Part X.

Normal Forms and Properties of CFLs

Chomsky Normal Form (CNF)

Definition: Let $G=(N, T, P, S)$ be a CFG.
G is in Chomsky normal form if every rule in P has one of these forms

- $A \rightarrow B C$, where $A, B, C \in N$;
- $A \rightarrow a$, where $A \in N, a \in T$;

Example:

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$,
$P=\{\boldsymbol{S} \rightarrow \mathrm{CB}, \mathrm{C} \rightarrow \mathrm{AS}, \boldsymbol{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \boldsymbol{a}, \boldsymbol{B} \rightarrow \boldsymbol{b}\}$ is in Chomsky normal form.
Note: $L(G)=\left\{a^{n} b^{n}: n \geq 1\right\}$

Greibach Normal Form (GNF)

Definition: Let $G=(N, T, P, S)$ be a CFG. G is in Greibach normal form if every rule in P is of this form

- $A \rightarrow a x$, where $A \in N, a \in T, x \in N^{*}$

Example:

$G=(N, T, P, S)$, where $N=\{\boldsymbol{B}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$,
$P=\{\boldsymbol{S} \rightarrow \boldsymbol{a S B}, \boldsymbol{S} \rightarrow \boldsymbol{a B}, \boldsymbol{B} \rightarrow \boldsymbol{b}\}$
is in Greibach normal form.
Note: $L(G)=\left\{a^{n} b^{n}: n \geq 1\right\}$

Generative Power of Normal Forms

Theorem: For every CFG G, there is an equivalent grammar G^{\prime} in Chomsky normal form.
Proof: See page 348 in [Meduna: Automata and Languages]
Theorem: For every CFG G, there is an equivalent grammar G^{\prime} in Greibach normal form.
Proof: See page 376 in [Meduna: Automata and Languages]
Note: Main properties of CNF and GNF:
CNF: if $S \Rightarrow^{n} w ; w \in T^{*}$ then $n=2|w|-1$
GNF: if $S \Rightarrow^{n} w ; w \in T^{*}$ then $n=|w|$

General Parsing Methods

- General Parsing methods (GP) are applicable to all context-free languages (CFLs)

Illustration:

The family of LL languages

The family of LR languages
LR Methods

The family of CFLs
General Parsing Methods

- Note: The family of LR languages = the family of a deterministic CFL

GP Based on Chomsky Normal Form

if $S \in S[1, n]$ then $S \Rightarrow{ }^{*} a_{1} \ldots a_{n}$

Idea:

$$
F \rightarrow A E
$$

$$
G \rightarrow D C
$$

Algorithm: GP Based on CNF
 - Input: $G=(N, T, P, S)$ in CNF, $\boldsymbol{w}=\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{n}$
 - Output: YES if $w \in L(G)$
 NO if $w \notin L(G)$

- Method:
- for each $a_{i}, i=1, \ldots, n$ do

$$
S[i, i]:=\left\{A: A \rightarrow a_{i} \in P\right\}
$$

- Apply the following rule until no $S[i, k]$ can be changed: if $A \rightarrow B C \in \boldsymbol{P}, B \in \boldsymbol{S}[\mathbf{i}, \boldsymbol{j}], C \in \boldsymbol{S}[\boldsymbol{j}+1, \boldsymbol{k}]$, where $1 \leq \boldsymbol{i} \leq \boldsymbol{j}<\boldsymbol{k} \leq \boldsymbol{n}$ then add A to $\boldsymbol{S}[\mathbf{i}, \boldsymbol{k}]$
- if $S \in S[1, n]$ then write ('YES') else write ('NO')

GP Based on CNF: Example 1/5

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$, $P=\{S \rightarrow A C, C \rightarrow S B, A \rightarrow \boldsymbol{a}, B \rightarrow \boldsymbol{b}, S \rightarrow \boldsymbol{C}\}$
Question: $a \operatorname{acbb} \in L(G)$?
$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$

