Part XIII. Beyond the Context-Free Languages

Turing Machines (TM)

Gist: The most powerful computational model.

Note: $\Delta = blank$

Turing Machines: Definition

Definition: A Turing machine (TM) is a 6-tuple $M = (Q, \Sigma, \Gamma, R, s, F)$, where

- Q is a finite set of states
- Σ is an input alphabet
- Γ is a tape alphabet; $\Delta \in \Gamma$; $\Sigma \subseteq \Gamma$
- R is a *finite set of rules* of the form: $pa \rightarrow qbt$, where $p, q \in Q$, $a, b \in \Gamma$, $t \in \{S, R, L\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note:

- Mathematically, *R* is a relation from $Q \times \Gamma$ to $Q \times \Gamma \times \{S, R, L\}$
- Instead of (pa, qbt), we write $pa \rightarrow qbt$

Interpretation of Rules

• $pa \rightarrow qbS$: If the current state and tape symbol are p and a, respectively, then replace a with b, change p to q, and keep the head Stationary.

• $pa \rightarrow qbR$: If the current state and tape symbol are p and a, respectively, then replace a with b, shift the head a square R ight, and change p to q.

• $pa \rightarrow qbL$: If the current state and tape symbol are p and a, respectively, then replace a with b, shift the head a square Left, and change p to q.

Graphical Representation

- q represents $q \in Q$
- \rightarrow represents the initial state $s \in Q$
 - f represents a final state $f \in F$
 - $p \xrightarrow{a/b, S} q$ denotes $pa \to qbS \in R$
 - $p \xrightarrow{a/b, R} q$ denotes $pa \to qbR \in R$
 - $p \xrightarrow{a/b, L} q$ denotes $pa \to qbL \in R$

Turing Machine: Example 1/2

```
M = (Q, \Sigma, \Gamma, R, s, F)
 where:
• Q = \{ s, p, q, f \};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
• R = \{ s\Delta \rightarrow f\Delta S,
             sa \rightarrow paR,
              sb \rightarrow pbR,
             pa \rightarrow paR,
             pb \rightarrow pbR,
             p\Delta \rightarrow q\Delta L,
              qa \rightarrow f\Delta S,
              qb \rightarrow f\Delta S
• F = \{f\}
```


Turing Machine: Example 2/2

TM Configuration

Gist: Instantaneous description of TM

What does a configuration describes?

1) Current state 2) Tape Contents 3) Position of the head

Configuration *xpy*

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM. A configuration of M is a string $\chi = xpy$, where $x \in \Gamma^*, p \in Q, y \in \Gamma^*(\Gamma - \{\Delta\}) \cup \{\Delta\}$.

Stationary Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *stationary move* from χ to χ ' according to r, written as $\chi / -_S \chi$ ' [r] or, simply, $\chi / -_S \chi$ ' if $\chi = xpay$, $\chi' = xqby$ and $r: pa \rightarrow qbS \in R$

Illustration:

Right Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *right move* from χ to χ ' according to r, written as $\chi / -_R \chi$ ' [r] or, simply, $\chi / -_R \chi$ ' if $\chi = xpay$, $r: pa / -qbR \in R$ and $(1) \chi' = xbqy$, $y \neq \varepsilon$ or $(2) \chi' = xbq\Delta$, $y = \varepsilon$

Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r:pa / - qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r:pa / - q\Delta L \in R$

Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *move* from χ to χ ' according to a rule r, written as $\chi /\!\!\!\! - \chi$ ' [r] or, simply, $\chi /\!\!\!\! - \chi$ ' if $\chi /\!\!\!\! - \chi$ ' [r] for some $X \in \{S, R, L\}$.

Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. M makes zero moves from χ to χ ; in symbols, $\chi \mid -^0 \chi$ [ϵ] or, simply, $\chi \mid -^0 \chi$

Definition: Let χ_0 , χ_1 , ..., χ_n be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \mid -\chi_i [r_i]$, $r_i \in R$, for all i = 1, ..., n; that is,

$$\chi_0 \mid -\chi_1 [r_1] \mid -\chi_2 [r_2] \dots \mid -\chi_n [r_n]$$

Then, M makes n moves from χ_0 to χ_n , $\chi_0 \mid -^n \chi_n [r_1 ... r_n]$ or, simply, $\chi_0 \mid -^n \chi_n$

Sequence of Moves 2/2

```
If \chi_0 \mid -^n \chi_n \mid \rho \mid for some n \geq 1, then \chi_0 \mid -^+ \chi_n \mid \rho \mid or, simply, \chi_0 \mid -^+ \chi_n
If \chi_0 \mid -^n \chi_n \mid \rho \mid for some n \geq 0, then \chi_0 \mid -^* \chi_n \mid \rho \mid or, simply, \chi_0 \mid -^* \chi_n
```

Example: Consider

```
apbc \mid -aqac \ [1:pb \rightarrow qaS], \ and \ aqac \mid -acrc \ [2:qa \rightarrow rcR]. Then, apbc \mid -^2 acrc \ [1\ 2], \ apbc \mid -^+ acrc \ [1\ 2], \ apbc \mid -^* acrc \ [1\ 2]
```

TM as a Language Acceptor

Gist: *M* accepts *w* by a sequence of moves from *s* to a final state.

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM. The *language accepted by M*, L(M), is defined as: $L(M) = \{w: w \in \Sigma^*, sw \mid -^* xfy; x, y \in \Gamma^*, f \in F\} \cup \{\varepsilon: s\Delta \mid -^* xfy; x, y \in \Gamma^*, f \in F\}$

Illustration:

• For $w \neq \varepsilon$:

• For $w = \varepsilon$:

TM as an Acceptor: Example


```
 \begin{array}{l} sabba \mid -\Delta q_1 abb \mid -\Delta aq_1 bb \mid -\Delta abq_1 b \mid -\Delta abbq_1 \Delta \mid -\Delta abq_2 b \\ \mid -\Delta aq_3 b \mid -\Delta q_3 ab \mid -q_3 \Delta ab \mid -\Delta sab \mid -\Delta \Delta q_1 b \mid -\Delta \Delta q_1 b \\ \mid -\Delta \Delta bq_1 \Delta \mid -\Delta \Delta q_2 b \mid -\Delta q_3 \Delta \mid -s\Delta \mid -f\Delta \end{array}
```

Summary: $abba \in L(M)$

Note: $L(M) = \{a^nb^n : n \ge 0\}$

TM as a Computational Model

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM; n-place function ϕ is computed by M provided that $s\Delta x_1\Delta x_2...\Delta x_n \mid -^* f\Delta y$ with $f \in F$ if and only if $\phi(x_1, x_2,...,x_n) = y$.

Illustration:

TM as a Computational Model: Example

Summary: $\phi(11, 11) = 1111$

Note: $\phi(x_1, x_2) = x_1 + x_2$, where

- $x_1 = 1^a$ represents a natural number a
- $x_2 = 1^b$ represents a natural number **b**

Deterministic Turing Machine (DTM)

Gist: Deterministic TM makes no more than one move from any configuration.

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM. M is a *deterministic TM* if for each rule $pa \rightarrow qbt \in R$ it holds that $R - \{pa \rightarrow qbt\}$ contains no rule with the left-hand side equal to pa.

Theorem: For every TM M, there is an equivalent DTM M_d .

Proof: See page 634 in [Meduna: Automata and Languages]

k-Tape Turing Machine

Gist: Turing machine with k tapes

Illustration:

Theorem: For every *k*-tape TM *M*, there is an equivalent TM *M*.

Proof: See page 662 in [Meduna: Automata and Languages]

k-Head Turing Machine

Gist: Turing machine with k heads

Illustration:

Theorem: For every *k*-head TM *M*, there is an equivalent TM *M*.

Proof: See page 667 in [Meduna: Automata and Languages]

TM with Two-way Infinite Tapes

Gist: Turing machine with tape infinite both to the right and to the left

Illustration:

Theorem: For every TM with two-way infinite tapes *M*, there is an equivalent TM *M*.

