$1 / 45$

Part XIII.

 Beyond the Context-Free Languages
2/45

Turing Machines (TM)

Gist: The most powerful computational model.

Note: $\Delta=$ blank

Turing Machines: Definition

Definition: A Turing machine (TM) is a 6-tuple $M=(Q, \Sigma, \Gamma, R, s, F)$, where

- Q is a finite set of states
- Σ is an input alphabet
- Γ is a tape alphabet; $\Delta \in \Gamma ; \Sigma \subseteq \Gamma$
- R is a finite set of rules of the form: $p a \rightarrow q b t$, where $p, q \in Q, a, b \in \Gamma, t \in\{S, R, L\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of final states

Mathematical note:

- Mathematically, R is a relation from $Q \times \Gamma$ to $Q \times \Gamma \times\{S, R, L\}$
- Instead of (pa, qbt), we write $\boldsymbol{p a} \rightarrow \boldsymbol{q} \boldsymbol{b} \boldsymbol{t}$

Interpretation of Rules

- $\boldsymbol{p a} \rightarrow \boldsymbol{q} \boldsymbol{b S}$: If the current state and tape symbol are \boldsymbol{p} and \boldsymbol{a}, respectively, then replace \boldsymbol{a} with \boldsymbol{b}, change \boldsymbol{p} to \boldsymbol{q}, and keep the head Stationary.

$p a \rightarrow q b R$: If the current state and tape symbol are p and a, respectively, then replace \boldsymbol{a} with \boldsymbol{b}, shift the head a square Right, and change p to q.

- $p a \rightarrow q b L$: If the current state and tape symbol are \boldsymbol{p} and \boldsymbol{a}, respectively, then replace \boldsymbol{a} with \boldsymbol{b}, shift the head a square Left, and change p to q.

Graphical Representation

(9) represents $q \in Q$
\rightarrow s represents the initial state $s \in Q$
represents a final state $f \in F$
(p) $\xrightarrow{\boldsymbol{a} / \boldsymbol{b}, \boldsymbol{S}}$ (q) denotes $p a \rightarrow q b S \in R$
(p) $\xrightarrow{\boldsymbol{a} / \boldsymbol{b}, \boldsymbol{R}}$ (q) denotes $p a \rightarrow q b R \in R$
(p) $\underset{ }{\boldsymbol{a} / \mathbf{b}, \boldsymbol{L}}$ (q) denotes $p a \rightarrow q b L \in R$

Turing Machine: Example 1/2

$M=(Q, \Sigma, \Gamma, R, s, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{\boldsymbol{a}, \boldsymbol{b}\}$;
- $\Gamma=\{a, b, \Delta\}$;
- $R=\{s \Delta \rightarrow f \Delta S$,
sa \rightarrow paR,
$s b \rightarrow p b R$,
$p a \rightarrow p a R$,
$p b \rightarrow p b R$,
$p \Delta \rightarrow q \Delta L$, $q a \rightarrow f \Delta S$,
$q b \rightarrow f \Delta S\}$
- $F=\{f\}$

Turing Machine: Example 2/2

Note: M deletes a symbol

TM M :

before the first occurrence of Δ : Illustration:

TM Configuration

Gist: Instantaneous description of TM
What does a configuration describes?

1) Current state 2) Tape Contents 3) Position of the head

Configuration $x p y$
Definition: Let $M=(Q, \Sigma, \Gamma, R, s, F)$ be a TM. A configuration of M is a string $\chi=x p y$, where
$x \in \Gamma^{*}, p \in Q, y \in \Gamma^{*}(\Gamma-\{\Delta\}) \cup\{\Delta\}$.

9/45

Stationary Move

Definition: Let χ, χ ' be two configurations of M. Then, M makes a stationary move from χ to χ^{\prime} according to , written as $\chi \mid-_{s} \chi^{\prime}$ [] or, simply, $\left.\chi\right|_{-} \chi^{\prime}$ if

$$
\chi=x p a y, \chi^{\prime}=x q b y \text { and }: p a \rightarrow q b S \in R
$$

Illustration:

Rule: $p a \rightarrow q b S$

Right Move

Definition: Let χ, χ ' be two configurations of M. Then, M makes a right move from χ to χ ' according to , written as $\chi-_{R} \chi^{\prime}$ [] or, simply, $\chi \mid-{ }_{R} \chi^{\prime}$ if $\chi=$ xpay, $: p a \mid-q b \mathbf{R} \in R$ and
(1) $\chi^{\prime}=x b q y, y \neq \varepsilon$ or
(2) $\chi,=x b q \Delta, y=\varepsilon$

