Two-Dimensional Languages

Jiří Zuzaňák

Brno University of Technology

December 19, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two-Dimensional Language

- Generalization of formal languages to two dimensions.
- Several models has been proposed in literature.
- Motivation Pattern recognition, Image processing, Cellular automata studies, ...

Definition (Two-Dimensional string)

Let Σ be a finite alphabet. A two-dimensional string (or a picture) over alphabet Σ is a two-dimensional rectangular array of elements from $\Sigma.$

Definition (Two-Dimensional language)

The set of all two-dimensional strings (or a pictures) from Σ is denoted by $\Sigma^{**}.$ A two-dimensional language over Σ is defined as subset of $\Sigma^{**}.$

Denotation

- Given a picture p ∈ Σ^{**}, let ℓ₁(p) denote the number of rows, of p, and ℓ₂(p), denote the number of columns of p.
- The pair $(\ell_1(p), \ell_2(p))$ is called the size of the picture p.
- The empty picture has size (0,0) and it will be denoted by λ .
- The pictures of size (0, n) or (n, 0) where n > 0 are not defined.
- The set of all pictures over Σ of size (m, n), with m, n > 0 will be indicated by Σ^{m×n}.
- p(i,j) or equivalently, p_{i,j} denotes symbol in p, with coordinates (i,j), where 1 ≤ i ≤ ℓ₁(p) and 1 ≤ j ≤ ℓ₂(p).

Example (Two-Dimensional language)

Let $\Sigma = \{a\}$ be a alphabet. The set of pictures over Σ where every picture has 3 columns is two-dimensional language over Σ , which can be formally described as

$$L = \{p | p \in \Sigma^{**} \text{ and } \ell_2(p) = 3\}.$$

Example (Two-Dimensional language)

Let $\Sigma = \{0, 1\}$ be an alphabet. Language *L* of pictures over Σ whose first column is equal to the last one is formally defined as:

$$L = \{p | p(i, 1) = p(i, \ell_2(p)), i = 1, \dots, \ell_1(p)\}$$

Definition (Sub-Picture)

Let p be a picture of size (m, n). A block (or a sub-picture) of p is a picture p' that is a sub-array of p. That is, if (m', n') is size of p', then $m' \le m$ and $n' \le n$ and there exist integers h, k $(h \le m - m', k \le n - n')$ such that p'(i,j) = p(i + h, j + k) for all $0 \le i \le m'$ and $0 \le j \le n'$.

Definition (Projection of a picture)

Let $p \in \Gamma^{**}$ be a picture. The projection by mapping π of picture p is the picture $p' \in \Sigma^{**}$ such that $p'(i,j) = \pi(p(i,j))$, for all $1 \le i \le \ell_1(p), \ 1 \le j \le \ell_2(p)$.

Definition (Projection of a language)

Let $L \subseteq \Gamma^{**}$ be a picture language. The projection by mapping π of L is the language $L' = \{p' | p' = \pi(p) \forall p \in L\} \subseteq \Sigma^{**}$.

Definition (Concatenation of pictures)

The column concatenation of p and q (denoted by $p \oplus q$) is a partial operation, defined only if m = m' and it is given by:

$$p \oplus q = \begin{bmatrix} p_{11} & \cdots & p_{1n} & q_{11} & \cdots & q_{1n'} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{m1} & \cdots & p_{mn} & q_{m'1} & \cdots & q_{m'n'} \end{bmatrix}$$

Similarly, the row concatenation of p and q (denoted by $p \ominus q$) is a partial operation, defined only if n = n', and it is given by:

Definition (Concatenation of languages)

Let L_1, L_2 be two-dimensional languages over an alphabet Σ , the column concatenation of L_1 and L_2 (denoted by $L_1 \oplus L_2$) is defined by

$$L_1 \oplus L_2 = \{ p \oplus q | p \in L_1 \text{ and } q \in L_2 \}$$

Similarly, the row concatenation of L_1 and L_2 (denoted by $L_1 \ominus L_2$) is defined by

$$L_1 \ominus L_2 = \{p \ominus q | p \in L_1 \text{ and } q \in L_2\}$$

Definition (Column concatenation closure)

