TID - Attributed Scattered Context Grammars

Ota Jirák

FIT, Brno University of Technology

- Attributed grammars
- Scattered Context Grammars

Attributed Grammars

An attribute grammar is an ordinary CF grammar extended to specify the "meaning" of each string in the language.

- *attribute* any quantity associated with a programming construct.
- semantic actions

Inherited and Synthesized Attributes

♦ A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a semantic rule associtated with the production at N. The production must have A as its head. A synthesized attribute at node N is defined only in terms of attribute values at the children of N and at N itself.

An *inherited attribute* for a nonterminal B at a parse-tree node N is defined by a semantic rule associated with the production at the parent of N. That production must have B as a symbol in its body. An inherited attributed at node N is defined only in terms of attribute values at N's parent, N itself, and N's siblings.

	PRODUCTION	SEMANTIC RULES
1)	$L \to E$ \$	L.val = E.val
2)	$E \to E_1 + T$	$E.val = E_1.val + T.val$
3)	$E \to T$	E.val = T.val
4)	$T \to T_1 * F$	$T.val = T_1.val \times F.val$
5)	$T \to F$	T.val = F.val
6)	$F \to (E)$	F.val = E.val
7)	$F \rightarrow digit$	F.val = digit.lexval

Scattered Context Grammars - Definition

- A scattered context grammar (SCG) defined as:
- $\clubsuit G = (V, T, P, S)$
- ♦ V is an alphabet
- $\diamond \text{ terminal } T \subseteq V$
- ♦ starting nonterminal $S \in V T$
- ♦ finite set of production $(A_1, \ldots, A_n) \rightarrow (x_1, \ldots, x_n) \in P$

 $\clubsuit x_i \in V^*$

 $\clubsuit i \in <1, n>$

Propagating SCG - PSCG

- \diamond for every $(A_1, \ldots, A_n) \rightarrow (x_1, \ldots, x_n) \in P$
- $\clubsuit x_i \in V^+$
- $\clubsuit i \in <1, n>$

$$\Rightarrow$$
, \Rightarrow ^{*}, \Rightarrow ⁺

$$\bigstar (A_1, \ldots, A_2) \to (x_1, \ldots, x_n) \in P$$

 $\diamond u = u_1 A_1 u_2 A_2 \dots u_n A_n u_{n+1}$

 $\diamond v = u_1 x_1 u_2 x_2 \dots u_n x_n u_{n+1}$

 $\diamond u \Rightarrow v[(A_1, \ldots, A_n) \to (x_1, \ldots, x_n)]$ in G. $u \Rightarrow v$

Attributed Scattered Context Grammar

- attributed grammar & scattered context grammar
- source of bison to create Attributed Scattered Context Grammars Compiler
- implementation of attributes on stack
- reduce table of rules

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-255/paper09.pdf

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers – Principles, Techniques, & Tools