Additional types of L-systems

Zdeněk Přikryl TID, 2007

Content

- Repetition
- Stochastic 0L-systems
- Parametric 0L-systems
- Context-sensitive L-systems
- Conclusion

Repetition 1/3

OL is triple H = (V, P, w), where:
V is a finite alphabet of symbols,
P is a finite set of rules of the form a → x, where a ∈ V, x ∈ V*,
W ∈ V⁺ is an axiom.

Repetition 2/3

- Direct derivation (⇒):
 Let be u=a₁...a_n, v=x₁...x_n ∈ V^{*}.
 We say that v is directly derived from u if and only if a_i → x_i ∈ P, i ∈ {1,...,n} and we write u ⇒ v.
 - $-\Rightarrow^*$ is transitive and reflexive closure of \Rightarrow

Repetition 3/3

- D0L **D**eterministic, only one rule $a \rightarrow x$ for each $a \in V$.
- POL **P**roduction, for every rule $a \rightarrow x, x \neq \varepsilon$.
- E0L Extended, is H = (V, T, P, w), where:
 V, P, w is same as in an 0L,
 - T is finite alphabet, $T \subseteq V$.
- T0L **T**ables, is $H = (V, P_i, w)$ and for every

 $i \in \{1, ..., n\}, H_i = (V_i, P_i, w)$ is an 0L system.

Stochastic 0L-systems 1/3

- Stochastic 0L is a quadruplet
 H = (V, P, w, π), where:
 - V, P, w is same as in an 0L,
 - π is called *probability distribution*, and it is a function π: $P \rightarrow (0, 1]$,
 - it is assumed that for every $a \in V$, the sum of probabilities of all productions with the predecessor a is equal to 1.

Stochastic 0L-systems 2/3

- Direct *stochastic* derivation (\Rightarrow):
 - Let be $u, v \in V^*$.
 - We say that v is directly derived from u if for each occurrence of the symbol $a \in V$ in the word *u* is randomly chosen rule $p \in P$ with predecessor a, the probability of applying production p with the predecessor a is equal to $\pi(p)$. Thus, in one stochastic derivation step, different rules can be applied for different occurrence of symbol a.
 - $-\Rightarrow^*$ is transitive and reflexive closure of \Rightarrow

Stochastic 0L-systems 3/3

• Example: - Let *H* be the stochastic 0L: • $V = \{a\},\$ • $P = \{ 1: a \rightarrow a, \}$ 2: $a \rightarrow aa$, 3: $a \rightarrow aaa$, • w = a, • $\pi(1) = 0.33$, $\pi(2) = 0.33$, $\pi(3) = 0.34.$ $- L(H) = \{a^n, n \ge 1\}$

Parametric 0L-system 1/3

- Parametric 0L is a quadruplet
 H = (V, Σ, P, w), where:
 - V is a finite alphabet of symbols
 - $\boldsymbol{\Sigma}$ is a finite set of formal parameters
 - *P* is a finite set of rules of the form $a(p): c \rightarrow x$, where $a(p) \in (V \times \Sigma^*)$, $c \in C(\Sigma)$, $x \in (V \times E(\Sigma))^*$
 - $w \in (V \times R^*)^+$ is an axiom
- *C* means all correct conditions over Σ.
- *E* means all correct expressions over Σ .
- Member of $(V \times \Sigma^*)$ is called *module*.

Parametric 0L-system 2/3

- Direct derivation (⇒):
 Let u be a word of modules u = a₁...a_n, we say that v = x₁...x_n is direct derived from u if and only if there exists a sequence of productions p: a_i → x_i ∈ P, i ∈ {1,...,n} and we write U ⇒ V.
 - $-\Rightarrow^*$ is transitive and reflexive closure of \Rightarrow

Parametric 0L-system 3/3

- Example:
 - Let *H* be the parametric 0L-system:

•
$$\Sigma = \{i, j, k\},\$$

•
$$P = \{ 1: a(k): (k \ge 10) \rightarrow a(10), 2: a(k): (k < 10) \rightarrow b(k,0), 3: b(i,j): (i=j) \rightarrow a(i+j), 4: b(i,j): (i>j) \rightarrow b(i,j+1), 5: b(i,j): (i
• $W = a(2)b(5,4).$$$

 $\begin{array}{c} \frac{\text{IIIustration}}{a(2)b(5,4)} \\ \downarrow & [24] \end{array} \\ b(2,0)b(5,5) \\ \downarrow & [43] \end{array} \\ b(2,1)a(10) \\ \downarrow & [41] \end{array} \\ b(2,2)a(10) \end{array}$

Context-sensitive L-systems 1/3

- (*I*,*k*)-system is triple H = (V, P, w), where:
 V, w is same as in 0L,
 - *P* is an ordered finite set of rules of the form $a < b > c \rightarrow x$, where $b \in V$ and $a, c, x \in V^*$
 - I or k denotes length of a left or right context

Note: 1L or 2L systems are specific types of (*I*,*k*)-systems

Context-sensitive L-systems 2/3

- Direct derivation (\Rightarrow) :
 - Let be $u = u_1 ... u_n$, $v = x_1 ... x_n \in V^*$.
 - We say that v is directly derived from u if and only if there is a sequence of productions $p_i: a_i < b_i > c_i \rightarrow x_i \in P$, such that p_i is applicable on $u_i, i \in \{1,...,n\}$ and we write $u \Rightarrow v$.
 - $-\Rightarrow^*$ is transitive and reflexive closure of \Rightarrow

Context-sensitive L-systems 3/3

Example:
Let *H* be the (*k*,*l*)-system: *V* = {a, b}, *P* = { 1: b < a → b,
2: b → a,
3: a → a,
4: b → b}, *w* = baa.
L(*H*) = {baa, aba, aab}

Conclusion

- Stochastic 0L-systems can be used for simulation real organisms
- Parametric 0L-systems can compute some important/characteristic values during derivation
- Context-sensitive L-systems are more powerful