Regulated Pushdown Automata

Fundamental References

- Meduna Alexander, Kolář Dušan:

Regulated Pushdown Automata, Acta Cybernetica, Vol. 2000, No. 4, p. 653-664

- Meduna Alexander, Kolář Dušan:

One-Turn Regulated Pushdown Automata and
Their Reduction, Fundamenta Informatica,
Vol. 2002, No. 16, p. 399-405

Inspiration: Regulated Grammars

- Grammar G :

$$
\begin{aligned}
& \text { 1. } S \rightarrow A C \\
& \text { 2. } A \rightarrow a A b \\
& \text { 3. } A \rightarrow a b \\
& \text { 4. } C \rightarrow C c \\
& \text { 5. } C \rightarrow c
\end{aligned}
$$

- $\Xi=\{1\}\{24\}^{*}\{35\}$

Regulated Grammars 1/2

- Grammar G: | - Without Ξ, G

$$
\begin{aligned}
& \text { 1. } S \rightarrow A C \\
& \text { 2. } A \rightarrow a A b \\
& \text { 3. } A \rightarrow a b \\
& \text { 4. } C \rightarrow C c \\
& \text { 5. } C \rightarrow c \\
& \Xi=\{1\}\{24\}^{*}\{35\}
\end{aligned}
$$

generates abbbccc:

$$
\begin{aligned}
S & \Rightarrow \boldsymbol{A C} \\
& \Rightarrow \boldsymbol{a} A \boldsymbol{b} \boldsymbol{C} \\
& \Rightarrow \boldsymbol{a} \boldsymbol{A b C} \boldsymbol{c} \boldsymbol{c} \\
& \Rightarrow \boldsymbol{a} \boldsymbol{a} \boldsymbol{b} \boldsymbol{b} \boldsymbol{C} \boldsymbol{c} \\
& \Rightarrow \boldsymbol{a} \boldsymbol{a} b \boldsymbol{b} \boldsymbol{C} \boldsymbol{c} \boldsymbol{c} \\
& \Rightarrow \boldsymbol{a} \boldsymbol{a} b \boldsymbol{b} \boldsymbol{c} \boldsymbol{c} \boldsymbol{c}
\end{aligned}
$$

$$
L(G)=\left\{a^{n} b^{n} c^{m}: n, m \geq 1\right\}
$$

Regulated Grammars 2/2

- with Ξ, G does not generate abbccc, because

$$
124345 \notin \Xi=\{1\}\{24\}^{*}\{35\}
$$

- with Ξ, G generates aabbcc:

$$
\begin{aligned}
& S \Rightarrow A C \\
& \Rightarrow a A b C \\
& \Rightarrow a A b C c \\
& \Rightarrow a a b b C c \\
& \Rightarrow \text { aabbcc } \\
& \text { [1] } \\
& \text { [2] } \\
& \text { [4] } \\
& \text { [3] } \\
& \text { [5] } \\
& \text { and } 12435 \in \Xi \\
& L(G, \Xi)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
\end{aligned}
$$

PDA: Notation

- A PDA is based on a finite set of rules of the form:

New Concept: Regulated PDAs

- PDA M:

$$
\begin{aligned}
& \text { 1. } S s a \rightarrow S a s \\
& \text { 2. } a s a \rightarrow a a s \\
& \text { 3. } a s b \rightarrow q \\
& \text { 4. } a q b \rightarrow q \\
& \text { 5. } S q c \rightarrow S q \\
& \text { 6. } S q c \rightarrow f \\
& \text { - } \Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\}
\end{aligned}
$$

Regulated PDAs $1 / 2$

- PDA M :

1. Ssa \rightarrow Sas
2. asa \rightarrow aas
3. asb $\rightarrow q$
4. $a q b \rightarrow q$
5. $S q c \rightarrow S q$
6. $S q c \rightarrow f$
$\Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\} \mid$

- Without Ξ, M accepts aabbccc:

Ssaabbccc
\Rightarrow Sasabbccc [1]
\Rightarrow Saasbbccc [2]
\Rightarrow Saqbccc
\Rightarrow Sqccc
\Rightarrow Sqcc
$\Rightarrow S q c$
$\Rightarrow f$
$L(M)=\left\{a^{n} b^{n} c^{m}: n, m \geq 1\right\}$

Regulated PDAs $2 / 2$

- with Ξ, M does not accept aabbccc because

$$
1234556 \notin \Xi=\left\{12^{m} 34^{n} 5^{n} 6: m, n \geq 0\right\}
$$

- with Ξ, M accepts abbbcc:

Ssaabbcc \Rightarrow Sasabbcc
\Rightarrow Saasbbcc
\Rightarrow Saqbcc
\Rightarrow Sqcc
$\Rightarrow \boldsymbol{S q c}$
$\Rightarrow f \quad$ [6]
and $123456 \in \Xi$

$$
L(M, \Xi)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

Gist: Regulated PDAs

- Consider a pushdown automaton, M, and control language, Ξ.
- M accepts a string, x, if and only if Ξ contains a control string according to which M makes a sequence of moves so it reaches a final configuration after reading x.