Proof: See page 673 in [Meduna: Automata and Languages]

Description of a Turing Machine

Gist: Turing machine representation using a string over {0, 1}

- Assume that TM M has the form $M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\})$, where $Q = \{q_0, q_1, \dots, q_m\}, \Gamma = \{a_0, a_1, \dots, a_n\}$ so that $a_0 = \Delta$
- Let δ is the mapping from $(Q \cup \Gamma \cup \{S, L, R\})$ to $\{0, 1\}^*$ defined as: S(R) = 0.01

defined as:
$$\delta(S) = 01$$
, $\delta(L) = 001$, $\delta(R) = 0001$, $\delta(q_i) = 0^{i+1}1$ for all $i = 0 \dots m$, $\delta(a_i) = 0^{i+1}1$ for all $i = 0 \dots n$

• For every $r: pa \rightarrow qbt \in R$ we define

$$\delta(\mathbf{r}) = \delta(\mathbf{p})\delta(\mathbf{a})\delta(\mathbf{q})\delta(\mathbf{b})\delta(t)\mathbf{1}$$

• Let $R = \{r_0, r_1, ..., r_k\}$. Then

$$\delta(M) = 111\delta(r_0)\delta(r_1)...\delta(r_k)1$$
 is the description of TM M

Description of TM: Example

```
M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\}), where
Q = \{q_0, q_1\}; \Sigma = \{a_1, a_2\}; \Gamma = \{\Delta, a_1, a_2\};
R = \{1: q_0 a_1 \rightarrow q_0 a_2 R, 2: q_0 a_2 \rightarrow q_0 a_1 R, 3: q_0 \Delta \rightarrow q_1 \Delta S\}
Task: Decription of M, \delta(M).
               \delta(S) = 01, \, \delta(L) = 001, \, \delta(R) = 0001,
               \delta(q_0) = 01, \, \delta(q_1) = 001,
               \delta(\Delta) = 01, \ \delta(a_1) = 001, \ \delta(a_2) = 0001.
 \delta(M) = 111\delta(1)\delta(2)\delta(3)1
             = 111\delta(\boldsymbol{q_0})\delta(\boldsymbol{a_1})\delta(\boldsymbol{q_0})\delta(\boldsymbol{a_2})\delta(\boldsymbol{R})\mathbf{1}
                      \delta(q_0)\delta(a_2)\delta(q_0)\delta(a_1)\delta(R)
                      \delta(q_0)\delta(\Delta)\delta(q_1)\delta(\Delta)\delta(S)11
             = 111010010100010001
                10100010100100011
                0101001010111
```

Universal Turing Machine

Gist: Universal TM can simulate every DTM

Illustration:

Note: Universal TM U reads the description of TM M, and the input string w, and then simulates the moves that M make with w.

Unrestricted Grammar: Definition

Gist: Generalization of CFG

Definition: An unrestricted grammar (URG) is a quadruple G = (N, T, P, S), where

- *N* is an alphabet of *nonterminals*
- T is an alphabet of terminals, $N \cap T = \emptyset$
- *P* is a finite set of *rules* of the form $x \to y$, where $x \in (N \cup T)^* N(N \cup T)^*, y \in (N \cup T)^*$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, P is a finite relation from $(N \cup T)^*N (N \cup T)^*$ to $(N \cup T)^*$
- Instead of $(x, y) \in P$, we write $x \to y \in P$

Derivation Step

Gist: A change of a string by a rule.

Definition: Let G = (N, T, P, S) be an URG. Let $u, v \in (N \cup T)^*$ and $p: x \to y \in P$. Then, uxv directly derives uyv according to p in G, written as $uxv \Rightarrow uyv$ [p] or, simply, $uxv \Rightarrow uyv$.

Note: \Rightarrow^n , \Rightarrow^+ , \Rightarrow^* and L(G) are defined by analogy with the corresponding definitions in terms of CFGs.