GP Based on CNF: Example 2/5

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$, $P=\{\boldsymbol{S} \rightarrow \mathbf{A C}, \boldsymbol{C} \rightarrow \boldsymbol{S B}, \boldsymbol{A} \rightarrow \boldsymbol{a}, \boldsymbol{B} \rightarrow \boldsymbol{b}, \boldsymbol{S} \rightarrow \boldsymbol{c}\}$ Question: $\boldsymbol{a} a c b b \in L(G)$?

$$
\begin{array}{cccc}
\text { ? / AA } & \text { ? / A AS } & C \rightarrow S B & \text { ?/ BBB } \\
S[1,2]=\varnothing & S[2,3]=\varnothing & S[3,4]=\{C\} & S[4,5]=\varnothing
\end{array}
$$

$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$

$10 / 31$

GP Based on CNF: Example 3/5

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$, $P=\{S \rightarrow A C, C \rightarrow S B, A \rightarrow \boldsymbol{a}, \boldsymbol{B} \rightarrow \boldsymbol{b}, S \rightarrow \boldsymbol{C}\}$
Question: $\boldsymbol{a} a c b \boldsymbol{b} \in L(G)$?

$11 / 31$

GP Based on CNF: Example 4/5

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$, $P=\{S \rightarrow A C, C \rightarrow S B, A \rightarrow \boldsymbol{a}, \boldsymbol{B} \rightarrow \boldsymbol{b}, \boldsymbol{S} \rightarrow \boldsymbol{c}\}$
Question: $\boldsymbol{a} a c b b \in L(G)$?

$12 / 31$

GP Based on CNF: Example 5/5

$G=(N, T, P, S)$, where $N=\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{S}\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$, $P=\{\boldsymbol{S} \rightarrow \mathrm{AC}, \boldsymbol{C} \rightarrow \boldsymbol{S B}, \boldsymbol{A} \rightarrow \boldsymbol{a}, \boldsymbol{B} \rightarrow \boldsymbol{b}, \boldsymbol{S} \rightarrow \boldsymbol{c}\}$
Question: $\boldsymbol{a} a c b b \in L(G)$?

$S \rightarrow A C S_{S[1,5]=\{S\}} \quad S \in S[1,5] \Rightarrow$ YES

 $S[1,4]=\varnothing \quad S[2,5]=\{C\}$$=\varnothing \quad S[2,4]=\{S\} \quad S[3,5]=\varnothing$

$$
S[1,2]=\varnothing \quad S[2,3]=\varnothing \quad S[3,4]=\{C\} \quad S[4,5]=\varnothing
$$

$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$

$13 / 31$

Pumping Lemma for CFL

- Let L be CFL. Then, there exists $k \geq 1$ such that: if $z \in L$ and $|z| \geq k$ then there exist u, v, w, x, y so $z=u v w x y$ and

1) $v x \neq \varepsilon$ 2) $|v w x| \leq k 3$ 3) for each $m \geq 0, u \nu^{m} w x^{m} y \in L$

Example:
$G=(\{S, A\},\{a, b, c\},\{S \rightarrow a A a, A \rightarrow b A b, A \rightarrow c\}, S)$ generate $L(G)=\left\{a b^{n} c b^{n} a: n \geq 0\right\}$, so $L(G)$ is CFL.
There is $\boldsymbol{k}=5$ such that $\mathbf{1}), 2$) and 3) holds:

- for $z=a \boldsymbol{b} c \boldsymbol{b} a: z \in L(G)$ and $|z| \geq 5$:

$$
u v w x y
$$

$$
u v^{0} w x^{0} y=a \boldsymbol{b}^{0} c \boldsymbol{b}^{0} a=a c a \in L(G)
$$

$$
\boldsymbol{v x}=\boldsymbol{b} \boldsymbol{b} \neq \varepsilon
$$

$$
u v^{1} w x^{1} y=a \boldsymbol{b}^{1} c \boldsymbol{b}^{1} a=a \boldsymbol{b} c \boldsymbol{b} a \in L(G)
$$

$$
|v w x|=3: \mathbf{1} \leq 3 \leq 5
$$

$$
u v^{2} w x^{2} y=a \boldsymbol{b}^{2} \boldsymbol{b}^{2} a=a \boldsymbol{b} \boldsymbol{b} c \boldsymbol{b} \boldsymbol{b} a \in L(G)
$$

- for $z \overline{\boldsymbol{i}} \boldsymbol{a} \boldsymbol{b} \boldsymbol{b} c \boldsymbol{b} \boldsymbol{b} a: z \in L(G)$ and $|z| \geq 5$:

$14 / 31$

Pumping Lemma: Illustration
 - $L=$ any context-free language:

Pumping Lemma: Application

- Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is not a CFL.

