

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that denote concatenation, union, and

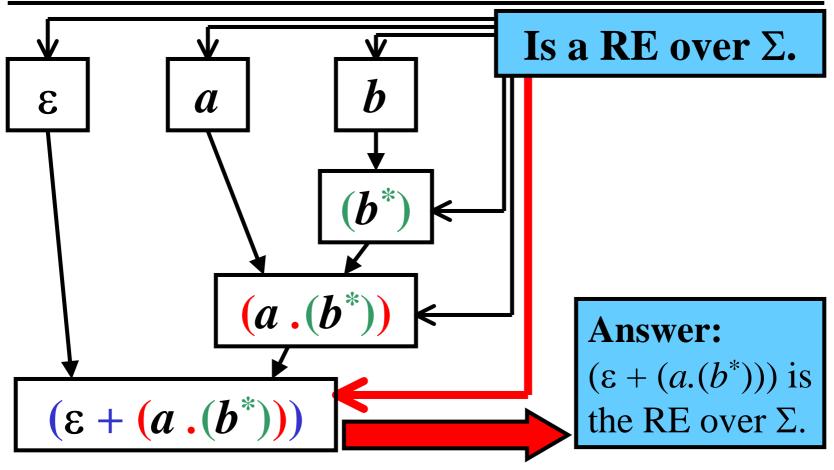
iteration, respectively.

Definition: Let Σ be an alphabet. The *regular expressions* over Σ and the *languages they denote* are defined as follows:

- \varnothing is a RE denoting the empty set
- ε is a RE denoting { ε }
- *a*, where $a \in \Sigma$, is a RE denoting $\{a\}$
- Let *r* and *s* be regular expressions denoting the languages L_r and L_s , respectively; then
 - (r.s) is a RE denoting $L = L_r L_s$
 - (r+s) is a RE denoting $L = L_r \cup L_s$
 - (r^*) is a RE denoting $L = L_r^*$

Regular Expressions: Example

Question: Is $(\varepsilon + (a.(b^*)))$ the regular expression over $\Sigma = \{a, b\}$?



Simplification

1) Reduction of the number of parentheses by

Precedences:
$$* > . > +$$

2) Expression *r.s* is simplified to *rs*3) Expression *rr*^{*} or *r*^{*}*r* is simplified to *r*⁺

Example:

 $((a.(a^*)) + ((b^*).b))$ can be written as $a.a^* + b^*.b$,

and $a \cdot a^* + b^* \cdot b$ can be written as $a^+ + b^+$

Regular Language (RL)

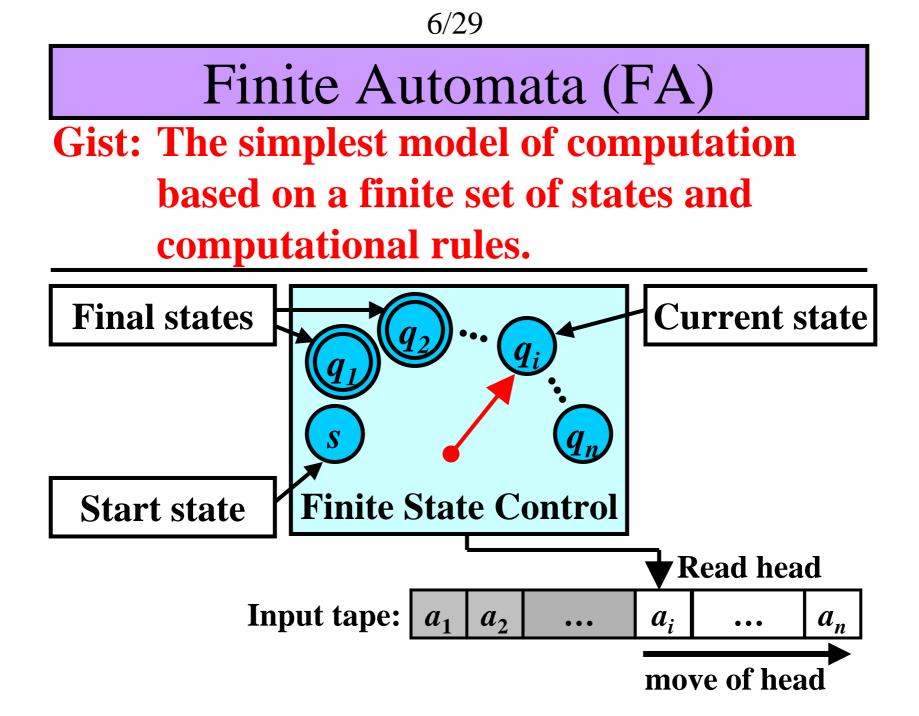
Gist: Every RE denotes a regular language Definition: Let *L* be a language. *L* is a *regular language* (RL) if there exists a regular expression *r* that denotes *L*.

