Multi-Grammars

Jiří Techet Tomáš Masopust Alexander Meduna
Department of Information Systems Faculty of Information Technology
Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic
Modern Formal Language Theory, 2007

Multisequential Grammar

Multisequential Grammar

$$
G=(V, T, P, S, K)
$$

where
V, T, S are defined as usual
K is a finite set of selectors of the form

$$
X_{1} \operatorname{act}\left(Y_{1}\right) \ldots X_{n} \operatorname{act}\left(Y_{n}\right) X_{n+1}
$$

where $n \geq 1$,

$$
\begin{aligned}
& X_{i} \in\left\{Z^{*}: Z \subseteq V\right\}, Y_{j} \in\{Z: Z \subseteq V, Z \neq \emptyset\} \\
& i=1, \ldots, n+1, \text { and } j=1, \ldots, n
\end{aligned}
$$

P is a finite set of productions of the form $a \rightarrow x$, where $a \in V$, $x \in V^{*}$

Multisequential Grammar - Derivation Step

Direct Derivation

If there is

$$
X_{1} \operatorname{act}\left(Y_{1}\right) \ldots X_{n} \operatorname{act}\left(Y_{n}\right) X_{n+1} \in K
$$

satisfying
(1) $u_{i} \in X_{i}$, for all $i=1, \ldots, n+1$,
$2 a_{j} \in Y_{j}$ and
3 $a_{j} \rightarrow x_{j} \in P$,
for all $j=1, \ldots, n$, then

$$
u_{1} a_{1} \ldots u_{n} a_{n} u_{n+1} \Rightarrow u_{1} x_{1} \ldots u_{n} x_{n} u_{n+1}
$$

Note

The generated language and \Rightarrow^{*} are defined as usual

Multisequential Grammar - Example

Example

$$
G=(\{S, a, b, c\},\{a, b, c\}, P, S, K)
$$

where

$$
\begin{aligned}
P=\{ & \{ \\
& \rightarrow a b c, \\
& \rightarrow a a, \\
& b \rightarrow b b, \\
& c \rightarrow c c\}
\end{aligned}
$$

and

$$
\begin{aligned}
& K=\{\operatorname{act}(\{S\}), \\
& \left.\{a\}^{*} \operatorname{act}(\{a\})\{b\}^{*} \operatorname{act}(\{b\})\{c\}^{*} \operatorname{act}(\{c\})\right\} \\
& L(G)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
\end{aligned}
$$

Multisequential Grammar - Generative Power

Generative Power
$\mathscr{L}(M S)=\mathscr{L}(R E)$

Descriptional Complexity

Every recursively enumerable language is generated by a multisequential grammar containing 2 nonterminals and 2 selectors.

Multicontinuous Grammar

Multicontinuous Grammar

$$
G=(V, T, P, S, K)
$$

where
V, T, S are defined as usual
K is a finite set of selectors of the form

$$
X_{1} \operatorname{act}\left(Y_{1}\right) X_{2} \ldots X_{n} \operatorname{act}\left(Y_{n}\right) X_{n+1}
$$

where $n \geq 1$,

$$
\begin{aligned}
& \quad X_{i} \in\left\{Z^{*}: Z \subseteq V\right\}, Y_{j} \in\left\{Z^{+}: Z \subseteq V, Z \neq \emptyset\right\} \\
& i=1, \ldots, n+1, \text { and } j=1, \ldots, n
\end{aligned}
$$

P is a finite set of productions of the form $a \rightarrow x$, where $a \in V$, $x \in V^{*}$

Multicontinuous Grammar - Derivation Step

Direct Derivation

If there is

$$
X_{1} \operatorname{act}\left(Y_{1}\right) \ldots X_{n} \operatorname{act}\left(Y_{n}\right) X_{n+1} \in K
$$

satisfying
(1) $u_{i} \in X_{i}$, for all $i=1, \ldots, n+1$,
$2 y_{j} \in Y_{j}$ and
[3 $y_{j}=y_{j_{1}} \ldots y_{j_{m_{j}}}, z_{j}=z_{j_{1}} \ldots z_{j_{m_{j}}}$, where $y_{j_{1}} \rightarrow z_{j_{1}}, \ldots, y_{j_{m_{j}}} \rightarrow z_{j_{m_{j}}} \in P$ for some $m_{j} \geq 1$,
for all $j=1, \ldots, n$, then

$$
u_{1} y_{1} \ldots u_{n} y_{n} u_{n+1} \Rightarrow u_{1} z_{1} \ldots u_{n} z_{n} u_{n+1}
$$

