
Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Graph grammars

Jǐŕı Zuzaňák

Brno University of Technology

December 19, 2007



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Introduction

• Graph grammars originated in the late 60s.

• Motivated mainly by problems of pattern recognition, compiler
construction and program optimization.

• Area of graph grammars generalizes theory of formal
languages based on strings and the theory of term rewriting
based on trees.

• Chomsky grammars → graph grammars
• text rewriting → graph transformation
• textual description → visual representation

• This theory has wide range of practical applications.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Graph grammar approaches

• Node replacement (Rozenberg, Engelfried)

• Hyperedge replacement (Habel, Kreowski)

• Algebraic Approaches
• Double Pushout (Ehrig, Schnider, Corradini et al)
• Single Pushout (Raoult, Löwe et al)
• Pullback (Bouderon)
• Double Pullback (Heckel et al)

• Logical approach (Courcelle, Bouderon)

• 2-Structures (Rozenberg)

• Programmed graph replacement (Schuerr)



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Graph grammar

M D

p = (M,D,C)

• A graph grammar is a pair G = (S , P), where S is a starting
graph and P is a set of production rules.

• Graph replacement grammars have production of form
(M, D, C ), where M is the mother graph, D is daughter
graph, and C is collection of connection instructions.

• All occurrences of graph M in a host graph are replaced with
D using the set of connections C .



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Node Label Controlled (NLC) Graph Grammars

Definition
A node label controlled graph grammar is a 5-tuple
G = (Σ, ∆, P, C , S), where

• Σ - is alphabet of node labels

• ∆ - is alphabet of terminal node labels, ∆ ⊆ Σ

• P - is finite set of productions which are pairs (d , Y ), with
d ∈ Σ, and Y is graph.

• C - is connection relation, a function from Σ to 2Σ

• S - is initial graph

Productions replaces single vertex by graph. Connection relations
are specified globally for all productions. Connection relations
apply only on neighboring vertices to mother graph (vertex) M.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Node Label Controlled (NLC) Graph Grammars

Example

Let ∆ = {a, b}, Σ = {A, a, b}, and S be a node with label A, then
bellow are two productions from P and connection relation C .

A
A

a

b

A

a

b

C =


A, {a, b}
a, b
b, a





Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Neighborhood Controlled Embedding (NCE) Graph
Grammar

Definition
The neighborhood controlled embeding (NCE) graph grammar is a
4-tuple G = (Σ, ∆, P, S), where Σ, ∆ and S are defined as in NLC
graph grammar.

• P is finite set of productions, which are 3-tuples (d , Y , C ),
with d ∈ Σ and Y is graph.

• C is connection relation, C ⊆ Σ× VY , and VY is a set of
nodes of Y .

Set of graphs generated by NCE grammars is same as set of graphs
generated by NLC graph grammars.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Neighborhood Controlled Embedding (NCE) Graph
Grammar

Example

Example of initial graph S and a production with connection
relation of NCE grammar are given below.

bS

a

c

A
A

x1 x2

x3x4

d d

d e

C =


a, x1
b, {x2, x3}
c , x4





Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Edge-Labeled Directed Neighborhood Controlled
Embedding (edNCE) Graph Grammar

An edge-labeled directed neighborhood controlled embedding
(edNCE) graph grammar is 7-tuple G = (Σ, ∆, Γ, Ω, P, C , S),
where

• Σ - is an alphabet of connection labels.

• ∆ - is an alphabet of terminal node labels, ∆ ⊆ Σ.

• Γ - is an alphabet of edge labels.

• Ω - is an alphabet of terminal edge labels, Ω ⊆ Γ.

• P - is a finite set of productions of the form (d , Y , C ), with
d ∈ Σ and Y is graph.

• C - is a connection relation, C ⊆ Σ× Γ× Γ× VY × {in, out}.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Edge-Labeled Directed Neighborhood Controlled
Embedding (edNCE) Graph Grammar

Example

First line in connection records list means that vertex x1 will be
adjacent to vertex a, if vertex a is adjacent to mother vertex A on
the edge labeled p. Label of the edge between x1 and a will be d ,
and direction of this edge will be from x1 to a.

bS

a

c

A
A

x1 x2

x3x4

d d

d e

p k

m l

z

z

z

zzt

C =

8<: a, p, d , x1, in
b, t, f , x2, in
c, m, g , x3, in

9=;



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Restriction on connect relations

• (B) Boundary graph grammars - no two non-terminals are
adjacent in right hand side of each production, and in start
graph.

• (Lin) Linear graph grammars - at each derivation step
daughter graph contain at most one non-terminal.

• (A) Apex graph grammar - Connection instruction contains
only terminal nodes.