Denotation: L(r) means the language denoted by r.

Examples:

 $\begin{aligned} r_1 &= ab + ba & \text{denotes } L_1 &= \{ab, ba\} \\ r_2 &= a^+ b^* & \text{denotes } L_2 &= \{a^n b^m : n \ge 1, m \ge 0\} \\ r_3 &= ab(a + b)^* & \text{denotes } L_3 &= \{x: ab \text{ is prefix of } x\} \\ r_4 &= (a + b)^* ab(a + b)^* \text{ denotes } L_4 &= \{x: ab \text{ is substring of } x\} \end{aligned}$

 L_1, L_2, L_3, L_4 are regular languages over Σ



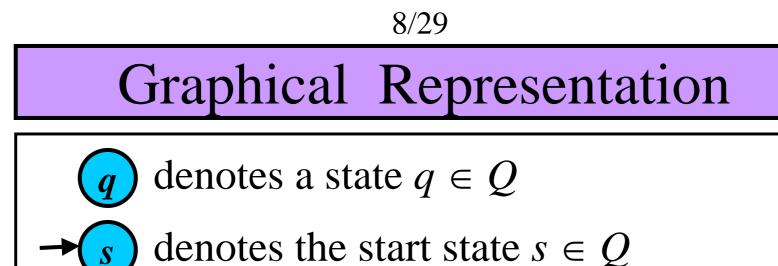
Finite Automata: Definition

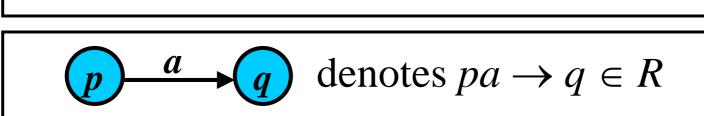
Definition: A finite automaton (FA) is a 5-tuple: $M = (Q, \Sigma, R, s, F)$, where

- Q is a finite set of states
- Σ is an *input alphabet*
- *R* is a *finite set of rules* of the form: $pa \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note on rules:

- Strictly mathematically, *R* is a relation from $Q \times (\Sigma \cup \{\varepsilon\})$ to *Q*
- Instead of (pa, q), however, we write the rule as $pa \rightarrow q$
- $pa \rightarrow q$ means that with a, M can move from p to q
- if $a = \varepsilon$, no symbol is read





denotes a final state $f \in F$

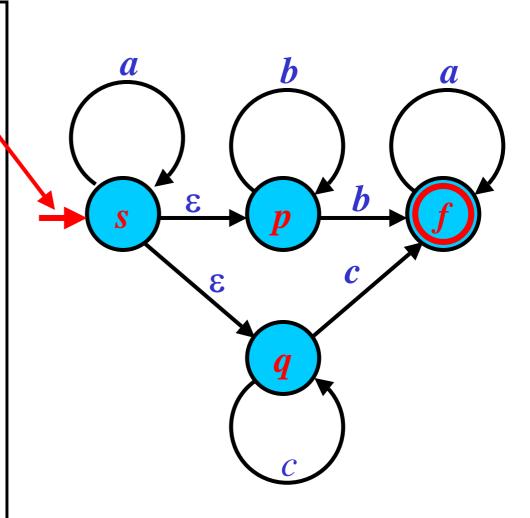
Graphical Representation: Example

9/29

$$M = (Q, \Sigma, R, s, F),$$

where:

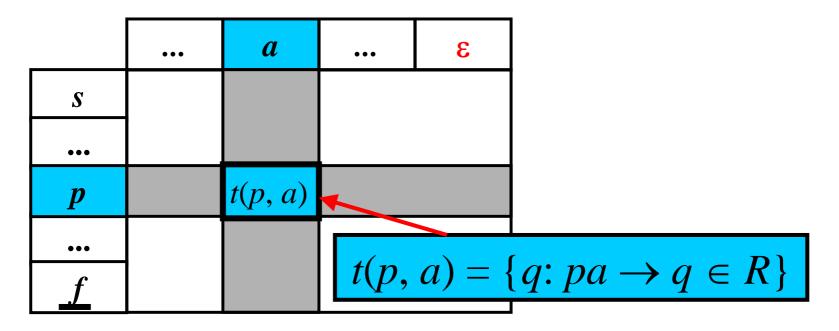
- $Q = \{\mathbf{s}, \mathbf{p}, \mathbf{q}, \mathbf{f}\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$
 - $\begin{array}{c} qc \rightarrow q, \\ qc \rightarrow f, \end{array}$
- $fa \rightarrow f \};$ • $F = \{f\}$