©

Left Move

Definition: Let χ, χ ' be two configurations of M. Then, M makes a left move from χ to χ 'according to , written as $\chi \mid-_{L} \chi^{\prime}$ [] or, simply, $\chi \mid-_{L} \chi^{\prime}$ if (1) $\chi=x c p a y, \chi$, $x q c b y, y \neq \varepsilon$ or $b \neq \Delta,: p a \mid-q b L \in R$ or (2) $\chi=x с p a, \chi$ ' $=x q c,: p a \mid-q \Delta L \in R$

Configuration
New Configuration

Move

Definition: Let χ, χ ' be two configurations of M. Then, M makes a move from χ to χ^{\prime} according to a rule , written as $\chi \mid-\chi^{\prime}$ [] or, simply, $\chi \mid-\chi^{\prime}$ if $\chi \mid{ }_{X} \chi^{\prime}$ [] for some $X \in\{S, R, L\}$.

Sequence of Moves $1 / 2$

Gist: Several consecutive computational steps
Definition: Let χ be a configuration. M makes zero moves from χ to χ; in symbols,

$$
\chi \mid-{ }^{0} \chi[\varepsilon] \text { or, simply, } \chi \mid-{ }^{0} \chi
$$

Definition: Let $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ be a sequence of configurations, $n \geq 1$, and $\chi_{i-1} \mid-\chi_{i}\left[r_{i}\right], r_{i} \in R$, for all $i=1, \ldots, n$; that is,

$$
\chi_{0}\left|-\chi_{1}\left[r_{1}\right]\right|-\chi_{2}\left[r_{2}\right] \ldots \mid-\chi_{n}\left[r_{n}\right]
$$

Then, M makes n moves from χ_{0} to χ_{n},

$$
\chi_{0} \mid-^{n} \chi_{n}\left[r_{1} \ldots r_{n}\right] \text { or, simply, } \chi_{0} \mid-^{n} \chi_{n}
$$

Sequence of Moves 2/2

If $\chi_{0} 1-^{n} \chi_{n}[\rho]$ for some $n \geq 1$, then

$$
\chi_{0} 1^{+} \chi_{n}[\rho] \text { or, simply, } \chi_{0} 1^{-} \chi_{n}
$$

If $\chi_{0} \mid-{ }^{n} \chi_{n}[\rho]$ for some $n \geq 0$, then

$$
\chi_{0} \vdash^{-} \chi_{n}[\rho] \text { or, simply, } \chi_{0} \vdash^{*} \chi_{n}
$$

Example: Consider
$\boldsymbol{a p b c} \mid-$ aqac $[1: p b \rightarrow q a S]$, and aqac|-acrc [2: qa $\rightarrow r c R$].
Then, $\left.\quad \boldsymbol{a p b c}\right|_{-2}{ }^{2} \boldsymbol{a c r c}[12]$, apbc $\left.\right|^{-+}$acrc [12], apbc --* acrc [12]

TM as a Language Acceptor

Gist: M accepts w by a sequence of moves

 from s to a final state.Definition: Let $M=(Q, \Sigma, \Gamma, R, s, F)$ be a TM. The language accepted by $M, L(M)$, is defined as:

$$
\begin{aligned}
L(M)= & \left\{w: w \in \Sigma^{*}, \boldsymbol{s} w \mid-^{*} x \boldsymbol{f} y ; x, y \in \Gamma^{*}, f \in F\right\} \cup \\
& \left\{\varepsilon: \boldsymbol{s} \Delta \mid-^{*} x \boldsymbol{f} y ; x, y \in \Gamma^{*}, f \in F\right\}
\end{aligned}
$$

Illustration:

- For $w \neq \varepsilon$:

- For $w=\varepsilon$:

TM as an Acceptor: Example

TM M:

$s a b b a\left|-\Delta q_{1} a b b\right|-\Delta a q_{1} b b\left|-\Delta a b q_{1} b\right|-\Delta a b b q_{1} \Delta \mid-\Delta a b q_{2} b$ $\left|-\Delta a q_{3} b\right|-\Delta q_{3} a b\left|-q_{3} \Delta a b\right|-\Delta s a b\left|-\Delta \Delta q_{1} b\right|-\Delta \Delta q_{1} b$ $\left|-\Delta \Delta b q_{1} \Delta\right|-\Delta \Delta q_{2} b\left|-\Delta q_{3} \Delta\right|-s \Delta \mid-f \Delta$
Summary: $a b b a \in L(M)$
Note: $L(M)=\left\{\boldsymbol{a}^{n} \boldsymbol{b}^{n}: n \geq 0\right\}$

