Jumping Finite Automata

Alexander Meduna

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61200 Brno, Czech Republic http://www.fit.vutbr.cz/~meduna

BRNO
UNIVERSITY
OF TECHNOLOGY

Prepared in cooperation with Petr Zemek based on
Alexander Meduna and Petr Zemek
Jumping Finite Automata
International Journal of Foundations of Computer Science
Vol. 49, No. 2, p. 1555-1578, 2012
Supported by the IT4I Centre of Excellence CZ.1.05/1.1.00/02.0070.

- Introduction
- Definitions and Examples
- Results
- Concluding Remarks and Discussion

Finite Automata

Finite Automata

Accepted language: $\{a\}^{*}\{c\}\{b\}^{*}$

| Jumping Finite Automata

Accepted language: $\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}$

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- $R \subseteq Q \times \Sigma^{*} \times Q$ is a finite ternary relation, called the set of rules; in what follows, every rule $(p, y, q) \in R$ is written as $p y \rightarrow q$
- s is the start state;
- F is a set of final states.

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- $R \subseteq Q \times \Sigma^{*} \times Q$ is a finite ternary relation, called the set of rules; in what follows, every rule $(p, y, q) \in R$ is written as $p y \rightarrow q$
- s is the start state;
- F is a set of final states.

Definition

If all rules $p y \rightarrow q \in R$ satisfy $|y| \leq 1$, then M is a jumping finite automaton (JFA).

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x \underline{p} y z \curvearrowright x^{\prime} \underline{q} z^{\prime}
$$

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x \underline{p} y z \curvearrowright x^{\prime} \underline{q} z^{\prime}
$$

intuitively, a sequence of n jumps ($n \geq 0$); mathematically, the nth power of \curvearrowright intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of \curvearrowright

Definition

If $x, z, x^{\prime}, z^{\prime}, y \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$, then M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as

$$
x \underline{p} y z \curvearrowright x^{\prime} \underline{q} z^{\prime}
$$

\curvearrowright^{n}intuitively, a sequence of n jumps ($n \geq 0$); mathematically, the nth power of \curvearrowright intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of \curvearrowright

Definition

The language accepted by M, denoted by $L(M)$, is defined as

$$
L(M)=\left\{u v: u, v \in \Sigma^{*}, u \underline{s} v \curvearrowright^{*} \underline{f}, f \in F\right\}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

bacbcsa

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:
bacbcsa \curvearrowright bacrbc $[s a \rightarrow r]$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{cccc}
b a c b c s a & \curvearrowright & \text { bacrbc } & {[s a \rightarrow r]} \\
& \curvearrowright & b a c t c & {[r b \rightarrow+]}
\end{array}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{rcll}
\text { bacbcsa } & \curvearrowright & \text { bacrbc } & {[s a \rightarrow r]} \\
& \curvearrowright & b a c \underline{f} c & {[r b \rightarrow+]} \\
& \curvearrowright & b s a c & {[\dagger c \rightarrow s]}
\end{array}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{rcll}
\text { bacbcsa } & \curvearrowright & \text { bacrbc } & {[s a \rightarrow r]} \\
& \curvearrowright & b a c+c & {[r b \rightarrow+]} \\
& \curvearrowright & b s a c & {[\dagger c \rightarrow s]} \\
& \curvearrowright & r b c & {[s a \rightarrow r]}
\end{array}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{rcll}
b a c b c s a & \curvearrowright & b a c r b c & {[s a \rightarrow r]} \\
& \curvearrowright & b a c+c & {[r b \rightarrow t]} \\
& \curvearrowright & b s a c & {[t c \rightarrow s]} \\
& \curvearrowright & r b c & {[s a \rightarrow r]} \\
& \curvearrowright & \pm c & {[r b \rightarrow+]}
\end{array}
$$

