
Instruction Selection with Bottom-Up Rewriting
Systems

Miloslav Trmač

Dec 10, 2007



The Problem

I “Code generation” for expression trees:
I Converting e.g. +(a,+(∗(b, 4), 8)) to a sequence of machine

instructions
I Needs to be fast
I Should generate “good” (locally optimal) code

I Automatically generated from a readable machine description

I Should support machine-independent optimizing
transformations

I Limitations:
I No register allocation
I No shared subexpressions (only trees, not DAGs)
I Additive operation costs



An Example Rewrite System

I Loads:
Reg → reg
Const → amode

I Addressing modes:
reg → amode
+(Const, reg) → amode

I Instructions:
amode → reg
biOp(amode, amode) → reg

I Transformations:
0 → Const
+(X , 0) → X
+(X ,Y ) → +(Y ,X )
+(X ,Y ) → biOp(X ,Y )
−(X ,Y ) → biOp(X ,Y )

+(0,+(Const,Const)) →
+(0,+(Const, amode)) →
+(0,+(amode, amode)) →
+(0, biOp(amode, amode)) →
+(biOp(amode, amode), 0) →
biOp(amode, amode) → reg



Definitions

Rewrite rule A pair (α → β) of tree patterns.
It may contain variables—but each only once in α
and at most once in β.

Position An identification of a node within a tree.

Rewrite application An application of a rewrite rule at a particular
position of a particular tree.

Rewrite sequence (τ) A sequence of rewrite applications that can
be applied to at least one tree.

Loop τ loops if it has two different prefixes τ1, τ2, and
∃T : τ1(T ) = τ2(T ).

Reachability problem For a fixed goal tree G and a tree T , find
τ : τ(T ) = G , if it exists.

C-Reachability problem Each rewrite rule has an associated cost.
For T , find a τ with minimal total cost of applied
rules.



Normal Form of a Rewrite Sequence

Let τ apply to T , τ(T ) = T ′, T = op(T1, . . . ,Tn). τ is in a
normal form if all of the following is true:

I It does not loop

I τ = τ1 . . . τnτ0

∀i ≥ 1 : τi only affects Ti

I τ0(op(τ1(T1), . . . , τn(Tn))) = T ′

I No rewrite application can be moved from τ0 to other τi

I ∀i ≥ 1 : τi is in normal form

τ0 is the local rewrite sequence assigned by τ to the root node of
T . Local rewrite sequence assigned by τ to the root node of Ti is
defined by the normal form of τi , etc.

Note that the choice of T is irrelevant.



BURS

k-normal τ in normal form is in k-normal form if it applies to a
tree T and each local rewrite sequence assigned to a
node in T by τ has length at most k.

k-BURS Let R be a set of rewrite rules, LI and LO sets of
trees.
< R, LI , LO > has the k-BURS property if
∀T ∈ LI ,T

′ ∈ LO ,∀τ : τ(T ) = T : τ has a
permutation which is in k-normal form.

BURS BURS is the set of triples < R, LI , LO > which have
the k-BURS property for some k.



Testing BURS

We can determine whether < R, LOp, LOp > is in k-BURS, where
LOp is the set of all trees with operators Op:

I Each local rewrite sequence must start with an rewrite
application affecting the root of the subtree.

I Each subsequent rewrite application must handle a node
“touched” by previous rewrite applications in the rewrite
sequence.

I So, the set of local rewrite sequences is finite and can be
generated.

I < R, LOp, LOp > is in k-BURS iff there is no local rewrite
sequence (without loops) of length k + 1.



Extent of BURS

A rule α → β is a:

Instruction fragment rule α is a tree without variables and β is a
0-ary symbol.

Generic operator rule α = op(X1, . . . ,Xn), β = op′(X1, . . . ,Xn)

Commutativity rule α = op(X1, . . . ,Xn), β = op(Xπ(1), . . . ,Xπ(n))

Identity rule α = op(X ,T ), β = X

Any rewrite system containing only the above types of rules is in
BURS.