TM as a Computational Model

Definition: Let $M=(Q, \Sigma, \Gamma, R, s, F)$ be a TM; n-place function ϕ is computed by M provided that $\left.s \Delta x_{1} \Delta x_{2} \ldots \Delta x_{n}\right|^{*} f \Delta$ with $f \in F$ if and only if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$

Illustration:

TM as a Computational Model: Example

TM M :

Summary: $\phi(11,11)=1111$
Note: $\phi\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$, where

- $x_{1}=1^{a}$ represents a natural number a
- $x_{2}=1^{b}$ represents a natural number b

Deterministic Turing Machine (DTM)

Gist: Deterministic TM makes no more than one move from any configuration.
Definition: Let $M=(Q, \Sigma, \Gamma, R, s, F)$ be a TM. M is a deterministic $T M$ if for each rule $p a \rightarrow$ $q b t \in R$ it holds that $R-\{p a \rightarrow q b t\}$ contains no rule with the left-hand side equal to $p a$.

Theorem: For every TM M, there is an equivalent DTM M_{d}.

Proof: See page 634 in [Meduna: Automata and Languages]

k-Tape Turing Machine

Gist: Turing machine with k tapes

Illustration:

Theorem: For every k-tape TM M, there is an equivalent TM M.

Proof: See page 662 in [Meduna: Automata and Languages]

21/45

k-Head Turing Machine

Gist: Turing machine with k heads

Illustration:

Theorem: For every k-head TM M, there is an equivalent TM M.

Proof: See page 667 in [Meduna: Automata and Languages]

TM with Two-way Infinite Tapes

Gist: Turing machine with tape infinite both to the right and to the left
Illustration:

Theorem: For every TM with two-way infinite tapes M, there is an equivalent TM M.

Proof: See page 673 in [Meduna: Automata and Languages]

Description of a Turing Machine Gist: Turing machine representation using a string over $\{0,1\}$

- Assume that TM M has the form $M=\left(Q, \Sigma, \Gamma, R, q_{0},\left\{q_{1}\right\}\right)$, where $Q=\left\{q_{0}, q_{1}, \ldots, q_{m}\right\}, \Gamma=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ so that $a_{0}=\Delta$
- Let δ is the mapping from $(Q \cup \Gamma \cup\{S, L, R\})$ to $\{0,1\}^{*}$ defined as: $\delta(S)=01, \delta(L)=001, \delta(R)=0001$,

$$
\delta\left(q_{i}\right)=0^{i+1} 1 \text { for all } i=0 \ldots m,
$$

$$
\delta\left(a_{i}\right)=0^{i+1} 1 \text { for all } i=0 \ldots n
$$

- For every $r: p \boldsymbol{p a} \rightarrow q \boldsymbol{b t} \in R$ we define

$$
\delta(r)=\delta(p) \delta(a) \delta(q) \delta(b) \delta(t) 1
$$

- Let $R=\left\{r_{0}, r_{1}, \ldots, r_{k}\right\}$. Then $\delta(\boldsymbol{M})=111 \delta\left(r_{0}\right) \delta\left(r_{1}\right) \ldots \delta\left(r_{k}\right) 1$ is the description of TM M

24/45

Description of TM: Example

$M=\left(Q, \Sigma, \Gamma, R, q_{0},\left\{q_{1}\right\}\right)$, where
$Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}\right\} ; \Sigma=\left\{a_{1}, a_{2}\right\} ; \Gamma=\left\{\Delta, a_{1}, a_{2}\right\} ;$
$R=\left\{1: q_{0} a_{1} \rightarrow q_{0} a_{2} R, 2: q_{0} a_{2} \rightarrow q_{0} a_{1} R, 3: q_{0} \Delta \rightarrow q_{1} \Delta S\right\}$
Task: Decription of $M, \delta(M)$.

$$
\begin{aligned}
& \delta(S)=01, \delta(L)=001, \delta(R)=0001, \\
& \delta\left(q_{0}\right)=01, \delta\left(q_{1}\right)=001, \\
& \delta(\Delta)=01, \delta\left(a_{1}\right)=001, \delta\left(a_{2}\right)=0001 .
\end{aligned}
$$