Let *L* be a picture language. The column closure of *L* (denoted by $L^{*\mathbb{O}}$) is defined as

$$L^{*\oplus} = \bigcup_{i\geq 0} L^{i\oplus}$$

where $L^{0\oplus} = \lambda, L^{1\oplus} = L, L^{n\oplus} = L \oplus L^{(n-1)\oplus}$.

Definition (Row concatenation closure)

Similarly, the row closure of L (denoted by $L^{*\ominus}$) is defined as

$$L^{*\ominus} = \bigcup_{i\geq 0} L^{i\ominus}$$

where $L^{0\ominus} = \lambda, L^{1\ominus} = L, L^{n\ominus} = L \ominus L^{(n-1)\ominus}$.

Definition (Rotation)

Let p be a picture. The (clockwise) rotation of p, indicated as p^R , is defined as

[p_{m1}		P11
$p^R =$:	÷.,	:
	Pmn		P1n

Definition (Row-Column combination)

Let Σ be a finite alphabet and let $S_1, S_2 \subseteq \Sigma^*$ be two string languages over Σ . The row-column combination over S_1 and S_2 is two-dimensional language $L = S_1 \oplus S_2 \subseteq \Sigma^{**}$ such that, a picture $p \in \Sigma^{**}$ belongs to L if and only if the strings corresponding to the rows and to the columns of p belong to S_1 and to S_2 , respectively.

Regular expressions

First natural approach is to define picture languages by means of regular expressions.

Definition

A regular expression (RE) over an alphabet Σ is defined as follows:

- 1. 0 and every letter $a \in \Sigma$ are regular expressions.
- If α and β are regular expressions, then (α) ∪ (β), (α) ∩ (β), c(α), (α) ⊕ (β), (α) ⊖ (β), (α)*[⊕], (α)*[⊕] are regular expressions.

Definition

A two-dimensional language $L \subseteq \Sigma^{**}$ is regular if it is denoted by a regular expression over Σ .

Example

Let $\Sigma = \{a, b\}$. The regular expression

```
(((a \ominus b)^{*\ominus}) \oplus ((b \ominus a)^{*\ominus}))^{*\oplus}
```

denotes language consisting of all "chesboards" with even side-length.

Denotation

- The regular expressions that not contain complement operation are called complementation-free regular expressions (CFRE).
- Similarly, the regular expressions that not contain closure operations are called star-free regular expressions (SFRE).

Four-way automata

M. Blum, C. Hewitt

Definition

A non-deterministic (deterministic) four-way automata, 4NFA (4DFA), is a 7-tuple $\mathcal{A} = (\Sigma, Q, \Delta, q_0, q_a, q_r, \delta)$ where:

- Σ is the input alphabet
- Q is finite set of states
- $\Delta = R, L, U, D$ is the set of directions.
- $q_0 \in Q$ is the initial state
- $q_a, q_r \in Q$ are the accepting and the rejecting states
- δ: Q\{q_a, q_r} × Σ → 2^{Q×Δ} (δ: Q\{q_a, q_r} × Σ → Q × Δ) is the transition function

Two-dimensional on-line tesselation automata

K. Inoue, A. Nakamura

Definition

A non-deterministic (deterministic) two-dimensional online tesselation automata, referred as 20TA (2-DOTA), is defined as $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ where:

- Σ is the input alphabet
- Q is the finite set of states
- $I \subseteq Q$ $(I = \{i\} \subseteq Q)$ is the set of initial states
- $F \subseteq Q$ is the set of final states
- $\delta: Q \times Q \times \Sigma \to 2^Q$ ($\delta: Q \times Q \times \Sigma \to Q$) is the transition function.