Example

The JFA

$$
M=(\{s, r, t\},\{a, b, c\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow r, r b \rightarrow t, t c \rightarrow s\}
$$

accepts

$$
L(M)=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

For instance:

$$
\begin{array}{rlll}
\text { bacbcsa } & \curvearrowright & b a c r b c & {[s a \rightarrow r]} \\
& \curvearrowright & b a c \underline{c} c & {[r b \rightarrow t]} \\
& \curvearrowright & b s a c & {[\dagger c \rightarrow s]} \\
& \curvearrowright & \underline{r b c} & {[s a \rightarrow r]} \\
& \curvearrowright & t c & {[r b \rightarrow t]} \\
& \curvearrowright & \underline{s} & {[\dagger c \rightarrow s]}
\end{array}
$$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:

bbsbaa

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:
bbsbaa $\curvearrowright b b f a \quad[s b a \rightarrow f]$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:

$$
\begin{array}{rlll}
b b s b a a & \curvearrowright & b b f a & {[s b a \rightarrow f]} \\
& \curvearrowright & f b b & {[f a \rightarrow f]}
\end{array}
$$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:

$$
\begin{array}{rlll}
\text { bbssbaa } & \curvearrowright & b b \underline{f} a & {[s b a \rightarrow f]} \\
& \curvearrowright & \underline{f b b} & {[f a \rightarrow f]} \\
& \curvearrowright & \underline{f b} & {[f b \rightarrow f]}
\end{array}
$$

Example

The GJFA

$$
H=(\{s, f\},\{a, b\}, R, s,\{f\}),
$$

with

$$
R=\{s b a \rightarrow f, f a \rightarrow f, f b \rightarrow f\}
$$

accepts

$$
L(H)=\{a, b\}^{*}\{b a\}\{a, b\}^{*}
$$

For instance:

$$
\begin{array}{ccll}
\text { bbsbaaa } & \curvearrowright & b b f a & {[s b a \rightarrow f]} \\
& \curvearrowright & f b b & {[f a \rightarrow f]} \\
& \curvearrowright & \underline{f b} & {[f b \rightarrow f]} \\
& \curvearrowright & {[f b \rightarrow f]}
\end{array}
$$

For any string w, perm (w) denotes the set of all its permutations.
For an arbitrary language L, set

$$
\operatorname{perm}(L)=\{\operatorname{perm}(w): w \in L\}
$$

For any string w, perm (w) denotes the set of all its permutations.
For an arbitrary language L, set

$$
\operatorname{perm}(L)=\{\operatorname{perm}(w): w \in L\}
$$

Theorem

Let L be an arbitrary language. L is accepted by a JFA if and only if $L=\operatorname{perm}(K)$, where K is a regular language.

Power of GJFAs and JFAs

For any string w, perm (w) denotes the set of all its permutations.
For an arbitrary language L, set

$$
\operatorname{perm}(L)=\{\operatorname{perm}(w): w \in L\}
$$

Theorem

Let L be an arbitrary language. L is accepted by a JFA if and only if $L=\operatorname{perm}(K)$, where K is a regular language.

Proof Idea

I. Let M be a JFA. Consider M as an FA M^{\prime}. Set $K=L\left(M^{\prime}\right)$. K is regular, and $L(M)=\operatorname{perm}(K)$.
II. Take perm (K), where K is any regular language. Let $K=L(M)$, where M is an FA. Consider M as a JFA $M^{\prime} . L\left(M^{\prime}\right)=\operatorname{perm}(K)$.

Corollary

There is no JFA that accepts $\{a, b\}^{*}\{b a\}\{a, b\}^{*}$.

Corollary

There is no JFA that accepts $\{a, b\}^{*}\{b a\}\{a, b\}^{*}$.

Theorem

GJFAs are strictly stronger than JFAs.

Corollary

There is no JFA that accepts $\{a, b\}^{*}\{b a\}\{a, b\}^{*}$.

Theorem

GJFAs are strictly stronger than JFAs.

Proof Idea

The language $\{a, b\}^{*}\{b a\}\{a, b\}^{*}$ is accepted by the GJFA from Example \#2.

$$
\left\{w:|w|_{a}=|w|_{b}=|w|_{c}\right\}
$$

By analogy with finite automata:

- removal of ε-moves $(p \rightarrow q$ and $q a \rightarrow r \Rightarrow p a \rightarrow r)$
- making JFAs deterministic

By analogy with finite automata:

- removal of ε-moves $(p \rightarrow q$ and $q a \rightarrow r \Rightarrow p a \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

By analogy with finite automata:

- removal of ε-moves $(p \rightarrow q$ and $q a \rightarrow r \Rightarrow p a \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

Proof Idea

In unary languages, it does not matter where the automaton jumps.

Further Topics of Investigation

By analogy with finite automata:

- removal of ε-moves $(p \rightarrow q$ and $q a \rightarrow r \Rightarrow p a \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

Proof Idea

In unary languages, it does not matter where the automaton jumps.