Note

The generated language and \Rightarrow^{*} are defined as usual

Multicontinuous Grammar - Example

Example

$$
G=(\{S, a, b, c\},\{a, b, c\}, P, S, K)
$$

where

$$
\begin{aligned}
P=\{ & \{ \\
& \rightarrow a b c, \\
& \rightarrow a a, \\
& b \rightarrow b b, \\
& c \rightarrow c c\}
\end{aligned}
$$

and

$$
\begin{aligned}
K=\{ & \operatorname{act}\left(\{S\}^{+}\right), \\
& \left.\operatorname{act}\left(\{a\}^{+}\right) \operatorname{act}\left(\{b\}^{+}\right) \operatorname{act}\left(\{c\}^{+}\right)\right\} \\
& L(G)=\left\{a^{2^{n}} b^{2^{n}} c^{2^{n}}: n \geq 0\right\}
\end{aligned}
$$

Multicontinuous Grammar - Generative Power

Generative Power
$\mathscr{L}(M C)=\mathscr{L}(R E)$

Descriptional Complexity

Every recursively enumerable language is generated by a multicontinuous grammar containing 3 nonterminals and 2 selectors.

Multiparallel Grammar

Multiparallel Grammar

$$
G=(V, T, P, S, K)
$$

where
V, T, S are defined as usual
K is a finite set of selectors of the form

$$
F_{1} F_{2} \ldots F_{m}
$$

where

$$
F_{j} \in\left\{W^{+}: W \subseteq V, W \neq \emptyset\right\}
$$

$j=1, \ldots, m$, for some $m \geq 1$
P is a finite set of productions of the form $a \rightarrow x$, where $a \in V$, $x \in V^{*}$

Multiparallel Grammar - Derivation Step

Direct Derivation

If there is

$$
\pi \in K
$$

satisfying
$\boldsymbol{1}$ either $u=S$ and $S \rightarrow v \in P$,
2 or there is $k \geq 1$ so that
■ $u=a_{1} \ldots a_{k}$, where $a_{i} \in V$,

- $u \in \pi$,
- $v=x_{1} \ldots x_{k}$ and $a_{i} \rightarrow x_{i} \in P$
for all $i=1, \ldots, k$, then

$$
u \Rightarrow v
$$

Note

The generated language and \Rightarrow^{*} are defined as usual

Multiparallel Grammar - Example

Example

$$
G=(\{S, A, B, C, a, b, c\},\{a, b, c\}, P, S, K)
$$

where

$$
\left.\begin{array}{rlrl}
P=\{S \rightarrow a A b B c C, & & S \rightarrow a b c, & \\
& A \rightarrow a A, & A \rightarrow a, & a \rightarrow a, \\
& B \rightarrow b B, & & B \rightarrow b,
\end{array} \quad b \rightarrow b,\right\}
$$

and

$$
\begin{gathered}
K=\{a\}^{+}\{A\}^{+}\{b\}^{+}\{B\}^{+}\{c\}^{+}\{C\}^{+} \\
L(G)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
\end{gathered}
$$

Multiparallel Grammar - Generative Power

Generative Power
 $\mathscr{L}(M P)=\mathscr{L}(R E)$

Descriptional Complexity

Every recursively enumerable language is generated by a multiparallel grammar containing 7 nonterminals and 4 selectors of the length 5 ($m=5$).

Bibliography

R. H. C. M. Kleijn and G. Rozenberg.

Multi grammars.
International Journal of Computer Mathematics, 12:177-201, 1983.
T. Masopust.

Regulated Formal Models and Their Reductions.
PhD thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, 2007.