Tabular Representation

- Columns:
- Rows:

- Member of $\Sigma \cup \{\varepsilon\}$
- States of Q
- **First row:** The start state
- Underscored: Final states



Tabular Representation: Example

- $M = (Q, \Sigma, R, s, F),$ where:
- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b, c\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$ $qc \rightarrow q,$

 $qc \rightarrow f$,

• $F = \{ f \}$

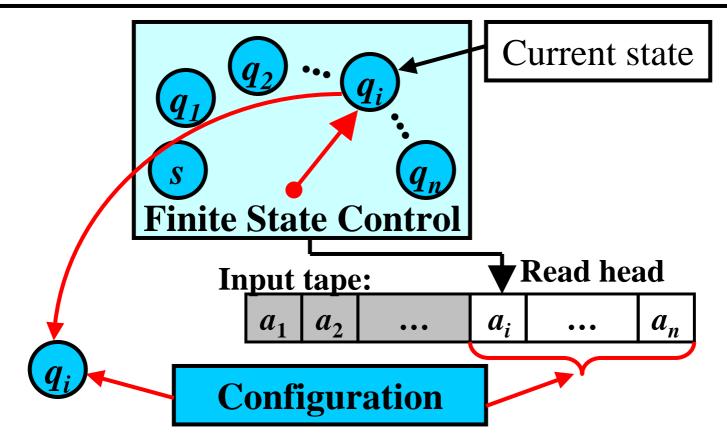
 $fa \rightarrow f$ };

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	$\{f\}$	Ø	Ø	Ø

Gist: Instance description of FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA.

A configuration of M is a string $\chi \in Q\Sigma^*$

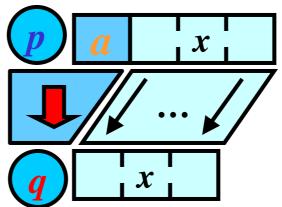


Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* /- *qx* [*r*] or, simply, *pax* /- *qx* **Note:** if $a = \varepsilon$, no input symbol is read

Configuration: Rule: $pa \rightarrow q$

New configuration:



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. *M* makes *zero moves* from χ to χ ; in symbols, $\chi \mid - {}^{0} \chi$ [ε] or, simply, $\chi \mid - {}^{0} \chi$

Definition: Let $\chi_0, \chi_1, ..., \chi_n$ be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \models \chi_i [r_i], r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Then *M* makes *n* moves from χ_0 to χ_n : $\chi_0 \models n \chi_n [r_1...r_n]$ or, simply, $\chi_0 \models n \chi_n$

Sequence of Moves 2/2

 $\mathcal{L}_n [\mathcal{P}]$

If
$$\chi_0 \mid -^n \chi_n [\rho]$$
 for some $n \ge 1$, then
 $\chi_0 \mid -^+ \chi_n [\rho]$.
If $\chi_0 \mid -^n \chi_n [\rho]$ for some $n \ge 0$, then
 $\chi \mid -^* \chi [\rho]$

 $\mathcal{L}()$

Example: Consider

pabc |-qbc| [1: $pa \rightarrow q$], and qbc |-rc| [2: $qb \rightarrow r$]. Then, *pabc* $|-^2 rc|$ [12], *pabc* $|-^+ rc|$ [12], *pabc* $|-^* rc|$ [12]

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

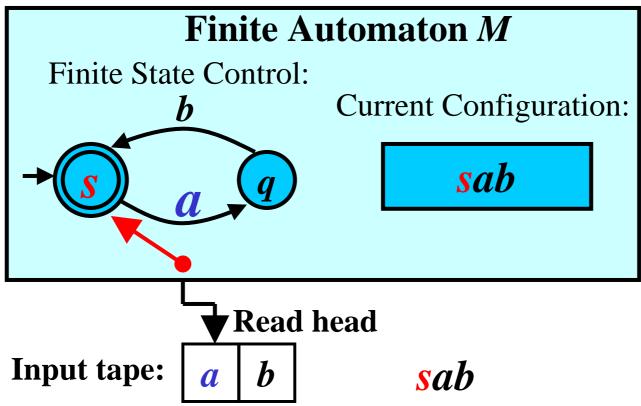
Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, s, F):$ if $q_n \in F$ then $w \in L(M)$; otherwise, $w \notin L(M)$ $sa_1a_2...a_n \mid -q_1a_2...a_n \mid -... \mid -q_{n-1}a_n \mid -q_n$

