

Part X. Normal Forms and Properties of CFLs

Chomsky Normal Form (CNF)

Definition: Let G = (N, T, P, S) be a CFG.

G is in *Chomsky normal form* if every rule in *P* has one of these forms

- $A \rightarrow BC$, where $A, B, C \in N$;
- $A \rightarrow a$, where $A \in N$, $a \in T$;

Example:

G = (N, T, P, S), where $N = \{A, B, C, S\}, T = \{a, b\},$

 $P = \{ S \rightarrow CB, C \rightarrow AS, S \rightarrow AB, A \rightarrow a, B \rightarrow b \}$

is in Chomsky normal form.

Note: $L(G) = \{a^n b^n : n \ge 1\}$

Greibach Normal Form (GNF)

Definition: Let G = (N, T, P, S) be a CFG.
G is in Greibach normal form if every rule in P is of this form

• $A \rightarrow ax$, where $A \in N$, $a \in T$, $x \in N^*$

Example:

$$G = (N, T, P, S)$$
, where $N = \{B, S\}, T = \{a, b\},$

 $P = \{ S \rightarrow aSB, S \rightarrow aB, B \rightarrow b \}$

is in Greibach normal form.

Note: $L(G) = \{a^n b^n : n \ge 1\}$

Generative Power of Normal Forms

Theorem: For every CFG *G*, there is an equivalent grammar *G*' in Chomsky normal form.

Proof: See page 348 in [Meduna: Automata and Languages]

Theorem: For every CFG G, there is an equivalent grammar G' in Greibach normal form.

Proof: See page 376 in [Meduna: Automata and Languages]

Note: Main properties of CNF and GNF:

CNF: if $S \Rightarrow^{n} w$; $w \in T^{*}$ then n = 2|w| - 1**GNF:** if $S \Rightarrow^{n} w$; $w \in T^{*}$ then n = |w|

General Parsing Methods

• General Parsing methods (GP) are applicable to all context-free languages (CFLs)

Illustration:

• Note: The family of LR languages = the family of a deterministic CFL

Algorithm: GP Based on CNF • Input: G = (N, T, P, S) in CNF, $w = a_1...a_n$ • Output: YES if $w \in L(G)$ NO if $w \notin L(G)$

- Method:
- for each a_i , i = 1, ..., n do $S[i, i] := \{A : A \rightarrow a_i \in P\}$
- Apply the following rule until no *S*[*i*, *k*] can be changed:

if $A \rightarrow BC \in P$, $B \in S[i, j]$, $C \in S[j+1, k]$, where $1 \le i \le j < k \le n$ then add A to S[i, k]

• if *S* ∈ *S*[1, *n*] then write ('YES') else write ('NO')

GP Based on CNF: Example 1/5 G = (N, T, P, S), where $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ **Question:** $aacbb \in L(G)$?

GP Based on CNF: Example 2/5 G = (N, T, P, S), where $N = \{A, B, C, S\}, T = \{a, b\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Question: *aacbb* $\in L(G)$?

$\begin{array}{cccc} ? & AA & ? & AS & \bigcirc SB & ? & BB \\ S[1,2] = \emptyset & S[2,3] = \emptyset & S[3,4] = \{C\} & S[4,5] = \emptyset \\ S[1,1] = \{A\} & S[2,2] = \{A\} & S[3,3] = \{S\} & S[4,4] = \{B\} & S[5,5] = \{B\} \end{array}$

a a c b	b
---------	---

GP Based on CNF: Example 3/5 G = (N, T, P, S), where $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ **Question:** $aacbb \in L(G)$?

$$S \to AC$$

$$S[1,3] = \emptyset \quad S[2,4] = \{S\} \quad S[3,5] = \emptyset$$

$$S[1,2] = \emptyset \quad S[2,3] = \emptyset \quad S[3,4] = \{C\} \quad S[4,5] = \emptyset$$

$$S[1,1] = \{A\} \quad S[2,2] = \{A\} \quad S[3,3] = \{S\} \quad S[4,4] = \{B\} \quad S[5,5] = \{B\}$$

a a c b	b
---------	---

GP Based on CNF: Example 4/5

G = (N, T, P, S), where $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Question: *aacbb* $\in L(G)$?

