
Yacc

Jǐŕı Techet Tomáš Masopust (Alexander Meduna)

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

Modern Formal Language Theory, 2007

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 1 / 25

Yacc

tool for generating parsers

parser described by context-free productions in a definition file

scanner has to be provided (written manually or generated by Lex)

Yacc processes the definition file and outputs a parser written in C

this parser can be compiled by a C compiler to produce an executable

the executable performs (LALR) bottom up parsing of its input and
performs associated actions to produce its output

Definition file Yacc Parser in C

Scanner

C compiler Executable

Input Executable Output

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 2 / 25

Structure of Definition File I

Structure of Definition File

%{
Prologue

%}

Yacc declarations

%%
Grammar rules
%%

Epilogue

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 3 / 25

Structure of Definition File II

Yacc definition file divided into 3 parts which are separated by %%

Parts of Definition File

1 prologue and declarations
prologue

enclosed within %{ %}
contains any C code needed in actions (macros, function prototypes)
several prologues can be mixed with Yacc declarations

declarations

specification of nonterminals, tokens, operator precedence, value types
and others

2 grammar rules

specification of grammar rules and associated actions performed when
a rule is used in a reduction

3 epilogue

any other code (typically definitions of main(), yylex(), yyerror())

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 4 / 25

Token Types

defined by %token, %left, %right, or %nonassoc in the declarations
part

by convention, token name should be upper case

%token NUM

internally represented as C macros which assign a numerical code to
every token type

literal character tokens (’+’) and literal string tokens ("<=") do not
have to be declared

associativity defined by %left, %right and %nonassoc

precedence defined by the order of their definition, lowest first

%left ’-’ ’+’ /* lowest precedence */
%left ’*’ ’/’
%left NEG
%right ’^’ /* highest precedence */

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 5 / 25

Attributes

Attribute Types

1 if all tokens (and all semantic values) have the same type of their
attributes, YYSTYPE macro can be used

%{
#define YYSTYPE double

%}

%token NUM

2 if there are more types, all possible types defined by %union

%union {
double val;
symrec *tptr;

}

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 6 / 25

Attribute Type Assignment

Terminal Type Assignment

each token is assigned its attribute type by putting <type> in its
definition

%union {
double val;
symrec *tptr;

}

%token <val> NUM

Nonterminal Type Assignment

if %union is used, each nonterminal has to be assigned the type of its
semantic value

%type <val> expr1 expr2

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 7 / 25

Other Declarations I

%initial-action

allows to perform some initial actions before yyparse is called

$$, @$ and arguments of %parse-param can be used

Example

%parse-param { char const *file_name };

%initial-action
{
@$.initialize (file_name);

};

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 8 / 25

Other Declarations II

%destructor

called when symbols are discarded to properly deallocate the memory
(during error recovery, when the parser succeeds)

%destructor { code } symbols

$$ designates the semantic value associated with the discarded symbol

invoked when user actions cannot change the memory

1 stacked symbols popped during the first phase of error recovery
2 incoming terminals during the second phase of error recovery
3 the current look-ahead and the entire stack when the parser returns

immediately
4 the start symbol, when the parser succeeds

%union { char *string; }
%type <string> STRING
%destructor { free($$); } STRING

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 9 / 25

Other Declarations III

%defines

write a header file containing macro definitions for token type names
defined in the grammar

used by yylex if it is in another file

if parser output file is name.c then the header file is name.h

%start

possible to specify the start symbol

%start S

by default, the first rule’s left-hand side is the start symbol

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 10 / 25

Grammar Rules

consider the following context-free rules:

exp → ε
exp → exp + exp
exp → exp − exp
exp → exp ∗ exp
exp → exp/exp

in definition file, these rules are represented as follows:

exp: /* empty line = empty string */
| exp ’+’ exp /* | means alternative rhs */
| exp ’-’ exp /* for the same lhs */
| exp ’*’ exp
| exp ’/’ exp

; /* end of rule */

actions can be scattered among the symbols of the right-hand side
rules in the grammar should be left recursive

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 11 / 25

Context-Dependent Precedence

%prec Modifier

used to set priority when one operator is used for several functions
(e.g. unary minus × binary minus)

%left ’+’ ’-’
%left ’*’
%left UMIN
/* dummy operator with the highest priority */

exp: exp ’+’ exp { }
| exp ’-’ exp { }
| exp ’*’ exp { }
| ’-’ exp %prec UMIN { }