Some rewrite systems are not in BURS:
a(b(X )) → a(bb(X ))
bb(b(X )) → bb(bb(X ))
bb(c) → c
a(c) → d
Consider a(b(b(· · · b(c) · · · ))) with goal d .



Local Rewrite Graphs

For a tree T , we construct a graph:

I ∀T0, such that ∃τ in normal form,
τ = τ1 . . . τnτ0,T0 = τn(· · · τ1(T ) · · · ), consider all local
rewrite sequences: τ ′ : T0 → T ′.

I Let pre(τ ′, 1), . . . , pre(τ ′,m) = τ ′. Add a directed path T0 ⇒
pre(τ ′, 1)(T0) ⇒ · · · ⇒ pre(τ ′,m − 1)(T0) ⇒ τ ′(T0) = T ′ to
the graph. T0 is called an input node.

The graph summarizes the trees reachable from T before starting
a local rewrite sequence, and all trees reachable during the local
rewrite sequence.

Example: T = +(0,+(Const,Const))
In1 = +(Const, reg) ⇒ Out1
In2 = +(0, reg) ⇒ +(reg , 0) ⇒ Out2
In3 = +(amode, amode) ⇒ biOp(amode, amode) ⇒ Out2
Out1 = amode ⇒ Out2
Out2 = reg ⇒ Out1



Solving “Reachability”

Given a fixed rewrite system R, a fixed goal G , and a tree T :

I Compute the LR graphs of all subtrees of T .
(If the number of LR graphs for R and G is finite, this can be
precomputed and the LR graphs can be assigned by a
bottom-up tree automaton.)

I If G does not appear in the LR graph of T , fail. Otherwise,
call sub(T ,G ).
(Checking for G can be precomputed.)

sub(Tin,Tout)

I In the LR graph of Tin, select any input node
op(T ′

1, . . . ,Tn) from which Tout is reachable in
the LR graph, and let τ0 be the corresponding
local rewrite sequence.
(Both can be precomputed.)

I Let Tin = op(T1, . . . ,Tn). ∀i : call sub(Ti ,T
′
i ).

I Output the rewrites specified by τ0.



“If the number of LR graphs is finite”

Rewrite systems with finite number of LR graphs are called finite
BURS.
For R and G , define sets of tree patterns IR,G and OR,G :

I G ∈ OR,G

I ∀β ∈ OR,G ,∃T , T can be rewritten to β, and the local rewrite
sequence assigned to T is α → β: Add α to IR,G , and add all
proper subtrees of α to OR,G .

IR,G are input nodes in all “relevant” LR graphs. If both IR,G and
OR,G is finite, < R,G > is a finite BURS.

Any rewrite system containing only instruction fragment rules,
generic operator rules, commutativity rules and identity rules is a
finite BURS.



Implementation Considerations

I From the LR graphs we can check whether there are trees
from which G is unreachable.

I We can drop unused parts of each LR graph (e.g. choose to
keep only the minimum input nodes to “cover” all output
nodes).

I At run-time, we don’t need to store the LR graphs. For each
tree ID and output tree ID, only IDs of subtree outputs and
the rewrite sequence needs to be stored.

I This can, in turn, allow replacing equivalent “LR graph
extracts” by a single one—but that depends on which parts
nodes in LR graphs were dropped. Minimization of number of
“LR graph extracts” is NP-complete.

I “C-Reachability”: Storing rewrite cost for each LR node leads
to infinite number of LR graphs; costs “delta-adjusted” by
subtracting the minimum cost from all costs in the graph.



For More Information

I S. Graham, E. Pelegŕı-Llopart: Optimal Code Genration for
Expression Trees: An Application of BURS Theory

I T. Proebsting: BURS Automata Generation

I T. Proebsting, B. Whaley: One-Pass, Optimal Tree
Parsing—With or Without Trees



Thank You

Any questions?


