Symbolic Dynamical Systems

Miloslav Trmač

19. 10. 2007

(ロ)、(型)、(E)、(E)、 E、 の(の)

Subshifts

Bi-infinite words $A^{\mathbb{Z}} = \{x; x = \dots x_{-1}x_0x_1\dots, \forall i : x_i \in A\}$ Distance For $x, y \in A^{\mathbb{Z}}$:

$$d(x,y)=2^{-e(x,y)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$e(x, y) = max\{n \ge 0; \forall i, -n \ge i \ge n : x_i = y_i\}$$

Shift For $x \in A^{\mathbb{Z}}$: $\sigma(x) = y; \forall n : y_n = x_{n+1}$

Subshift $S \subseteq A^{\mathbb{Z}}$, which is

- Topologically closed with respect to d
- Shift-invariant: $\sigma(S) = S$

Subshift Examples

Full shift $S = A^{\mathbb{Z}}$ Golden mean $S = \{x \in \{a, b\}^{\mathbb{Z}}, x \text{ does not contain "bb"}\}$ Edge shift For G = (V, E): $S_G \subseteq E^{\mathbb{Z}}$: bi-infinite paths in GSofic shift For A = (Q, E): bi-infinite words "recognized" by a finite automaton (Q, E, q_0, q_F)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Subshift Factors

Subshift factors $F_S = \{x_i \dots x_j; x \in S, i \leq j\} \cup \{\epsilon\}$

Properties:

• $\forall S : F = F_S$ is both:

factorial $uvw \in F \implies v \in F$ extendable $\forall v \in F \exists a, b \in A : avb \in F$

• Let $F \subseteq A^*$ be factorial and extendable. Then

$$S = \{x \in A^{\mathbb{Z}}; \forall i \leq j : x_i \dots x_j \in F\}$$

is a subshift, and $F_S = F$.

• S is a sofic shift iff F_S is recognizable by a finite automaton.

Recurrence

One-sided shift $S(x) = \{y \in A^{\mathbb{N}}; F_y \subseteq F_x\}$ Recurrence x is recurrent if any substring of x has infinite

occurrences in x.

Theorem: x is recurrent iff S(x) is *irreducible*, i. e. $\forall x, y \in F_S \exists u : xuy \in F_S$.

Uniform recurrence x is uniformly recurrent if $\forall n > 0 \exists m > n$: any substring of x with length n appears in any substring of x with length m.

- ロ ト - 4 回 ト - 4 □ - 4

Theorem: Let $x \in A^{\mathbb{N}}$. Then the following conditions are equivalent:

- x is uniformly recurrent.
- ▶ S(x) is minimal, i. e. $\forall T \subseteq S : T = \emptyset \lor T = S$.

Subshifts and Automata

Local automaton is a finite automaton for which the current state is determined by a bounded number of past and future labels.

Transitive automaton is a finite automaton with a strongly-connected state graph.

Properties:

- A transitive finite automaton is local iff there is at most one infinite path with any given label.
- A deterministic finite automaton is local iff its current state is determined by a bounded number of past labels.

Shift of Finite Type A subshift made of all infinite words that avoid a finite set of subwords.

Theorem: A subshift is of finite type iff it is recognized by a local automaton.

Subshifts and Automata

- Any sofic system can be recognized by a DFA.
- A sofic system is irreducible iff it is recognized by a transitive DFA.

Synchronizing word $x \in F_S$ is synchronizing if

$$\forall u, v : ux, xv \in F_S \implies uxv \in F_S.$$

Word rank For $x \in A^*$, rank of x is $|\{q.x|q \in Q\}|$

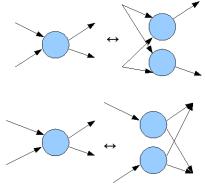
In a non-empty irreducible sofic system, all words of minimal non-zero rank are synchronizing.

Theorem: Any irreducible sofic system has a unique minimal automaton, constructed to recognize $\{y; xy \in F_S\}$ for some synchronizing word x.

Morphisms

Morphism $f: S \to T$, f is continuous and $f\sigma = \sigma f$ *k*-Local $f: S \to T$ is *k*-local iff $\exists \overline{f} : A^k \to B, m \in \mathbb{Z}$: $\forall x, y = f(x): y_{n+m} = \overline{f}(x_{n-(k-1)} \dots x_{n-1} x_n)$

Theorem: $f : S \to T$ is a morphism iff $\exists k \ge 0$: f is k-local loomorphism f: a bijective morphism


Properties:

Any subshift isomorphic to a shift of finite type is of finite type.

Any subshift isomorphic to a sofic shift is a sofic shift.

Morphisms

Theorem: Any isomorphism between shifts of finite type can be obtained as a composition of splits and merges performed on the automaton.

Thank you

Questions?

