Membrane Structures - Venn diagram



[1[2]2[3]3[4]4[5[6]6[7[8]8]7]5]1

Transition P Systems

A *transition P system* of degree $n, n \ge 1$, is a construct:

$$\Pi = (V, \mu, w_1, \dots, w_n, (R_1, \rho_1), \dots, (R_n, \rho_n), i_0)$$

where

- V is alphabet; its elements are called *objects*
- μ is membrane structure of degree n
- w_i are strings over V^*
- R_i is set of *evolution rules* over V
- ρ_i is partial order relation over R_i , specifying *priority* relation among rules of R_i .
- i_0 is a number between 1 and n number of output membrane

Transition P Systems II.

Evolution rules:

- evolution rule is pair (u, v), usually written in form $u \rightarrow v$
 - *u* is string over V
 - v = v' or $v = v'\delta$ and

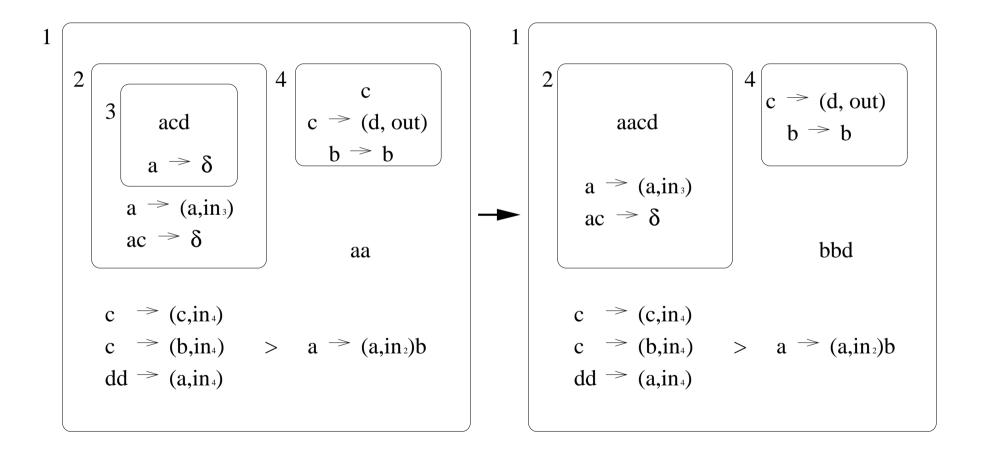
 $v' \in (V \times \{here, out\}) \cup (V \times \{in_j | 1 \le j \le n\})$

and δ is special symbol not in V. The length of u is called the *radius* of the rule $u \rightarrow v$.

Note:

- Computation is succesful if no rule can be applied.
- Some words w_i can be ε .
- Some sets of productions R_i can be empty.

Transition P System - Example



Grammar Systems - Survey - p.20/24

Generative Power of P Systems

Types of P Systems:

- Non-cooperative radius of rules is 1 *nCoo*
- Cooperative radius of rules is at least 2 Coo

Notation:

- $TP_n(\alpha, \delta)$ is class of languages computed by P systems with at most *n* components.
 - $\alpha \in \{nCoo, Coo\}$
 - δ if present denotes P System with δ rules

Generative Power of P Systems

Hierarchy of $TP_n(\alpha)$ system families

 $L(E0L) \subseteq TP_1(nCoo) \subseteq TP_2(nCoo) \subseteq \ldots \subseteq TP(nCoo).$

For every i = 1, 2, ...,

 $TP_i(nCoo) \subseteq TP_i(nCoo, \delta).$

And

 $TP_2(Coo) = TP_2(Coo, \delta) = TP(Coo) = TP(Coo, \delta) = RE.$

Conclusion

Grammar Systems

- usage in many practical fields
 - parallel compilers
 - biology
 - chemistry

Increase of generative power using paralelism e. g. left-forbidding CD grammar systems.

References

 J. Dassow, Gh. Paun and G. Rozenberg. Grammar Systems. In Handbook of formal languages, Vol. 2. Springer-Verlag, Berlin, 1997.