a a c b b

a a c b b

Pumping Lemma for CFL

• Let *L* be CFL. Then, there exists $k \ge 1$ such that: if $z \in L$ and $|z| \ge k$ then there exist *u*, *v*, *w*, *x*, *y* so z = uvwxy and

1) $vx \neq \varepsilon$ **2**) $|vwx| \leq k$ **3**) for each $m \geq 0$, $uv^m wx^m y \in L$

Example:

 $G = (\{S, A\}, \{a, b, c\}, \{S \rightarrow aAa, A \rightarrow bAb, A \rightarrow c\}, S)$ generate $L(G) = \{ab^n cb^n a : n \ge 0\}$, so L(G) is CFL. There is k = 5 such that 1), 2) and 3) holds:

• for z = abcba: $z \in L(G)$ and $|z| \ge 5$: $uv^0wx^0y = ab^0cb^0a = aca \in L(G)$ $vx = bb \ne \varepsilon$ $|vwx| = 3: 1 \le 3 \le 5$ • for z = abbcbba: $z \in L(G)$ and $|z| \ge 5$:

• *L* = any context-free language:

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Pumping Lemma: Example 1/2

Prove that $L = \{ a^n b^n c^n : n \ge 1 \}$ is not CFL.

- 1) Assume that *L* is a CFL. Let $k \ge 1$ be the pumping lemma constant for *L*.
- 2) Let $z = a^k b^k c^k$: $a^k b^k c^k \in L$, $|z| = |a^k b^k c^k| = 3k \ge k$
- 3) All decompositions of z into uvwxy; $vx \neq \varepsilon$, $|vwx| \leq k$: aaaaaa...aabb...bb...bbcc...ccccc **a**) $vwx \in \{a\}^*\{b\}^*$, $vx \neq \varepsilon$ **b**) $vwx \in \{b\}^*\{c\}^*$, $vx \neq \varepsilon$

Closure properties of CFL

Definition: The family of CFLs is closed under an operation *o* if the language resulting from the application of *o* to **any** CFLs is a CFL as well.

Illustration:

• The family of CF languages is closed under *union*. It means:

Algorithm: CFG for Union

- Input: Grammars $G_1 = (N_1, T, P_1, S_1)$ and $G_2 = (N_2, T, P_2, S_2)$;
- Output: Grammar $G_u = (N, T, P, S)$ such that $L(G_u) = L(G_1) \cup L(G_2)$
- Method:
- let $S \notin N_1 \cup N_2$, let $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $P := \{S \to S_1, S \to S_2\} \cup P_1 \cup P_2;$

Algorithm: CFG for Concatenation

• Output:
$$G_c = (N, T, P, S)$$
 such that
 $L(G_c) = L(G_1) \cdot L(G_2)$

• Method:

- let $S \notin N_1 \cup N_2$, let $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $P := \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2;$

Algorithm: CFG for Iteration

- **Input:** $G = (N_1, T, P_1, S_1)$
- Output: $G_i = (N, T, P, S)$ such that $L(G_i) = L(G)^*$
- Method:
- let $S \notin N_1$:
 - $N := \{S\} \cup N_1;$
 - $P := \{S \to S_1 S, S \to \varepsilon\} \cup P_1;$

Closure properties

Theorem: The family of CFLs is closed under **union, concatenation, iteration**.

Proof:

- Let L_1 , L_2 be two CFLs.
- Then, there exist two CFGs G_1 , G_2 such that $L(G_1) = L_1$, $L(G_2) = L_2$;
- Construct grammars
 - G_u such that $L(G_u) = L(G_1) \cup L(G_2)$
 - G_c such that $L(G_c) = L(G_2)$. $L(G_2)$
 - G_i such that $L(G_i) = L(G_1)^*$

by using the previous three algorithms

- Every CFG denotes CFL, so
- L_1L_2 , $L_1 \cup L_2$, L_1^* are CFLs.

Intersection: Not Closed

Theorem: The family of CFLs is **not** closed under **intersection**.

Proof:

- The intersection of some CFLs is not a CFL:
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a CFL
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a CFL
- $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is not a CFL (proof based on the pumping lemma) Q

Complement: Not Closed

Theorem: The family of CFLs is **not** closed under **complement**.