/* in this context ’-’ has the same priority as UMIN */
;

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 12 / 25

Actions

actions appear between { } anywhere on the right-hand side of a rule
usually at the end of a rule

Semantic Values of Rule Components

$$ semantic value of the nonterminal on the left-hand side

$n semantic value of the nth symbol on the right-hand side

default action is $$ = $1

if there are different types of semantic values (specified by %union),
$<type>$ and $<type>n have to be used

Example

exp: NUM /* default action: $$ = $1 */
| exp ’+’ exp { $$ = $1 + $3; } ;

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 13 / 25

Locations I

used to track locations of currently processed tokens in the input file

useful for generating error messages

YYLTYPE structure

for each token, the scanner has to save its position to the variable
yylloc which is of the type YYLTYPE

typedef struct YYLTYPE
{

int first_line;
int first_column;
int last_line;
int last_column;

} YYLTYPE;

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 14 / 25

Locations II

Location Values of Rule Components

in parser, access similar to semantic values:

@$ location of the nonterminal on the left-hand side
@n location of the nth symbol on the right-hand side

Default Action for Locations

executed each time a rule is matched

by default, it sets the beginning of @$ to the beginning of the first
symbol, and the end of @$ to the end of the last symbol on the rule’s
right-hand side – sufficient for most parsers

can be redefined by YYLLOC DEFAULT macro

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 15 / 25

Generated Parser

int yyparse()

parses the input file

returns 0 if parsing was successful, 1 if there was a syntax error, 2 if
memory was exhausted

in actions, YYACCEPT can be used to return 0 and YYABORT to return 1

int yylex()

has to be provided by the user (written manually or by using Lex)

returns token type

attribute is stored in the global variable yylval
when using multiple attribute types (specified by %union), the
corresponding member has to be used

yylval.intval = value; /* put value onto Yacc stack */
return INT; /* return the type of the token */

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 16 / 25

Error Reporting and Recovery

void yyerror(char const *s)

has to be provided by the user

usually of the following form:

void yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);

}

Error Recovery

special token error which is generated when no rule can be used

if there is a rule with the error token, parsing can recover

can be explicitly invoked by YYERROR macro

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 17 / 25

Error Recovery

Example

stmnts: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’ { yyerrok; }
;

if there is an error in exp, recovery is performed as follows:

1 tokens from exp which are already on the stack are discarded
2 error is shifted
3 input symbols are discarded until ’\n’ is the current input token

by default, error messages are suppressed until 3 tokens successfully
shifted – to avoid this yyerrok can be used

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 18 / 25

Command Line Options

bison [OPTION]... FILE

Selected Parameters

-o outf output file name

-p pref specifies other prefix than yy for Yacc functions

-d same as %defines

Options Within Definition File

many options can be specified within the declarations part of the
definition file

%defines

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 19 / 25

Example I

Example

/* Reverse polish notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
#include <ctype.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

%}

%token NUM

%% /* Grammar rules and actions follow. */

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 20 / 25

Example II

Example

input: /* empty */
| input line

;
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }

| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
| exp exp ’^’ { $$ = pow ($1, $2); }
| exp ’n’ { $$ = -$1; } /* Unary minus */

;

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 21 / 25

Example III

Example

%% /* Epilogue follows. */

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric
code of the character read if not a number. It skips
all blanks and tabs, and returns 0 for end-of-input. */

int yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)

;

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 22 / 25

Example IV

Example

/* Process numbers. */
if (c == ’.’ || isdigit (c))

{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;

}
/* Return end-of-input. */
if (c == EOF)

return 0;
/* Return a single char. */
return c;

}

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 23 / 25

Example V

Example

/* Called by yyparse on error. */
void yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);

}

int main (void)
{
return yyparse ();

}

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 24 / 25

Bibliography

Bison documentation.
http://www.gnu.org/software/bison/manual/index.html.

Techet, Masopust, (Meduna) (FIT, BUT) Yacc Modern FLT, 2007 25 / 25

http://www.gnu.org/software/bison/manual/index.html

	Introduction
	Definition File
	Structure
	Token Types
	Attributes
	Other Declarations
	Grammar Rules
	Context-Dependent Precedence
	Actions
	Locations

	Generated Parser
	Error Reporting and Recovery

	Command Line Options
	Program Example
	Bibliography