Corollary

The language of primes

$$
\left\{a^{p}: p \text { is a prime number }\right\}
$$

cannot be accepted by any JFA.

Theorem

JFA is closed under union.

Theorem

JFA is closed under union.

Proof

We have: Two JFAs

- $M_{1}=\left(Q_{1}, \Sigma_{1}, R_{1}, s_{1}, F_{1}\right)$
- $M_{2}=\left(Q_{2}, \Sigma_{2}, R_{2}, s_{2}, F_{2}\right)$
$\left(Q_{1} \cap Q_{2}=\emptyset\right)$
We need: JFA $H=(Q, \Sigma, R, s, F)$ such that $L(H)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$
Construction:

$$
\begin{aligned}
& Q=Q_{1} \cup Q_{2} \cup\{s\} \\
& \Sigma=\Sigma_{1} \cup \Sigma_{2} \\
& R=R_{1} \cup R_{2} \cup\left\{s \rightarrow s_{1}, s \rightarrow s_{2}\right\} \\
& F=F_{1} \cup F_{2}
\end{aligned}
$$

Theorem
JFA is not closed under concatenation.

Theorem
JFA is not closed under concatenation.

Proof

- Consider $K_{1}=\{a\}$ and $K_{2}=\{b\}$.
- The JFA $M_{1}=(\{s, f\},\{a\},\{s a \rightarrow f\}, s,\{f\})$ accepts K_{1}.
- The JFA $M_{2}=(\{s, f\},\{b\},\{s b \rightarrow f\}, s,\{f\})$ accepts K_{2}.
- However, there is no JFA that accepts $K_{1} K_{2}=\{a b\}$.

	GJFA	JFA	REG
union	+	+	+
intersection	-	+	+
concatenation	-	-	+
intersection with reg. lang.	-	-	+
complement	-	+	+
shuffle	$?$	+	+
mirror image	$?$	+	+
Kleene star	$?$	-	+
Kleene plus	$?$	-	+
substitution	-	-	+
regular substitution	-	-	+
finite substitution	+	-	+
homomorphism	+	-	+
ε-free homomorphism	+	-	+
inverse homomorphism	+	+	+

	GJFA	JFA
membership	+	+
emptiness	+	+
finiteness	+	+
infiniteness	+	+

Definition

A GJFA $M=(Q, \Sigma, R, s, F)$ is of degree n, where $n \geq 0$, if $p y \rightarrow q \in R$ implies that $|y| \leq n$.

Definition

A GJFA $M=(Q, \Sigma, R, s, F)$ is of degree n, where $n \geq 0$, if $p y \rightarrow q \in R$ implies that $|y| \leq n$.

Example

The GJFA $M=(\{s, p, f\},\{a, b, c\}, R, s,\{f\})$ with

$$
R=\{s a b c \rightarrow p, p c c \rightarrow f, f a \rightarrow f\}
$$

is of degree 3 .

Definition

A GJFA $M=(Q, \Sigma, R, s, F)$ is of degree n, where $n \geq 0$, if $p y \rightarrow q \in R$ implies that $|y| \leq n$.

Example

The GJFA $M=(\{s, p, f\},\{a, b, c\}, R, s,\{f\})$ with

$$
R=\{s a b c \rightarrow p, p c c \rightarrow f, f a \rightarrow f\}
$$

is of degree 3 .
GJFA $_{n}$ the family of languages accepted by GJFAs of degree n

Definition

A GJFA $M=(Q, \Sigma, R, s, F)$ is of degree n, where $n \geq 0$, if $p y \rightarrow q \in R$ implies that $|y| \leq n$.

Example

The GJFA $M=(\{s, p, f\},\{a, b, c\}, R, s,\{f\})$ with

$$
R=\{s a b c \rightarrow p, p c c \rightarrow f, f a \rightarrow f\}
$$

is of degree 3 .
GJFA $_{n}$ the family of languages accepted by GJFAs of degree n