Unrestricted Grammar: Example

```
G = (N, T, P, S), where N = \{S, A, B\}, T = \{a\}
P = \{ 1: S \rightarrow ASB,
                                               2: S \rightarrow a
                                               4:AB \rightarrow \varepsilon
         3: Aa \rightarrow aaA
S \Rightarrow a [2]
S \Rightarrow ASB [1] \Rightarrow AaB [2] \Rightarrow aaAB [3] \Rightarrow aa [4]
S \Rightarrow ASB [1] \Rightarrow AASBB [1] \Rightarrow AAaBB [2] \Rightarrow
       AaaABB [3] \Rightarrow aaAaABB [3] \Rightarrow
       aaaaAABB [3] \Rightarrow aaaaAB [4] \Rightarrow aaaa [4]
```

Note: $L(G) = \{a^{2^n}: n \ge 0\}$

Recursively Enumerable Languages

Definition: Let L be a language. L is a resurcively enumerable language if there exists an Turing machine M that L = L(M).

Theorem: For every URG G, there is an TM M such that L(G) = L(M).

Proof: See page 714 in [Meduna: Automata and Languages]

Theorem: For every TM M, there is an URG G such that L(M) = L(G).

Proof: See page 715 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for recursively enumerable languages are

1) Unrestricted grammars 2) Turing Machines

Context-Sensitive Grammar

Gist: Restriction of URG

Definition: Let G = (N, T, P, S) be an unrestricted grammar. G is a context-sensitive (or length-increasing) grammar (CSG) if every rule $x \rightarrow y \in P$ satisfies $|x| \leq |y|$.

Note: \Rightarrow , \Rightarrow ⁿ, \Rightarrow ⁺, \Rightarrow * and L(G) are defined by analogy with the definitions of the corresponding notions on URGs.

Linear Bounded Automaton

Gist: A Turing machine with a Tape Bounded by the Length of the Input String.

Linear Bounded Automaton: Definition

Gist: With w on its tape, M's tape is restricted to |w| squares.

Definition: A linear bounded automaton (LBA) is a TM that cannot extend its tape by any rule.

Accepted language: Illustration

Context-sensitive Languages

Definition: Let L be a language. L is a context-sensitive if there exists a context-sensitive grammar G that L = L(G).

Theorem: For every CSG G, there is an LBA M such that L(G) = L(M).

Proof: See page 732 in [Meduna: Automata and Languages]

Theorem: For every LBA M, there is an CSG G such that L(M) = L(G).

Proof: See page 734 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for context-sensitive languages are
1) Context-sensitive grammars

- 2) Linear bounded automata

Right-Linear Grammar: Definition

Gist: A CFG in which every rule has a string of terminals followed by no more that one nonterminal on the right-hand side.

Definition: Let G = (N, T, P, S) be a CFG. G is a right-linear grammar (RLG) if every rule $A \rightarrow x$ $\in P$ satisfies $x \in T^* \cup T^*N$.

Example:

```
G = (N, T, P, S), where N = \{S, A\}, T = \{a, b\}

P = \{1: S \rightarrow aS, 2: S \rightarrow aA, 3: A \rightarrow bA, 4: A \rightarrow b\}

• S \Rightarrow aA [2] \Rightarrow ab [4]

• S \Rightarrow aS [1] \Rightarrow aaA [2] \Rightarrow aab [4]
```

Note: $L(G) = \{a^m b^n : m, n \ge 1\}$

• $S \Rightarrow aA$ [2] $\Rightarrow abA$ [3] $\Rightarrow abb$ [4]

Grammars for Regular Languages

Theorem: For every RLG G, there is an FA M such that L(G) = L(M).

Proof: See page 575 in [Meduna: Automata and Languages]

Theorem: For every FA M, there is a RLG G such that L(M) = L(G).

