Two-Dimensional Languages

Jiří Zuzaňák
Brno University of Technology

December 19, 2007

Two-Dimensional Language

- Generalization of formal languages to two dimensions.
- Several models has been proposed in literature.
- Motivation - Pattern recognition, Image processing, Cellular automata studies, ...

Definition (Two-Dimensional string)
Let Σ be a finite alphabet. A two-dimensional string (or a picture) over alphabet Σ is a two-dimensional rectangular array of elements from Σ.

Definition (Two-Dimensional language)
The set of all two-dimensional strings (or a pictures) from Σ is denoted by $\Sigma^{* *}$. A two-dimensonal language over Σ is defined as subset of $\Sigma^{* *}$.

Denotation

- Given a picture $p \in \Sigma^{* *}$, let $\ell_{1}(p)$ denote the number of rows, of p, and $\ell_{2}(p)$, denote the number of columns of p.
- The pair $\left(\ell_{1}(p), \ell_{2}(p)\right)$ is called the size of the picture p.
- The empty picture has size $(0,0)$ and it will be denoted by λ.
- The pictures of size $(0, n)$ or $(n, 0)$ where $n>0$ are not defined.
- The set of all pictures over Σ of size (m, n), with $m, n>0$ will be indicated by $\sum^{m \times n}$.
- $p(i, j)$ or equivalently, $p_{i, j}$ denotes symbol in p, with coordinates (i, j), where $1 \leq i \leq \ell_{1}(p)$ and $1 \leq j \leq \ell_{2}(p)$.

Example (Two-Dimensional language)

Let $\Sigma=\{a\}$ be a alphabet. The set of pictures over Σ where every picture has 3 columns is two-dimensional language over Σ, which can be formally described as

$$
L=\left\{p \mid p \in \Sigma^{* *} \text { and } \ell_{2}(p)=3\right\}
$$

Example (Two-Dimensional language)

Let $\Sigma=\{0,1\}$ be an alphabet. Language L of pictures over Σ whose first column is equal to the last one is formally defined as:

$$
L=\left\{p \mid p(i, 1)=p\left(i, \ell_{2}(p)\right), i=1, \ldots, \ell_{1}(p)\right\}
$$

Definition (Sub-Picture)

Let p be a picture of size (m, n). A block (or a sub-picture) of p is a picture p^{\prime} that is a sub-array of p. That is, if $\left(m^{\prime}, n^{\prime}\right)$ is size of p^{\prime}, then $m^{\prime} \leq m$ and $n^{\prime} \leq n$ and there exist integers h, k ($\left.h \leq m-m^{\prime}, k \leq n-n^{\prime}\right)$ such that $p^{\prime}(i, j)=p(i+h, j+k)$ for all $0 \leq i \leq m^{\prime}$ and $0 \leq j \leq n^{\prime}$.

Definition (Projection of a picture)

Let $p \in \Gamma^{* *}$ be a picture. The projection by mapping π of picture p is the picture $p^{\prime} \in \Sigma^{* *}$ such that $p^{\prime}(i, j)=\pi(p(i, j))$, for all $1 \leq i \leq \ell_{1}(p), 1 \leq j \leq \ell_{2}(p)$.

Definition (Projection of a language)
Let $L \subseteq \Gamma^{* *}$ be a picture language. The projection by mapping π of L is the language $L^{\prime}=\left\{p^{\prime} \mid p^{\prime}=\pi(p) \forall p \in L\right\} \subseteq \Sigma^{* *}$.

Definition (Concatenation of pictures)

The column concatenation of p and q (denoted by $p \oplus q$) is a partial operation, defined only if $m=m^{\prime}$ and it is given by:

$p \oplus q=$| p_{11} | \cdots | $p_{1 n}$ | q_{11} | \cdots | $q_{1 n^{\prime}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \vdots | \ddots | \vdots | \vdots | \ddots | \vdots |
| $p_{m 1}$ | \ldots | $p_{m n}$ | $q_{m^{\prime} 1}$ | \ldots | $q_{m^{\prime} n^{\prime}}$ |

Similarly, the row concatenation of p and q (denoted by $p \ominus q$) is a partial operation, defined only if $n=n^{\prime}$, and it is given by:

Definition (Concatenation of languages)

Let L_{1}, L_{2} be two-dimensional languages over an alphabet Σ, the column concatenation of L_{1} and L_{2} (denoted by $L_{1} \oplus L_{2}$) is defined by

$$
L_{1} \oplus L_{2}=\left\{p \oplus q \mid p \in L_{1} \text { and } q \in L_{2}\right\}
$$