• (-) Regular graph grammars - The right hand side is a single
non-terminal or consist of connected terminal and
nonterminal.

The desired property of new formed graph grammar classes is
confluence. Grammar is confluent, if the result of derivation does
not depend on the order of derivations.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Node replacement graph grammars hierarchy

Lin-A-NLC

Lin-A-NCE Lin-A-eNCE

A-NLC

A-NCE A-eNCE

Lin-NLC

Lin-NCE Lin-eNCE

B-NLC

B-NCE B-eNCE

eNCENLC=NCE



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Edge replacement graph grammar

Definition
An edge replacement graph grammar is a 7-tuple
G = (Σ, ∆, Γ, Ω, P, C , S), where Σ, ∆ and S are defined as before,
and

• Γ is alphabet of edge labels.

• Ω is alphabet of terminal edge labels, Ω ⊆ Γ

• P is a finite set of productions of the form (e, Y , C ), where e
is a single label of edge from (Γ\Ω), Y is a graph.

• C is a gluing relation

{
head(e)→ begin(Y )

tail(e)→ end(Y )

}



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Edge replacement graph grammar

• In every production, the graph Y has two nodes marked begin
and end.

• When a production is applied, edge e is removed from host
graph, and vertices incident to e, are replaced by vertices
marked start and end.

• Vertices of host graph previously incident to edge e preserve
all other connections to the host graph.

• Labels of this two vertices are replaced by labels in graph Y .



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Edge replacement context sensitive graph grammar

Definition
Edge replacement context sensitive graph grammar is a 7-tuple
G = (Σ, ∆, Γ, Ω, P, C , S), where

• Σ, ∆, Γ, Ω, and S are defined as before.
• P is a finite set of conditional productions of the form

if


neighborhood(head(e)) ⊆ O and

neighborhood(tail(e)) ⊆ P

ff
than e → Y and C =


head(e) → begin(Y )
tail(e) → end(Y )

ff

where, e is a single edge, with a label from (Γ\Ω) and Y is a
graph.

• C is gluing relation, where O and P are sets of labels,
O, P ⊆ Σ.

Replacement of edge e by graph Y occurs only if a specified
conditions are met.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Graph grammars hierarchy

Context Sensitive

Graph Replacement
Context Sensitive

Edge and Node
Replacement

Context Sensitive

Edge Replacement
Context Sensitive

Node Replacement
Context Sensitive

Context Free

Graph Replacement
Context Free

Edge and Node
Replacement
Context Free

Edge Replacement
Context Free

Node Replacement
Context Free

Node Replacement
Recursive

Context Free

Chain grammars



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Double Pushout

Definition
Rewrite rule is defined as a pair of morphisms L← K → R, where
L is left hand side of rule, R is right hand side of rule and K is the
interface graph.

Occurrence of this rule in graph G is morphism of L to G . Such
occurrence is rewritten by constructing the diagram from bottom.

L ← K → R
↓ ↓ ↓
G ← D → H

The part of L outside K is deleted from G , and replaced by the
part of R outside K . Thus creating result graph H.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Double Pushout

Example

(1) (2)

(3)

(1) (2) (1) (2)

(5)

(4)

(1) (2)

(6) (7)

(3)

(1) (2)

(6) (7)

(1) (2)

(6) (7)

(4)

(5)

L

G

K

D

R

H



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Single Pushout

Definition
Rewriting rule is defined as a partial graph morphism L⇒ R,
where L is left hand side of rule and R is right hand side of rule.

• Partial morphism of A to B is morphism of subobject A to B:
A←↩ X → B.

• Graph rewriting by single pushout is described at bottom
diagram.

L ⇒ R
⇓ ⇓
G ⇒ H

• Conditions for existence single-pushout partial morphism are
less restrictive than for double-pushout.

From graph G is removed occurrence of L\R, and then added copy
of R\L.



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Single Pushout

(1) (2)

(3)

(1) (2)

(5)

(4)

(1) (2)

(6) (7)

(3)

(1) (2)

(6) (7)

(4)

(5)

L

G

R

H



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Application of graph grammars

• program optimization, flow graph representation and
modification

• pattern recognition (image processing, music recognition)

• data network connection optimization

• functional and logic programing languages

• data mining mechanisms optimization

• neural networks with variable architecture

• . . .



Node replacement graph grammars Hyperedge replacement (HR) Algebraic approaches

Bibliography

J. Cuny, H. Ehrig, G. Engels, G. Rozenberg:
Graph grammars and their application in computer science.
Berlin: Springer Verlag, 1996


	Node replacement graph grammars
	Hyperedge replacement (HR)
	Algebraic approaches