Assume that L is a CFL.

Consider the PL constant \boldsymbol{k} and select $\boldsymbol{z} \in L$, whose length depends on \boldsymbol{k} so $|\boldsymbol{z}| \geq \boldsymbol{k}$ is surely true.

For all decompositions of \mathbf{z} into $\boldsymbol{u v w x y : ~} v x \neq \varepsilon,|v w x| \leq k$, show that there exists $m \geq 0$ such that $\boldsymbol{u} \boldsymbol{v}^{m} \boldsymbol{w} \boldsymbol{x}^{\boldsymbol{m}} \boldsymbol{y} \notin \mathbf{L}$; \}
contradiction from the pumping lemma, $\boldsymbol{u} \boldsymbol{v}^{m} \boldsymbol{w} \boldsymbol{x}^{m} \boldsymbol{y} \in L$
false assumption

$16 / 31$

Pumping Lemma: Example 1/2

Prove that $L=\left\{a^{n} b^{\boldsymbol{n}} C^{\boldsymbol{n}}: n \geq 1\right\}$ is not CFL.

1) Assume that L is a CFL. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $\mathbf{z}=a^{k} \boldsymbol{b}^{k} c^{k}: a^{k} \boldsymbol{b}^{k} c^{k} \in L,|\boldsymbol{z}|=\left|a^{k} \boldsymbol{b}^{\boldsymbol{k}} c^{k}\right|=3 \boldsymbol{k} \geq \boldsymbol{k}$ 3) All decompositions of \mathbf{z} into $\boldsymbol{u} v \boldsymbol{w} \boldsymbol{x} \boldsymbol{y} ; v x \neq \varepsilon,|v w x| \leq k$:

Pumping Lemma: Example 2/2

а) $v w x \in\{a\}^{*}\{\boldsymbol{b}\}^{*}$:

- Pumping lemma:

$$
u v^{0} w x^{0} y \in L
$$

Note: uwy contains $\mathbf{k} c s$, but fewer than \mathbf{k} as or $\mathbf{b s}$.
b) $v w x \in\{\boldsymbol{b}\}^{*}\{c\}^{*}:$

- Pumping lemma:

$$
u v^{0} w x^{0} y \in L
$$

$\cdot u v^{0} w x^{0} y=u w y=\underbrace{a a \ldots a b}_{u} b \underbrace{\ldots . . b b c c \ldots c}_{w} c \in L$
Note: $u w y$ contains $\boldsymbol{k} a s$, but fewer than $\boldsymbol{k} \boldsymbol{b} s$ or $c s$. All these decompositions lead to a contradiction!
4) Therefore, L is not a CFL.

18/31

Closure properties of CFL

Definition: The family of CFLs is closed under an operation \boldsymbol{o} if the language resulting from the application of \boldsymbol{o} to any CFLs is a CFL as well.

Illustration:

- The family of CF languages is closed under union. It means:

Algorithm: CFG for Union

- Input: Grammars $G_{1}=\left(N_{1}, T, P_{1}, S_{1}\right)$ and

$$
G_{2}=\left(N_{2}, T, P_{2}, S_{2}\right)
$$

- Output: Grammar $G_{u}=(N, T, P, S)$ such that

$$
L\left(G_{u}\right)=L\left(G_{1}\right) \cup L\left(G_{2}\right)
$$

- Method:
- let $S \notin N_{1} \cup N_{2}$, let $N_{1} \cap N_{2}=\varnothing$:
- $N:=\{S\} \cup N_{1} \cup N_{2} ;$
- $P:=\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\} \cup P_{1} \cup P_{2}$;