Similarly, the row concatenation of L_{1} and L_{2} (denoted by $L_{1} \ominus L_{2}$) is defined by

$$
L_{1} \ominus L_{2}=\left\{p \ominus q \mid p \in L_{1} \text { and } q \in L_{2}\right\}
$$

Definition (Column concatenation closure)

Let L be a picture language. The column closure of L (denoted by $L^{*(©)}$) is defined as

$$
L^{*(\Phi)}=\bigcup_{i \geq 0} L^{i(\Phi)}
$$

where $L^{0 \oplus}=\lambda, L^{1 \oplus}=L, L^{n \oplus}=L \oplus L^{(n-1) \Phi}$.
Definition (Row concatenation closure)
Similarly, the row closure of L (denoted by $L^{* \ominus}$) is defined as

$$
L^{* \ominus}=\bigcup_{i \geq 0} L^{i \ominus}
$$

where $L^{0 \ominus}=\lambda, L^{1 \ominus}=L, L^{n \ominus}=L \ominus L^{(n-1) \ominus}$.

Definition (Rotation)

Let p be a picture. The (clockwise) rotation of p, indicated as p^{R}, is defined as

$$
p^{R}=\begin{array}{ccc}
p_{m 1} & \cdots & p_{11} \\
\vdots & \ddots & \vdots \\
p_{m n} & \cdots & p_{1 n}
\end{array}
$$

Definition (Row-Column combination)
Let Σ be a finite alphabet and let $S_{1}, S_{2} \subseteq \Sigma^{*}$ be two string languages over Σ. The row-column combination over S_{1} and S_{2} is two-dimensional language $L=S_{1} \oplus S_{2} \subseteq \Sigma^{* *}$ such that, a picture $p \in \Sigma^{* *}$ belongs to L if and only if the strings corresponding to the rows and to the columns of p belong to S_{1} and to S_{2}, respectively.

Regular expressions

First natural approach is to define picture languages by means of regular expressions.

Definition

A regular expression (RE) over an alphabet Σ is defined as follows:

1. 0 and every letter $a \in \Sigma$ are regular expressions.
2. If α and β are regular expressions, then $(\alpha) \cup(\beta),(\alpha) \cap(\beta)$, ${ }^{c}(\alpha),(\alpha) \oplus(\beta),(\alpha) \ominus(\beta),(\alpha)^{* \oplus},(\alpha)^{* \ominus}$ are regular expressions.

Definition

A two-dimensional language $L \subseteq \Sigma^{* *}$ is regular if it is denoted by a regular expression over Σ.

Example

Let $\Sigma=\{a, b\}$. The regular expression

$$
\left(\left((a \ominus b)^{* \ominus}\right) \oplus\left((b \ominus a)^{* \ominus}\right)\right)^{* \oplus}
$$

denotes language consisting of all "chesboards" with even side-length.

Denotation

- The regular expressions that not contain complement operation are called complementation-free regular expressions (CFRE).
- Similarly, the regular expressions that not contain closure operations are called star-free regular expressions (SFRE).

Four-way automata

M. Blum, C. Hewitt

Definition

A non-deterministic (deterministic) four-way automata, 4NFA (4DFA), is a 7 -tuple $\mathcal{A}=\left(\Sigma, Q, \Delta, q_{0}, q_{a}, q_{r}, \delta\right)$ where:

- Σ is the input alphabet
- Q is finite set of states
- $\Delta=R, L, U, D$ is the set of directions.
- $q_{0} \in Q$ is the initial state
- $q_{a}, q_{r} \in Q$ are the accepting and the rejecting states
- $\delta: Q \backslash\left\{q_{a}, q_{r}\right\} \times \Sigma \rightarrow 2^{Q \times \Delta}\left(\delta: Q \backslash\left\{q_{a}, q_{r}\right\} \times \Sigma \rightarrow Q \times \Delta\right)$ is the transition function

Two-dimensional on-line tesselation automata

K. Inoue, A. Nakamura

Definition

A non-deterministic (deterministic) two-dimensional online tesselation automata, referred as 2OTA (2-DOTA), is defined as $\mathcal{A}=\left(\Sigma, Q, q_{0}, F, \delta\right)$ where:

- Σ is the input alphabet
- Q is the finite set of states
- $I \subseteq Q(I=\{i\} \subseteq Q)$ is the set of initial states
- $F \subseteq Q$ is the set of final states
- $\delta: Q \times Q \times \Sigma \rightarrow 2^{Q}(\delta: Q \times Q \times \Sigma \rightarrow Q)$ is the transition function.
- Run of \mathcal{A} on p associate a state (from Q) to each position of picture p.
- All Positions of the first row and first column of \widehat{p} are initialized to state Q_{0}.
- Each state at position (i, j) is given by a transition function δ and depends on the states at $(i-1, j)$ and $(i, j-1)$ and input symbol $p(i, j)$.
- A 2OTA \mathcal{A} recognizes a picture p if there exist a run of \mathcal{A} on p such that a state at position $\left(\ell_{1}(p), \ell_{2}(p)\right)$ is a final state.