- Run of A on p associate a state (from Q) to each position of picture p.
- All Positions of the first row and first column of \hat{p} are initialized to state Q_0 .
- Each state at position (i, j) is given by a transition function δ and depends on the states at (i − 1, j) and (i, j − 1) and input symbol p(i, j).
- A 2OTA A recognizes a picture p if there exist a run of A on p such that a state at position (l₁(p), l₂(p)) is a final state.

Two-dimensional right-linear grammar

Definition

A two-dimensional right-linear grammar (2RLG) is defined by a 7-tuple $G = (V_h, V_v, \Sigma_I, \Sigma, S, R_h, R_v)$, where:

- V_h is a finite set of horizontal variables
- V_{ν} is a finite se of vertical variables
- $\Sigma_I \subseteq V_v$ is a finite set of intermediates
- Σ is a finite set of terminals
- $S \in V_h$ is a starting symbol
- R_h is a finite set of horizontal rules of the form $V \rightarrow AV'$ or $V \rightarrow A$, where $V, V' \in V_h$ and $A \in \Sigma_I$
- R_v is a finite set of vertical rules of the form $W \to aW'$ or $W \to a$, where $W, W' \in V_v$ and $a \in \Sigma$.

- The string grammar G_h = (V_h, Σ_I, S, R_h) generates a string language H(G) over the intermediate alphabet Σ_I.
- The string in H(G) defines first row of generated picture.
- Each intermediate symbol is threated as a start symbol of vertical grammar G_ν = (V_ν, Σ, Σ_I, R_ν).
- The vertical generation of the columns is done in parallel by applying the rules in R_v .

Tiling systems

Denotation

Given a picture p of size (m, n), let $h \le m, k \le n$: we denote by $B_{h,k}(p)$ the set of all sub-pictures of p of size (h, k).

Definition (Local two-dimensional language)

Let Γ be a finite alphabet. A two-dimensional language $L \subseteq \Gamma^{**}$ is local if there exist finite set Θ of tiles over the alphabet $\Gamma \cup \{\#\}$ such that $L = \{p \in \Gamma^{**} | B_{2,2}(\widehat{p}) \subseteq \Theta\}.$

Definition (Tiling system)

A tiling system (TS) is a 4-tuple $\mathcal{T} = (\Sigma, \Gamma, \Theta, \pi)$, where Σ and Γ are two finite alphabets, Θ is finite set of tiles over the alphabet $\Gamma \cup \{\#\}$ and $\pi : \Gamma \to \Sigma$ is a projection.

- The TS T defines language L over alphabet Σ as follows:
 L = π(L') where L' = L(Θ) is the local two-dimensional language over Γ.
- We write L = L(T), and we say that L is recognized by T.
- We will refer to L' ⊆ Γ^{**} as an underlaying local language for L, while we will call Γ local alphabet.

Equivalences

- $\mathcal{L}(SFRE) \subseteq \mathcal{L}(RE)$
- $\mathcal{L}(CFRE) \subseteq \mathcal{L}(RE)$
- $\mathcal{L}(4DFA) \subset \mathcal{L}(4NFA)$

• $\mathcal{L}(TS) = \mathcal{L}(DS)$ • $\mathcal{L}(2OTA) = \mathcal{L}(TS)$ • $\mathcal{L}(TS) = \mathcal{L}(EMSO)$ • $\mathcal{L}(TS) = \mathcal{L}(PCFRE)$

- $\mathcal{L}(2DOTA) \subset \mathcal{L}(2OTA)$
- $\mathcal{L}(4NFA) \subset \mathcal{L}(2OTA)$
- $\mathcal{L}(2RLG) \subset \mathcal{L}(4DFA)$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

G. Rozenberg, A. Salomaa (Eds.): Chapter 4. in Volume 3 of Handbook of formal languages. Berlin; New York: Springer, c1997.