$\delta(M)=111 \delta(1) \delta(2) \delta(3) \mathbb{1}$
$=111 \delta\left(q_{0}\right) \delta\left(a_{1}\right) \delta\left(q_{0}\right) \delta\left(a_{2}\right) \delta(R) 1$
$\delta\left(q_{0}\right) \delta\left(a_{2}\right) \delta\left(q_{0}\right) \delta\left(a_{1}\right) \delta(R) 1$
$\delta\left(q_{0}\right) \delta(\Delta) \delta\left(q_{1}\right) \delta(\Delta) \delta(S) 11$
= 111010010100010001 10100010100100011 0101001010111

Universal Turing Machine

 Gist: Universal TM can simulate every DTM Illustration:
Universal TM U

Description of $M, \delta(M)$

Note: Universal TM \boldsymbol{U} reads the description of TM M, and the input string w, and then simulates the moves that M make with w.

Unrestricted Grammar: Definition

Gist: Generalization of CFG

Definition: An unrestricted grammar (URG) is a quadruple $G=(N, T, P, S)$, where

- N is an alphabet of nonterminals
- T is an alphabet of terminals, $N \cap T=\varnothing$
- P is a finite set of rules of the form $x \rightarrow y$, where $x \in(N \cup T)^{*} N(N \cup T)^{*}, y \in(N \cup T)^{*}$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, P is a finite relation from $(N \cup T)^{*} N(N \cup T)^{*}$ to $(N \cup T)^{*}$
- Instead of $(x, y) \in P$, we write $x \rightarrow y \in P$

Derivation Step

Gist: A change of a string by a rule.

Definition: Let $G=(N, T, P, S)$ be an URG. Let $\boldsymbol{u}, \boldsymbol{v} \in(N \cup T)^{*}$ and $: x \rightarrow y \in P$. Then, $\boldsymbol{u x v}$ directly derives uyv according to in G, written as $\boldsymbol{u x v} \Rightarrow \boldsymbol{u} y \boldsymbol{v}$ [] or, simply, $\boldsymbol{u} \times \boldsymbol{v} \Rightarrow \boldsymbol{u y v}$.

Note: $\Rightarrow^{n}, \Rightarrow^{+}, \Rightarrow^{*}$ and $L(G)$ are defined by analogy with the corresponding definitions in terms of CFGs.

Unrestricted Grammar: Example

$G=(N, T, P, S)$, where $N=\{\boldsymbol{S}, \boldsymbol{A}, \boldsymbol{B}\}, T=\{\boldsymbol{a}\}$
$P=\{1: S \rightarrow A S B$,
2: $S \rightarrow a$,
3: Aa $\rightarrow a \operatorname{a} A$,
4: $\boldsymbol{A B} \rightarrow \varepsilon \quad\}$
$S \Rightarrow \boldsymbol{a} \quad$ [2]
$S \Rightarrow A \underline{S B}[1] \Rightarrow \underline{A a B}[2] \Rightarrow a a \underline{A B}[3] \Rightarrow a a[4]$
$S \Rightarrow A \underline{S} B[1] \Rightarrow A A \underline{S B B}[1] \Rightarrow A \underline{A a B B}[2] \Rightarrow$
AaaABB [3] $\Rightarrow a a A a A B B[3] \Rightarrow$
aaaaAABB [3] \Rightarrow aaaaAB [4] \Rightarrow aaaa [4]

Note: $L(G)=\left\{a^{2^{n}}: n \geq 0\right\}$

Recursively Enumerable Languages

Definition: Let L be a language. L is a resurcively enumerable language if there exists an Turing machine M that $L=L(M)$.
Theorem: For every URG G, there is an TM M such that $L(G)=L(M)$.
Proof: See page 714 in [Meduna: Automata and Languages]
Theorem: For every TM M, there is an URG G such that $L(M)=L(G)$.
Proof: See page 715 in [Meduna: Automata and Languages]
Conclusion: The fundamental models for recursively enumerable languages are

1) Unrestricted grammars
 2) Turing Machines

30/45

Context-Sensitive Grammar

Gist: Restriction of URG

Definition: Let $G=(N, T, P, S)$ be an unrestricted grammar. G is a context-sensitive (or length-increasing) grammar (CSG) if every rule $\boldsymbol{x} \rightarrow \boldsymbol{y} \in P$ satisfies $|x| \leq|y|$.