Algorithm: CFG for Concatenation

- Input: $G_{1}=\left(N_{1}, T, P_{1}, S_{1}\right)$ and

$$
G_{2}=\left(N_{2}, T, P_{2}, S_{2}\right)
$$

- Output: $G_{c}=(N, T, P, S)$ such that

$$
L\left(G_{c}\right)=L\left(G_{1}\right) \cdot L\left(G_{2}\right)
$$

- Method:
- let $S \notin N_{1} \cup N_{2}$, let $N_{1} \cap N_{2}=\varnothing$:
- $N:=\{S\} \cup N_{1} \cup N_{2}$;
- $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$;

$21 / 31$

Algorithm: CFG for Iteration

- Input: $\quad G=\left(N_{1}, T, P_{1}, S_{1}\right)$
- Output: $G_{i}=(N, T, P, S)$ such that $L\left(G_{i}\right)=L(G)^{*}$
- Method:
- let $S \notin N_{1}$:
- $N:=\{S\} \cup N_{1}$;
- $P:=\left\{S \rightarrow S_{1} S, S \rightarrow \varepsilon\right\} \cup P_{1}$;

$22 / 31$

Closure properties

Theorem: The family of CFLs is closed under union, concatenation, iteration.

Proof:

- Let L_{1}, L_{2} be two CFLs.
- Then, there exist two CFGs G_{1}, G_{2} such that $L\left(G_{1}\right)=\boldsymbol{L}_{1}, L\left(G_{2}\right)=\boldsymbol{L}_{2} ;$
- Construct grammars
- G_{u} such that $L\left(G_{u}\right)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$
- G_{c} such that $L\left(G_{c}\right)=L\left(G_{2}\right) . L\left(G_{2}\right)$
- G_{i} such that $L\left(G_{i}\right)=L\left(G_{1}\right)^{*}$
by using the previous three algorithms
- Every CFG denotes CFL, so
- $L_{1} L_{2}, L_{1} \cup L_{2}, L_{1}{ }^{*}$ are CFLs.

$23 / 31$

Intersection: Not Closed

Theorem: The family of CFLs is not closed under intersection.

Proof:

- The intersection of some CFLs is not a CFL:
- $L_{1}=\left\{a^{m} b^{n} c^{n}: m, n \geq 1\right\}$ is a CFL
- $L_{2}=\left\{a^{n} b^{n} c^{m}: m, n \geq 1\right\}$ is a CFL
- $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$ is not a CFL (proof based on the pumping lemma)

$24 / 31$

Complement: Not Closed

Theorem: The family of CFLs is not closed under complement.

Proof by contradiction:

- Assume that family of CFLs is closed under complement.
- $\mathbf{L}_{1}=\left\{a^{m} b^{n} c^{n}: m, n \geq 1\right\}$ is a CFL
- $\mathbf{L}_{2}=\left\{a^{n} b^{n} c^{m}: m, n \geq 1\right\}$ is a CFL
- $\overline{L_{1}}, \overline{L_{2}}$ are CFLs
- $\overline{L_{1}} \cup \overline{L_{2}}$ is a CFL (the family of CFLs is closed under union)
- $\overline{L_{1}} \cup \overline{L_{2}}$ is a CFL (assumption)
- DeMorgan's law implies $\boldsymbol{L}_{1} \cap \mathbf{L}_{2}=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$ is a CFL
- $\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$ is not a CFL \Rightarrow Contradiction

Main Decidable Problems

1. Membership problem:

- Instance: CFG $G, w \in \Sigma^{*} ;$ Question: $w \in L(G)$?

2. Emptiness problem:

- Instance: CFG $G ; \quad$ Question: $L(G)=\varnothing$?

3. Finiteness problem:

- Instance: CFG $G ; \quad$ Question: Is $L(G)$ finite?