Proof by contradiction:

- Assume that family of CFLs is closed under complement.
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a **CFL**
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a **CFL**
- $\overline{L_1}$, $\overline{L_2}$ are CFLs
- $\overline{L_1 \cup L_2}$ is a **CFL** (the family of CFLs is closed under union)
- $\overline{L_1} \cup \overline{L_2}$ is a CFL (assumption)
- DeMorgan's law implies $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is a CFL
- { $a^n b^n c^n$: $n \ge 1$ } is not a **CFL** \Rightarrow **Contradiction**

Main Decidable Problems

1. Membership problem:

• Instance: CFG $G, w \in \Sigma^*$; Question: $w \in L(G)$?

2. Emptiness problem:

• **Instance:** CFG G; **Question:** $L(G) = \emptyset$?

3. Finiteness problem:

• Instance: CFG G; Question: Is L(G) finite?

• Input: CFG G = (N, T, P, S) in Chomsky normal form; $w \in T^+$ • Output: YES if $w \in L(G)$ NO if $w \notin L(G)$

• Method I:

• if $S \Rightarrow^{n} w$, where $1 \le n \le 2|w| - 1$, then write ('YES') else write ('NO')

- Method II:
- See: The general parsing method based on CNF Summary:

The membership problem for CFLs is decidable

Accessible Symbols

Gist: Symbol *X* is *accessible* if $S \Rightarrow^* \dots X \dots$,

where S is the start nonterminal.

Definition: Let G = (N, T, P, S) be a CFG. A symbol $X \in N \cup T$ is *accessible* if there exist $u, v \in \Sigma^*$ such that $S \to X^*$. *V* and here into *V* is interval.

that $S \Rightarrow^* uXv$; otherwise, X is *inaccessible*.

Note: Each inaccessible symbol can be removed from CFG

Example:

 $G = (\{S, A, B\}, \{a, b\}, \{S \to SB, S \to a, A \to ab, B \to aB\}, S)$

- **S** accessible: for $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow^0 S$
- *A* **inaccessible**: there is no $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$
- **B** accessible: for u = S, $v = \varepsilon$: $S \Rightarrow^1 SB$
- *a* accessible: for $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow^1 a$
- *b* **inaccessible**: there is no $u, v \in \Sigma^*$ such that $S \Rightarrow^* ubv$

Terminating Symbols

Gist: Symbol *X* is *terminating* if *X* derives a terminal string.

Definition: Let G = (N, T, P, S) be a CFG. A symbol $X \in N \cup T$ is *terminating* if there exists $w \in T^*$ such that $X \Rightarrow^* w$; otherwise, X is *nonterminating*

Note: Each nonterminating symbol can be removed from any CFG.

Example:

 $G = (\{S, A, B\}, \{a, b\}, \{S \to SB, S \to a, A \to ab, B \to aB\}, S)$

- Symbol *S* terminating: for w = a: $S \Rightarrow^1 a$
- Symbol *A* terminating: for w = ab: $A \Rightarrow^1 ab$

Symbol *B* - nonterminating: there is no $w \in T^*$ such that $B \Rightarrow^* w$

Symbol *a* - terminating: for $w = a : a \Rightarrow^0 a$

Symbol *b* - terminating: for $w = \mathbf{b} : \mathbf{b} \Rightarrow^0 \mathbf{b}$

Algorithm: Emptiness

- **Input:** CFG G = (N, T, P, S);
- **Output: YES** if $L(G) = \emptyset$ **NO** if $L(G) \neq \emptyset$
- Method:
- if *S* is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for CFLs is decidable

Algorithm: Finiteness

- **Input:** CFG G = (N, T, P, S);
- Output: YES if L(G) is finite NO if L(G) is infinite
- Method:
- Let $k = 2^{card(N)}$
- if there exist $z \in L(M)$, $k \le |z| \le 2k$ then write ('NO')

else write ('YES')

Summary:

The finiteness problem for CFLs is decidable

Main Undecidable Problems

- 1. Equivalence problem:
- Instance: CFGs G_1 , G_2 ; Question: $L(G_1) = L(G_2)$?
- 2. Ambiguity problem:
- Instance: G;

Question: Is *G* ambiguous?

Note:

It is mathematically proved that there exists no algorithm, which solve these problems in finite time.