Automata for matching patterns

2007 Tomáš Novotný

Automata for matching patterns

- Opening
- Algorithms for matching patterns
- Matching finite sets of words
- Matching words
- Suffix automata
- Conclusion

Opening

- Word pattern matching
- Problem - locating occurrences of a pattern in text file.
- Solution to the problem is basic part of many tools, editors; used in the analysis of biological sequences.
- Several method based on automata.

Algorithms for matching patterns

Let \boldsymbol{t} by the searched word. An occurrence in \boldsymbol{t} of pattern represented by the language P is a triple (u, p, v) where $\boldsymbol{u}, \boldsymbol{v} \in \mathrm{A}^{*}, p \in P$, and such that \boldsymbol{t} = upv.

- Pattern described by:
- a word
- finite set of words (P)
- a regular expression (L(R))

Notation

- Pattern \boldsymbol{p}, we denote length $(\mathbf{p})=\boldsymbol{m}$
- Text \boldsymbol{t}, we denote length $(\mathbf{t})=\boldsymbol{n}$
- $P=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$, where $y_{p}=y_{p, 1} \ldots y_{p, \text { length(p) }} \in A^{*}$, where $p=1, \ldots, k$

Algorithms for matching patterns

- Naive brute force method
- in time $O(m \times n)$
- backing up in the text
- Optimizing the naive method

Basic idea

- preprocess the text or pattern to create DFA M that accepts the pattern or text
- do the search
- Searching prefixes of \boldsymbol{t} that belong to the language $\mathbf{A}^{*} \mathbf{P}$

Automata for matching patterns

abaacaabaac
$\mid: 1 . a \rightarrow a$
abaacaabaa a
$\mid: 2 . b \rightarrow \varnothing$
abaacaabaa a

$$
\mid: 1 . a \rightarrow a
$$

$a b a \operatorname{coaba} a \mathrm{a}$ $\mid: 2 . a \rightarrow a a$
abaacaabaaa

$$
\mid: 3 . c \rightarrow \varnothing
$$

abaacaabaaa

$$
\mid: 1 . a \rightarrow a
$$

abaacaabaaa

$$
\mid: 2 . a \rightarrow a a
$$

abaacaabaaa
$T=a b a \operatorname{ca} a b c a a$
$P=a a b c$

- No backing up in the text

$$
A=\{a, b, c\}
$$

$$
\mid: 3 . b \rightarrow a a b
$$

abaacaabcaa

$$
\mid: 4 . c \rightarrow \text { aabc }
$$

Matching finite set of words

Problem

Given a finite set of words \mathbf{P}, the dictionary, preprocess it in order to locate words of \mathbf{P} that occur in any word \mathbf{t}.

- Solution by Aho an Corasick, 1975
- Implementation of complete DFA recognizing the language $\mathbf{A}^{*} \mathbf{P}$.
- A preprocessing phase in $O(|\mathrm{P}| \mathrm{x} \log \operatorname{card}(\mathrm{A}))$ time, where $|\mathrm{P}|=\left|\mathrm{P}_{1}\right|+\ldots+$ $\left|P_{m}\right|$ and in $O(|P|)$ space
- A search phase in $O(|t| x \log \operatorname{card}(A))$ time, both with extra space $O(|P| x$ card(A))

Preprocessing phase

Definition

Let P be a finite language, than the automaton $M=\left(Q, A, q_{0}, \delta, F\right)$ recognizes the language $\mathbf{A}^{*} \mathbf{P}$.

1. $Q=\left\{q_{x} \mid x \in \operatorname{Pref}(P)\right\}, q_{0}=q_{\varepsilon}$
2. $\delta\left(q_{x}, a\right)=q_{h_{P}(x a)}, x \in \operatorname{Pref}(P), a \in A$
3. $F=\left\{q_{x} \mid x \in \operatorname{Pref}(P) \cap A^{*} P\right\}$
$h_{P}(v)=$ the longest suffix of \mathbf{v} that belongs to $\operatorname{Pref}(P)$ for each $\mathbf{v} \in A^{*}$

- Searching automata $S A=\left(Q, A, q_{0}, \delta_{S A}, \varphi_{S A}, F\right)$ where $\delta_{S A}, \varphi_{S A}$ represents δ from M such that:
- $\delta_{S A},: Q \times A->Q \cup\{$ fail $\}$ is goto function
- $\varphi_{S A}: Q-\left\{q_{0}\right\}->Q$ is failure function
- Implementation of SA:

1. Construct tree-like FA accepting language P
2. Computing $\varphi_{\text {SA }}$

SA implementation

Construction of trie of a finite set of words P

- Input: finite set of words $P, \mathbf{a} \in P, \mathbf{q} \in Q$
- Output: DFA accepting set P , we denote by Trie(P)
- Method

1. $\quad Q:=\left\{q_{0}\right\}$
2. Create all possible states. Each new state corresponds to some prefix of one or more pattern.