Two-dimensional right-linear grammar

Definition

A two-dimensional right-linear grammar (2RLG) is defined by a 7-tuple $G=\left(V_{h}, V_{v}, \Sigma_{I}, \Sigma, S, R_{h}, R_{v}\right)$, where:

- V_{h} is a finite set of horizontal variables
- V_{v} is a finite se of vertical variables
- $\Sigma_{I} \subseteq V_{v}$ is a finite set of intermediates
- Σ is a finite set of terminals
- $S \in V_{h}$ is a starting symbol
- R_{h} is a finite set of horizontal rules of the form $V \rightarrow A V^{\prime}$ or $V \rightarrow A$, where $V, V^{\prime} \in V_{h}$ and $A \in \Sigma_{l}$
- R_{v} is a finite set of vertical rules of the form $W \rightarrow a W^{\prime}$ or $W \rightarrow a$, where $W, W^{\prime} \in V_{v}$ and $a \in \Sigma$.
- The string grammar $G_{h}=\left(V_{h}, \Sigma_{l}, S, R_{h}\right)$ generates a string language $H(G)$ over the intermediate alphabet Σ_{l}.
- The string in $H(G)$ defines first row of generated picture.
- Each intermediate symbol is threated as a start symbol of vertical grammar $G_{v}=\left(V_{v}, \Sigma, \Sigma_{l}, R_{v}\right)$.
- The vertical generation of the columns is done in parallel by applying the rules in R_{v}.

Tiling systems

Denotation

Given a picture p of size (m, n), let $h \leq m, k \leq n$: we denote by $B_{h, k}(p)$ the set of all sub-pictures of p of size (h, k).

Definition (Local two-dimensional language)
Let Γ be a finite alphabet. A two-dimensional language $L \subseteq \Gamma^{* *}$ is local if there exist finite set Θ of tiles over the alphabet $\Gamma \cup\{\#\}$ such that $L=\left\{p \in \Gamma^{* *} \mid B_{2,2}(\widehat{p}) \subseteq \Theta\right\}$.

Definition (Tiling system)
A tiling system (TS) is a 4-tuple $\mathcal{T}=(\Sigma, \Gamma, \Theta, \pi)$, where Σ and Γ are two finite alphabets, Θ is finite set of tiles over the alphabet $\Gamma \cup\{\#\}$ and $\pi: \Gamma \rightarrow \Sigma$ is a projection.

- The TS \mathcal{T} defines language L over alphabet Σ as follows: $L=\pi\left(L^{\prime}\right)$ where $L^{\prime}=L(\Theta)$ is the local two-dimensional language over Γ.
- We write $L=L(\mathcal{T})$, and we say that L is recognized by \mathcal{T}.
- We will refer to $L^{\prime} \subseteq \Gamma^{* *}$ as an underlaying local language for L, while we will call Γ local alphabet.

Equivalences

- $\mathcal{L}(S F R E) \subseteq \mathcal{L}(R E)$
- $\mathcal{L}(C F R E) \subseteq \mathcal{L}(R E)$
- $\mathcal{L}(4 D F A) \subset \mathcal{L}(4 N F A)$
- $\mathcal{L}(2 D O T A) \subset \mathcal{L}(2 O T A)$
- $\mathcal{L}(4 N F A) \subset \mathcal{L}(2 O T A)$
- $\mathcal{L}(2 R L G) \subset \mathcal{L}(4 D F A)$
- $\mathcal{L}(T S)=\mathcal{L}(D S)$
- $\mathcal{L}(2 O T A)=\mathcal{L}(T S)$
- $\mathcal{L}(T S)=\mathcal{L}(E M S O)$
- $\mathcal{L}(T S)=\mathcal{L}($ PCFRE $)$

Bibliography

G. Rozenberg, A. Salomaa (Eds.):Chapter 4. in Volume 3 of Handbook of formal languages. Berlin; New York: Springer, c1997.