Definition: Regulated PDA 1/4

A pushdown automaton is a 7-tuple

$$
M=(Q, \Sigma, \Omega, R, s, S, F), \text { where }
$$

- Q is a finite set of states,
- Σ is an input alphabet,
- Ω is a pushdown alphabet,
- R is a finite set of rules of the form: $A p a \rightarrow w q$, where
$A \in \Omega, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}, w \in \Omega^{*}$
- $s \in Q$ is the start state
- $S \in \Omega$ is the start symbol
- $F \subseteq Q$ is a set of final states

Definition: Regulated PDA $2 / 4$

- Let Ψ be an alphabet of rule labels. Let every rule $A p a \rightarrow w q$ be labeled with a unique $\rho \in \Psi$ as

$$
\rho . A p a \rightarrow w q .
$$

- A configuration of M, χ, is any string from $\Omega^{*} Q \Sigma^{*}$
- For every $x \in \Omega^{*}, y \in \Sigma^{*}$, and $\rho . A p a \rightarrow w q \in R$, M makes a move from configuration xApay to configuration $x w q y$ according to ρ, written as

$$
x A p a y \Rightarrow x w q y[\rho]
$$

Definition: Regulated PDA 3/4

- Let χ be any configuration of $M . M$ makes zero moves from χ to χ according to ε, written as

$$
\chi \Rightarrow^{0} \chi[\varepsilon]
$$

- Let there exist a sequence of configurations $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ for some $n \geq 1$ such that $\chi_{i-1} \Rightarrow \chi_{i}\left[\rho_{i}\right]$, where $\rho_{i} \in \Psi$, for $i=1, \ldots, n$, then M makes n moves from χ_{0} to χ_{n} according to $\left[\rho_{1} \ldots \rho_{n}\right]$, written as

$$
\chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]
$$

Definition: Regulated PDA 3/4

- If for some $n \geq 0, \chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]$, we write $\chi_{0} \Rightarrow^{*} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]$
- Let Ξ be a control language over Ψ, that is, $\Xi \subseteq \Psi^{*}$. With Ξ, M accepts its language, $L(M, \Xi)$, as $L(M, \Xi)=\left\{w: w \in \Sigma^{*}, S S w \Rightarrow^{*} f[\sigma], \sigma \in \Xi\right\}$

Language Families

- LIN - the family of linear languages
-CF - the family of context-free languages
- RE - the family of recursively enumerable languages
- RPD (REG) - the family of languages accepted by PDAs regulated by regular languages
- RPD (LIN) - the family of languages accepted by PDAs regulated by linear languages

Theorem 1 and its Proof $1 / 2$

$R P D(R E G)=C F$

Proof:

I. $C F \subseteq \operatorname{RPD}(R E G)$ is clear.
II. $R P D(R E G) \subseteq C F$:

- Let $L=L(M, \Xi)$,
- Let $\Xi=L(G), G$ - regular grammar based on rules: $\boldsymbol{A} \rightarrow \boldsymbol{a} \boldsymbol{B}, \boldsymbol{A} \rightarrow \boldsymbol{a}$

Theorem 1 and its Proof 2/2

Transform M regulated by Ξ to a PDA N as follows:

1) for every $a . C q b \rightarrow x p$ from M and
every $\boldsymbol{A} \rightarrow a \boldsymbol{B}$ from G, add $C<q A>b \rightarrow x<p B>$ to N
2) for every $a . C q b \rightarrow x p$ from M and every $A \rightarrow a$ from G, \quad New symbol add $C<q A>b \rightarrow x<p f>$ to N
3) The set of final states in N :
$\{\langle p f\rangle: p$ is a final state in $M\}$

Theorem 2

$R P D(L I N)=R E$

Proof:

- See [Meduna Alexander, Kolář Dušan:

Regulated Pushdown Automata, Acta
Cybernetica,Vol. 2000, No. 4, p. 653-664]

Simplification of RPDAs $1 / 2$

I. consider two consecutive moves made by a pushdown automaton, M.
If during the first move M does not shorten its pushdown and during the second move it does, then M makes a turn during the second move.

- A pushdown automaton is one-turn if it makes no more than one turn during any computation starting from an initial configuration.

One-Turn PDA: Illustration

Simplification of RPDAs 2/2

II. During a move, an atomic regulated PDA changes a state and, in addition, performs exactly one of the following actions:

1. pushes a symbol onto the pushdown
2. pops a symbol from the pushdown
3. reads an input symbol

Theorem 3

- Every $L \in R E$ is accepted by an atomic one-turn PDA

 regulated by Ξ, where $\Xi \in L I N$.
Proof:

- See [Meduna Alexander, Kolář Dušan: One-Turn Regulated Pushdown Automata and Their Reduction, Fundamenta
Informatica,Vol. 2002, No. 16, p. 399-405]