Define $\delta\left(q, a_{j+1}\right)=q^{\prime}$, where q corresponds to prefix $a_{1} a_{2} \ldots a_{j+1}$ of one or more patterns
3. Define $\delta\left(q_{0}, a\right)=q_{0}$ for all a such that $\delta\left(q_{0}, a\right)$ was not defined in step 2
4. $\delta(\mathrm{q}, \mathrm{a})=$ fail for all a and q which $\delta(\mathrm{q}, \mathrm{a})$ was not defined in step 2 or 3
5. Each state corresponding to the complete pattern is the final state

Example

SA implementation

Construction SA of a finite set of words P
Input: Trie(P)
Output: DFA accepting set P with failure $P=\{a b, b a b b, b b\}$ function, we denote by $D(P)$

Method:

1. $\mu \leftarrow$ EMPTYQUEUE
2. $\operatorname{ENQUEUE}\left(\mu, q_{0}\right)$
3. while not QUEUEISEMPTY (μ)
4. Ioop $p \leftarrow$ DEQUEUE (μ)
5. for each letter a such that $\delta(p, a) \neq$ fail
6. $\operatorname{loop} q \leftarrow \delta(p, a)$
7. $\varphi(q) \leftarrow \gamma(\varphi(p), a)$
8. $\operatorname{ENQUEUE}\left(\mu, q_{0}\right)$

We define $\gamma(p, a)$:

- $\delta(p, a)$ if $\delta(p, a)$ is defined
- $\gamma(\varphi(p), a)$ if $\delta(p, a)$ is undefined and $\varphi(p)$ is defined
- q_{0} otherwise

Searching

We can locate words of \mathbf{P} that occur in any word \mathbf{t}
Input: automaton SA recognizing A* P
Output: Occurrences of words from P in t

Method

1. $\mathrm{p} \leftarrow \mathrm{q}_{0}$
2. for $i==1$ to m do
3. while $\delta\left(\mathrm{p}, \mathrm{a}_{\mathrm{i}}\right)=\varnothing$
4. $p \leftarrow \varphi(p) / /$ follow fail
5. $p \leftarrow \delta\left(p, a_{i}\right) / /$ follow a goto
6. if $p \in F$ then print I, print $p / /$ print position and patterns

Matching word

Problem

Given a word ppreprocess it in order to locate all its occurrences in any given word t .

- Particular case of previous problem - dictionary has one element
- Solution by Knuth, Morris and Pratt, 1977
- Automaton $\mathrm{M}\left(A^{*} p\right)$ is minimal
- A preprocessing phase in $O(|p|)$ time
- A search phase in $O(|t|)$ time

Suffix automaton

The minimal DFA recognizing suffixes of aabbabb

Suffix automaton

- An alternative solution for string-matching problem
- Also used to search a word \mathbf{p} for factors of \mathbf{t}

Alternative data structures for storing the suffixes of a text

- Suffix tries - quadratic size in length of the word
- Suffix trees - compact representation of suffix tries
- Suffix automaton - minimization of suffix tries

Definition

Suffix automaton of a word \mathbf{t} is defined as the minimal deterministic (not necessarily complete) automaton that recognize the finite set of suffixes of t.
We denote M(Suff(t))
Problem
Given a word \mathbf{t} and preprocess it in order to locate all occurrences of any word p in t .

Suffix automaton - properties

- It can be constructed in $O(n \times \log \operatorname{card}(\mathrm{A}))$ time and $O(\mathrm{n})$ space
- It allows to check whether a pattern occurs in a text in $O(\mathrm{~m})$ time
- It has linear size limited by the number of states, which is less than $2 n-2$; the number of transitions is less than $3 n-4$, where $n>1$
- Represents complete index of input text \mathbf{t}
- occurrences of different patterns can be found fast

Conclusion

Matching patterns with automata

- No backing up the searched text
- We pay for preprocessing, but we have fast search
- Improve the performance