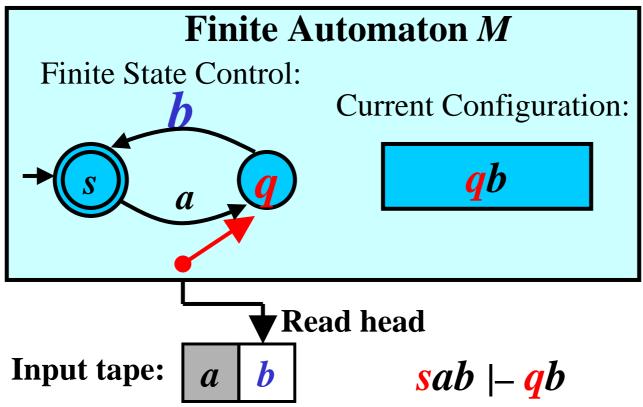
FA: Example 1/3

 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?



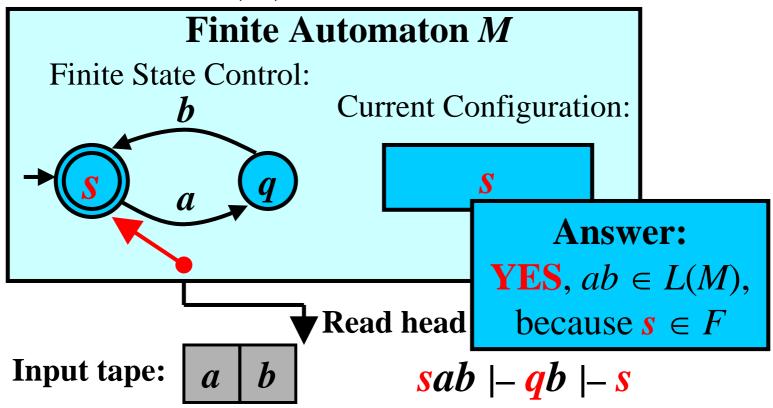
FA: Example 2/3

 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?



FA: Example 3/3

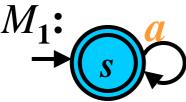
 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

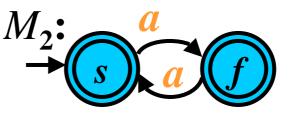


Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:

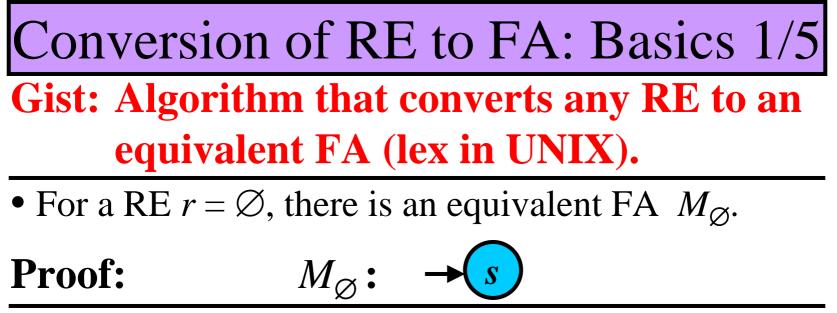




Question: Is M_1 equivalent to M_2 ?

Answer: M_1 and M_2 are equivalent because $L(M_1) = L(M_2) = \{a^n : n \ge 0\}$

71	120
$\mathbf{Z}\mathbf{I}$	129



• For a RE $r = \varepsilon$, there is an equivalent FA M_{ε} .

Proof: M_{ε} : \longrightarrow \mathcal{E} \mathcal{E}

• For a RE r = a, $a \in \Sigma$, there is an equivalent FA M_a .

Proof: $M_a: \rightarrow S \xrightarrow{a} f$

22/29

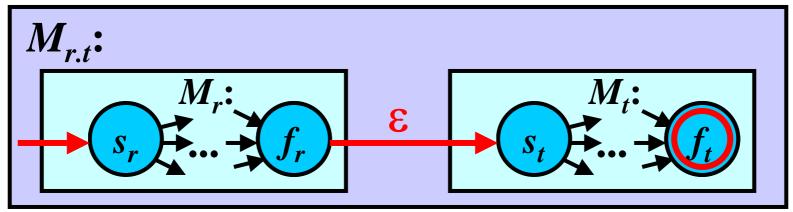
RE to FA: Concatenation 2/5

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE r.t, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$



23/29

RE to FA: Union 3/5

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$ $M_{r+t}: \{s, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$