Theorem

GJFA $_{n} \subset$ GJFA $_{n+1}$ for all $n \geq 0$

Definition

A GJFA makes a left jump from $w x p y z$ to $w a x z$ by py $\rightarrow q$:

$$
w x p y z \mid \curvearrowright w \underline{q} x z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a left jump from wxpyz to $w a x z$ by $p y \rightarrow q:$

$$
w x p y z ~ i \curvearrowright w \underline{q} x z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a right jump from wpyxz to $w x q z$ by $p y \rightarrow q$:

$$
w \underline{p} y x z_{r} \curvearrowright w x \underline{q} z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a left jump from wxpyz to waxz by py \rightarrow q:

$$
w x p y z ~ ı \curvearrowright \underline{p} x z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a right jump from wpyxz to $w x q z$ by $p y \rightarrow q$:

$$
w \underline{p} y x z_{r} \curvearrowright w x \underline{q} z
$$

where $w, x, y, z \in \Sigma^{*}$.
,GJFA GJFAs using only left jumps JFA JFAs using only left jumps
${ }_{r}$ GJFA GJFAs using only right jumps
${ }_{r}$ JFA JFAs using only right jumps

Theorem
${ }_{r} \mathbf{G} \mathbf{J F A}={ }_{r} \mathbf{J F A}=$ REG

Theorem

${ }_{r} \mathbf{G} \mathbf{J F A}={ }_{r} \mathbf{J F A}=$ REG
Proof Idea
-, JFA $=$ REG simulating a finite automaton

- rGJFA $=$ REG simulating a general finite automaton

| Left and Right Jumps - Results

Theorem

${ }_{r} \mathbf{G} \mathbf{J F A}={ }_{r} \mathbf{J F A}=$ REG
Proof Idea

- r JFA $=$ REG simulating a finite automaton
- rGFA $=$ REG simulating a general finite automaton

Theorem

,JFA - REG $\neq \emptyset$

Theorem

${ }_{r} \mathbf{G J F A}={ }_{r} \mathbf{J F A}=$ REG

Proof Idea

- r JFA $=$ REG simulating a finite automaton
- rGFA $=$ REG simulating a general finite automaton

Theorem

,JFA - REG $\neq \emptyset$
Proof Idea

$$
M=(\{s, p, q\},\{a, b\}, R, s,\{s\})
$$

with

$$
R=\{s a \rightarrow p, p b \rightarrow s, s b \rightarrow q, q a \rightarrow s\}
$$

accepts

$$
, L(M)=\left\{w:|w|_{a}=|w|_{b}\right\}
$$

```
Definition
Let \(M=(Q, \Sigma, R, s, F)\) be a GJFA. Set
    \({ }^{b} L(M)=\left\{W \in \Sigma^{*}: s w{ }^{*} \underline{f}\right.\) with \(\left.f \in F\right\}\)
    \({ }^{a} L(M)=\left\{u v: u, v \in \Sigma^{*}, u s v \curvearrowright^{*} \underline{f}\right.\) with \(\left.f \in F\right\}\)
    \({ }^{e} L(M)=\left\{w \in \Sigma^{*}: W \underline{s} \curvearrowright^{*} \underline{f}\right.\) with \(\left.f \in F\right\}\)
```

(beginning)
(anywhere)
(end)

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a GJFA. Set
${ }^{b} L(M)=\left\{w \in \Sigma^{*}: \underline{s} w \curvearrowright^{*} \underline{f}\right.$ with $\left.f \in F\right\}$
(beginning)
${ }^{a} L(M)=\left\{u v: u, v \in \Sigma^{*}, u s v \curvearrowright^{*} \underline{f}\right.$ with $\left.f \in F\right\}$
(anywhere)
${ }^{e} L(M)=\left\{w \in \Sigma^{*}: W \underline{s} \curvearrowright^{*} \underline{f}\right.$ with $\left.f \in F\right\}$
(end)
${ }^{\text {b }}$ GJFA GJFAs starting at the beginning
${ }^{a}$ GJFA GJFAs starting anywhere
${ }^{e}$ GJFA GJFAs starting at the end
${ }^{\text {b }}$ JFA JFAs starting at the beginning
${ }^{a}$ JFA JFAs starting anywhere
${ }^{e}$ JFA JFAs starting at the end

Definition

Let $M=(Q, \Sigma, R, s, F)$ be a GJFA. Set

$$
\begin{array}{lll}
{ }^{b} L(M) & =\left\{w \in \Sigma^{*}: \underline{s} w \curvearrowright^{*} \underline{f} \text { with } f \in F\right\} & \text { (beginning) } \\
a_{L(M)} & =\left\{u v: u, v \in \Sigma^{*}, u s v \curvearrowright^{*} \underline{f} \text { with } f \in F\right\} & \text { (anywhere) } \\
{ }^{e} L(M) & =\left\{w \in \Sigma^{*}: w \underline{\curvearrowright^{*}} \underline{f} \text { with } f \in F\right\} & \text { (end) } \tag{end}
\end{array}
$$