Algorithm: Membership

- Input: CFG $G=(N, T, P, S)$ in Chomsky normal form; $w \in T^{+}$
- Output: YES if $w \in L(G)$

NO if $w \notin L(G)$

- Method I:
- if $S \Rightarrow^{\boldsymbol{n}} w$, where $1 \leq \boldsymbol{n} \leq 2|w|-1$, then write ('YES') else write ('NO')
- Method II:
- See: The general parsing method based on CNF Summary:
The membership problem for CFLs is decidable

$27 / 31$

Accessible Symbols

Gist: Symbol X is accessible if $S \Rightarrow^{*} \ldots X . .$. , where S is the start nonterminal.
Definition: Let $G=(N, T, P, S)$ be a CFG. A symbol $X \in N \cup T$ is accessible if there exist $u, v \in \Sigma^{*}$ such that $S \Rightarrow^{*} u X v$; otherwise, X is inaccessible.
Note: Each inaccessible symbol can be removed from CFG

Example:

$G=(\{S, A, B\},\{a, b\},\{S \rightarrow S B, S \rightarrow a, A \rightarrow a b, B \rightarrow a B\}, S)$
S - accessible: for $u=\varepsilon, v=\varepsilon: S \Rightarrow^{0} S$
A - inaccessible: there is no $u, v \in \Sigma^{*}$ such that $S \Rightarrow^{*} u A v$
\boldsymbol{B} - accessible: for $u=S, v=\varepsilon: S \Rightarrow^{1} \boldsymbol{S B}$
\boldsymbol{a} - accessible: for $u=\varepsilon, v=\varepsilon: S \Rightarrow^{1} \boldsymbol{a}$
b - inaccessible: there is no $u, v \in \Sigma^{*}$ such that $S \Rightarrow^{*} u b v$

Terminating Symbols

Gist: Symbol X is terminating if X derives a terminal string.

> Definition: Let $G=(N, T, P, S)$ be a CFG. A symbol $X \in N \cup T$ is terminating if there exists $w \in T^{*}$ such that $X \Rightarrow{ }^{*} w$; otherwise, X is nonterminating

Note: Each nonterminating symbol can be removed from any CFG.

Example:

$G=(\{S, A, B\},\{a, b\},\{S \rightarrow S B, S \rightarrow a, A \rightarrow a b, B \rightarrow a B\}, S)$
Symbol S - terminating: for $w=a: S \Rightarrow^{1} a$
Symbol \boldsymbol{A} - terminating: for $w=\boldsymbol{a b}: A \Rightarrow^{1} \boldsymbol{a b}$
Symbol \boldsymbol{B} - nonterminating: there is no $w \in T^{*}$ such that $\boldsymbol{B} \Rightarrow^{*} w$
Symbol \boldsymbol{a} - terminating: for $w=\boldsymbol{a}: \boldsymbol{a} \Rightarrow^{0} \boldsymbol{a}$
Symbol \boldsymbol{b} - terminating: for $w=\boldsymbol{b}: \boldsymbol{b} \Rightarrow^{0} \boldsymbol{b}$

$29 / 31$

Algorithm: Emptiness

- Input: CFG $G=(N, T, P, S)$;
- Output: YES if $L(G)=\varnothing$

NO if $L(G) \neq \varnothing$

- Method:
- if S is nonterminating then write ('YES')
else write ('NO')

Summary:

The emptiness problem for CFLs is decidable

Algorithm: Finiteness

- Input: CFG $G=(N, T, P, S)$;
- Output: YES if $L(G)$ is finite

NO if $L(G)$ is infinite

- Method:
- Let $k=2^{\operatorname{card}(N)}$
- if there exist $z \in L(M), k \leq|z|<2 k$ then write ('NO') else write ('YES')

Summary:

The finiteness problem for CFLs is decidable

Main Undecidable Problems

1. Equivalence problem:

- Instance: CFGs $G_{1}, G_{2} ;$ Question: $L\left(G_{1}\right)=L\left(G_{2}\right)$?

2. Ambiguity problem:

- Instance: G;
 Question: Is G ambiguous?

Note:

It is mathematically proved that there exists no algorithm, which solve these problems in finite time.