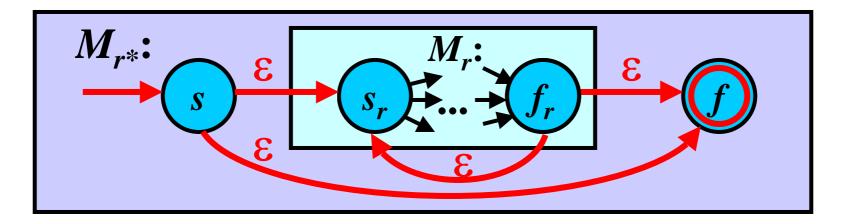
24/29

RE to FA: Iteration 4/5

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

• For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, s, \{f\})$$



25/29

RE to FA: Completion 5/5

- **Input:** RE r over Σ
- **Output:** FA *M* such that L(r) = L(M)
- Method:
- From "inside" of *r*, repeatedly use the next rules to construct *M*:
 - for RE \emptyset , construct FA M_{\emptyset}
 - for RE ε , construct FA M_{ε}
 - for RE $a \in \Sigma$, construct FA M_a
 - let for REs *r* and *t*, there already exist FAs *M_r* and *M_t*, respectively; then,
 - for RE *r.t*, construct FA $M_{r.t}$ (see 2/5)

► (see 1/5)

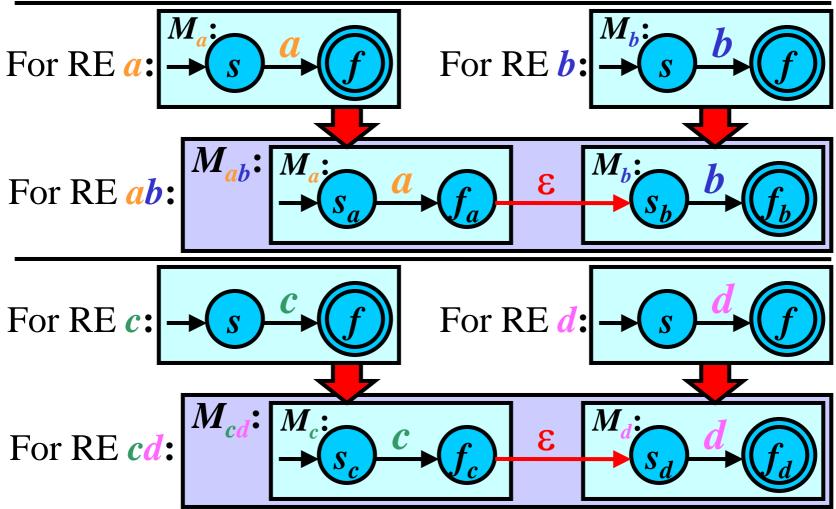
(see 4/5)

- for RE r + t, construct FA M_{r+t} (see 3/5)
- for RE r^* construct FA M_{r^*}

26/29

RE to FA: Example 1/3

Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M



27/29

3

3

3

For RE *ab*:

For RE *cd*:

3

Maby

 M_{c}

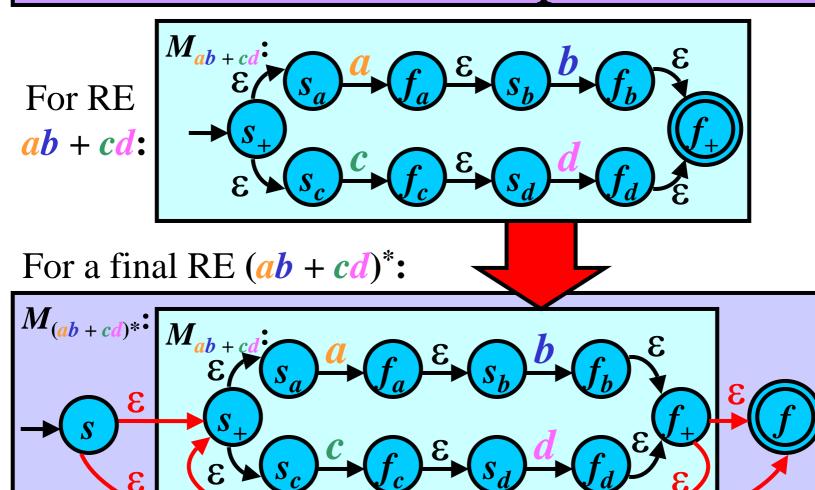
For RE ab + cd:

 $M_{ab+cd}: M_{ab}$ 3 S, M_{cd}

S

28/29

RE to FA: Example 3/3



29/29

Models for Regular Languages

Theorem: For every RE *r*, there is an FA *M* such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA *M*, there is an RE *r* such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for regular languages are
1) Regular expressions 2) Finite Automata