Parsing of Context-Free Languages

Ota Jirák

December 19, 2007

· · · · · · · · ·

- A parsing system \mathbb{P} for some grammar G and string $a_1 \dots a_n$ is a tripple $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$
 - \mathcal{I} is a set of items, called the *domain* or the *item set* of \mathbb{P} ,
 - *H* is a finite set of items called the *hypotheses* of \mathbb{P} ,
 - D ⊆_{℘fin} (H ∪ I) × I is a set of deduction steps. We write η₁,...,η_k ⊢ ξ or (η₁,...,η_k,ξ)

inference relation ⊢

Let $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$ be a parsing system. The relation $\vdash \subseteq_{\wp fin} (H \cup \mathcal{I}) \times \mathcal{I}$ is defined by $Y \vdash \xi$ if $(Y', \xi) \in D$ for some $Y' \subseteq Y$.

deduction sequence

Let $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$ by a parsing system. We write \mathcal{I}^+ for the set of non-empty, finite sequences ξ_1, \ldots, ξ_j , with $j \ge 1$ and $\xi_i \in \mathcal{I}(1 \le i \le j)$. A deduction sequence in \mathcal{P} is a pair $(Y; \xi_1, \ldots, \xi_j) \in_{\wp} (H \cup \mathcal{I}) \times \mathcal{I}^+$, such that $Y \cup \xi_1, \ldots, \xi_{i-1} \dashv \xi_i$ for $1 \le i \le j$. Informal notation $Y \vdash \xi_1 \vdash \cdots \vdash \xi_i$ instead of $(Y; \xi_1, \ldots, \xi_i)$.

set Δ

The set of deduction sequences $\Delta \subseteq_{\wp fin} (H \ cup\mathcal{I}) \times \mathcal{I}^+$ for a parsing system $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$ is defined

$$\Delta = (Y; \xi_1, \dots, \xi_j) \in_{\wp fin} (H \cup \mathcal{I}) \times \mathcal{I}^+ | Y \vdash \xi_1 \vdash \dots \vdash \xi_j.$$

relation \vdash^*

For a parsing system $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$ we define the relation \vdash^* on $_{\wp fin}(H \cup \mathcal{I}) \times \mathcal{I}$ by

$$Y \vdash^* \xi$$
 if $\xi \in Y$ or $Y \vdash \cdots \vdash \xi$.

・ 何 ト ・ ヨ ト ・ ヨ ト

For a parsing system $\mathbb{P} = \langle \mathcal{I}, H, D \rangle$ the set of valid items is defined by

 $\mathcal{V}(\mathbb{P}) = \{\xi \in \mathcal{I} | H \vdash^* \xi\}.$

æ

イロト イポト イヨト イヨト

- Cocke, Younger, and Kasami
- \bullet restricted to \mathcal{CNF}
- used a triangular matrix T with cell $T_{i,j}$ for all applicable value pairs of *i* and *j*.
- output of the algorithm is a set of items. $\{[A, i, j] | A \Rightarrow^* a_{i+1} \dots a_j\}$

Example - parsing system CYK 2/2

- domain of items $\mathcal{I}_{CYK} = \{[A, i, j] | A \in N \land 0 \le i < j\}$
- hypotheses representing the string
 H = {[a, i − 1, i]|a = a_i¹ ≤ 1 ≤ n}}
- inference rules (set of deduction steps) $D^{1} = \{[a, i - 1, i] \vdash [A, i - 1, i] | A \rightarrow a \in P\}$ $D^{2} = \{[B, i, j], [C, j, k] \vdash [A, i, k] | A \rightarrow BC \in P\}$ $D_{CYK} = D^{1} \cup D^{2}$

Purposes of filtering:

- generalization increases the number of steps in parsing process
- filtering decreacing the number of items and deduction steps

Three kinds of filtering:

- static filtering redundant parts of a parsing schema are discarded,
- dynamic filtering the validity of some items can be made dependent on the validity of other items,
- step contraction sequences of deduction steps are replaced by single deduction steps.

A nonterminal $A \in N$ is called *reduced* if:

- (i) there are $v, w \in \Sigma^*$ such that $S \Rightarrow^* vAw$,
- (ii) there is some $w \in \Sigma^*$ such that $A \Rightarrow^* w$.

A grammar is called reduced if all its nonterminals are reduced.

```
The relation \mathbb{P}_1 \rightarrow_{df} \mathbb{P}_2 holds if

(i) \mathcal{I}_1 \supseteq \mathcal{I}_2

(ii) \vdash_1 \supseteq \vdash_2
```

Reduce the number of valid items, but reduces the possibilities for parallel processing.

```
most powerful

The relation \mathbb{P}_1 \rightarrow_{sc} \mathbb{P}_2 holds if

(i) \mathcal{I}_1 \supseteq \mathcal{I}_2

(ii) \vdash_1^* \supseteq \vdash_2^*
```

- skipped nullable symbols
- chain of derivations reducing

.∋...>

Parsing schemata provide a general framework for description, analysis and comparison of parsing algorithms.

The End

æ

メロト メポト メヨト メヨト