Proof: See page 583 in [Meduna: Automata and Languages]

Conclusion: Grammars for regular languages are Right-linear grammar

Grammars: Summary

Languages	Grammar	Form of rules $x \rightarrow y$
Recursively enumerable	Unrestricted	$x \in (N \cup T)^* N(N \cup T)^*$ $y \in (N \cup T)^*$
Context- sensitive	Context- sensitive	$x \in (N \cup T)^* N(N \cup T)^*$ $y \in (N \cup T)^*, x \le y $
Context-free	Context-free	$x \in N$ $y \in (N \cup T)^*$
Regular	Right-Linear	$x \in N$ $y \in T^* \cup T^*N$

Restriction

Automata: Summary

Languages | Accepting Device

Generalization	Recursively enumerable	Turing machine
	Context- sensitive	Linear bounded automaton
	Context-free	Pushdown automaton
	Regular	Finite automaton

Restriction

Type $3 \subset \text{Type } 2 \subset \text{Type } 1 \subset \text{Type } 0$

Language $L_{\text{SelfAccentance}}$ 1/2

Gist: $L_{\text{SelfAcceptance}}$ is the language over $\{0, 1\}^*$, which contain a string $\delta(M)$, if and only DTM M accepts $\delta(M)$.

Definition: $L_{\text{SelfAcceptance}} = \{\delta(M): M \text{ is a DTM}, \delta(M) \in L(M)\}$ Description of M: **Illustration:** TMM $\delta(M) = 1110...1$ TMM $\delta(M)$ • Does TM M accept $\delta(M) = 1110...1$?

Language $L_{\text{SelfAccentance}}$ 2/2

Theorem: $L_{\text{SelfAcceptance}}$ is accept by some TM.

Proof (idea):

- We construct a DTM V, which:
- 1) Replace an input string $w = \delta(M)$ with $\delta(M)\delta(M)$
- 2) Simulate an activity of a universal TM U
- Then, $L(V) = L_{\text{SelfAcceptance}}$, thus theorem holds.

Illustration:

Language $L_{\text{NonSelfAccentance}}$ 1/3

Gist: $L_{\text{NonSelfAcceptance}} = L_{\text{SelfAcceptance}}$

Definition:

$$L_{\text{NonSelfAcceptance}} = \{0, 1\}^* - L_{\text{SelfAcceptance}}$$

Language $L_{\text{NonSelfAcceptance}}$ 2/3

Theorem: $L_{\text{NonSelfAcceptance}}$ is accept by **no** TM.

Proof (by contradiction):

• Assume that $L_{\text{NonSelfAcceptance}}$ is accepted by a TM. Consider this infinite table:

M	$m_i = \delta(M_i)$	$SelfAcceptance(M_i)$
\square M	111001001001101	Yes
$\geq M$	11101010111100101	No
	1110010001010001001001	Yes
₹		•

Note:

 $\begin{array}{c} \bullet \ SelfAcceptance(M_i) = \mathbf{Yes} \ \ \mathbf{if} \ m_i \in L_{\mathrm{SelfAcceptance}} \\ \mathbf{No} \ \ \mathbf{if} \ m_i \not\in L_{\mathrm{SelfAcceptance}} \end{array}$

Language $L_{\text{NonSelfAcceptance}}$ 3/3

- Notice: $L_{\text{NonSelfAcceptance}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- Selfacceptance (M_k) = No implies

```
m_k \notin L(M_k) implies m_k \in L_{\text{NonSelfAcceptance}} implies m_k \in L(M_k) contradiction
```

• $Selfacceptance(M_k) = Yes$ implies

```
m_k \in L(M_k) implies
m_k \notin L_{\text{NonSelfAcceptance}} implies
m_k \notin L(M_k)
contradiction
```

• $L_{\text{NonSelfAcceptance}}$ is accepted by **no** TM M_k

Recursive Language

Gist: Recursive Language accepts TM that always halt

Definition: Let L be a language. If L = L(M), where M is DTM that always halts, then L is a recursive language.

Theorem: The family of recursive languages is closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]

Theorem: The family of recursively enumerable languages is <u>not</u> closed under complement.

Proof: See the $L_{\rm SelfAcceptance}$

Other Hierarchy of Languages