${ }^{b}$ GJFA GJFAs starting at the beginning
${ }^{a}$ GJFA GJFAs starting anywhere
${ }^{e}$ GJFA GJFAs starting at the end
${ }^{\text {b }}$ JFA JFAs starting at the beginning
${ }^{a}$ JFA JFAs starting anywhere
${ }^{e}$ JFA JFAs starting at the end
Observations:

- ${ }^{a} L(M)=L(M)$
- ${ }^{a}$ GJFA $=$ GJFA and ${ }^{a}$ JFA $=$ JFA

Theorem
 ${ }^{a}$ JFA $\subset{ }^{b}$ JFA

Theorem

${ }^{a}$ JFA $\subset{ }^{b}$ JFA
Proof Idea
The JFA

$$
M=(\{s, f\},\{a, b\},\{s a \rightarrow f, f b \rightarrow f\}, s,\{f\})
$$

satisfies ${ }^{b} L(M)=\{a\}\{b\}^{*}\left(\{a\}\{b\}^{*} \notin{ }^{a}\right.$ JFA $)$.

Theorem

${ }^{a}$ JFA $\subset{ }^{b}$ JFA
Proof Idea
The JFA

$$
M=(\{s, f\},\{a, b\},\{s a \rightarrow f, f b \rightarrow f\}, s,\{f\})
$$

satisfies ${ }^{b} L(M)=\{a\}\{b\}^{*}\left(\{a\}\{b\}^{*} \notin{ }^{a} \mathrm{JFA}\right)$.

Theorem

${ }^{a}$ GJFA $\subset{ }^{b}$ GJFA

Theorem

${ }^{a}$ JFA $\subset{ }^{b}$ JFA
Proof Idea
The JFA

$$
M=(\{s, f\},\{a, b\},\{s a \rightarrow f, f b \rightarrow f\}, s,\{f\})
$$

satisfies ${ }^{b} L(M)=\{a\}\{b\}^{*} \quad\left(\{a\}\{b\}^{*} \notin{ }^{a}\right.$ JFA $)$.

Theorem

${ }^{a}$ GJFA $\subset{ }^{b}$ GJFA
Theorem
${ }^{e}$ GJFA $={ }^{a}$ GJFA and ${ }^{e} \mathbf{J F A}={ }^{a}$ JFA

- closure properties of GJFA (shuffle, Kleene star, Kleene plus, and mirror image)
- other decision problems of GJFA and JFA, like equivalence, universality, inclusion, or regularity
- the effect of left jumps to the power of JFAs and GJFAs (we only know that /JFA - REG $\neq \emptyset$)
- strict determinism (precisely determine where to jump)
- applications: verification of a relation concerning the number of symbol occurrences (genetics)
$\square \quad$ a blank
\checkmark the alphabet of letters
$W=V \cup\{\square\}$

Definition

A string $w \in W^{*}$ is useful if it contains more letters than blanks.
$\square \quad$ a blank
\checkmark the alphabet of letters
$W=V \cup\{\square\}$

Definition

A string $w \in W^{*}$ is useful if it contains more letters than blanks.

Objective: Acceptance of all useful strings

Illustration

Acceptance: this $\square i s \square$ usefull \square information
Rejection: \square

The next JFA performs this acceptance:

$$
M=(\{s, p, f\}, W, R, s,\{f\})
$$

where R contains the following rules:

$$
\begin{aligned}
s \square & \rightarrow p \\
p a & \rightarrow s \quad \text { for each } a \in V \\
s a & \rightarrow f \\
f a & \rightarrow f \quad \text { for each } a \in V \\
& \text { for each } a \in V
\end{aligned}
$$

The next JFA performs this acceptance:

$$
M=(\{s, p, f\}, W, R, s,\{f\})
$$

where R contains the following rules:

$$
\left.\begin{array}{rl}
s \square & \rightarrow p \\
p a & \rightarrow s \quad \text { for each } a \in V \\
s a & \rightarrow f \\
f a & \rightarrow f \quad \text { for each } a \in V \\
f
\end{array}\right)
$$

Implementation: Where to jump? Jump to the leftmost possible symbol that can be read.

Discussion