Note: $\Rightarrow, \Rightarrow^{n}, \Rightarrow^{+}, \Rightarrow^{*}$ and $L(G)$ are defined by analogy with the definitions of the corresponding notions on URGs.

Linear Bounded Automaton

Gist: A Turing machine with a Tape Bounded by the Length of the Input String.

Linear Bounded Automaton: Definition

Gist: With w on its tape, M's tape is restricted to $|w|$ squares.
Definition: A linear bounded automaton (LBA) is a TM that cannot extend its tape by any rule.

Accepted language: Illustration

Context-sensitive Languages

Definition: Let L be a language. L is a context-sensitive if there exists a context-sensitive grammar G that $L=L(G)$.
Theorem: For every CSG G, there is an LBA M such that $L(G)=L(M)$.
Proof: See page 732 in [Meduna: Automata and Languages]
Theorem: For every LBA M, there is an CSG G such that $L(M)=L(G)$.
Proof: See page 734 in [Meduna: Automata and Languages]
Conclusion: The fundamental models for context-sensitive languages are

1) Context-sensitive grammars
2) Linear bounded automata

Right-Linear Grammar: Definition

Gist: A CFG in which every rule has a string of terminals followed by no more that one nonterminal on the right-hand side.
Definition: Let $G=(N, T, P, S)$ be a CFG. G is a right-linear grammar (RLG) if every rule $\boldsymbol{A} \rightarrow \boldsymbol{x}$ $\in P$ satisfies $x \in T^{*} \cup T^{*} N$.
Example:
$G=(N, T, P, S)$, where $N=\{S, A\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$
$P=\{1: S \rightarrow a S, 2: S \rightarrow a A, 3: A \rightarrow b A, 4: A \rightarrow b\}$
$\cdot S \Rightarrow a \underline{A}[2] \Rightarrow a b$ [4]
$\cdot S \Rightarrow a \underline{S}[\mathbb{1}] \Rightarrow a a \underline{A}[2] \Rightarrow a a b[4]$
$\cdot S \Rightarrow a \underline{A}[2] \Rightarrow a b \underline{A}[3] \Rightarrow a b b[4]$
Note: $L(G)=\left\{a^{m} b^{n}: m, n \geq 1\right\}$

Grammars for Regular Languages

Theorem: For every RLG G, there is an FA M such that $L(G)=L(M)$.
Proof: See page 575 in [Meduna: Automata and Languages]
Theorem: For every FA M, there is a RLG G such that $L(M)=L(G)$.
Proof: See page 583 in [Meduna: Automata and Languages]
Conclusion: Grammars for regular languages are Right-linear grammar

Grammars: Summary

Languages	Grammar	Form of rules $x \rightarrow y$
Recursively enumerable	Unrestricted	$x \in(N \cup T)^{*} N(N \cup T)^{*}$ $y \in(N \cup T)^{*}$
Context- sensitive	Context- sensitive	$x \in(N \cup T)^{*} N(N \cup T)^{*}$ $y \in(N \cup T)^{*},\|x\| \leq\|y\|$
Context-free	Context-free	$x \in N$ $y \in(N \cup T)^{*}$
Regular	Right-Linear	$x \in N$ $y \in T^{*} \cup T^{*} N$

Automata: Summary

Chomsky Hierarchy

the family of regular languages = Type 3
the family of recursive enumerable languages = Type 0
the family of contextfree languages = Type 2
the family of contextsensitive languages = Type 1

Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0

39/45

Language $L_{\text {SelfAcceptance }} 1 / 2$

Gist: $L_{\text {Selfacceptance }}$ is the language over $\{0,1\}^{*}$, which contain a string $\delta(M)$, if and only DTM M accepts $\delta(M)$.

```
Definition:
\(\mathrm{L}_{\text {Selffacceptance }}=\{\delta(M): M\) is a DTM, \(\delta(M) \in L(M)\}\)
```

Illustration: $\mathbf{T M} M$ Description of M : $\delta(M)=1110 \ldots 1$

- Does TM M accept $\delta(M)=1110 . . .1$? $\quad \delta(M)$

Language $L_{\text {SelfAcceptance }} 2 / 2$

Theorem: $L_{\text {SelfAcceptance }}$ is accept by some TM.

Proof (idea):

- We construct a DTM V, which:

1) Replace an input string $w=\delta(M)$ with $\delta(M) \delta(M)$
2) Simulate an activity of a universal TM U

- Then, $L(V)=L_{\text {SelfAcceptance }}$, thus theorem holds.

Illustration:

Language $L_{\text {NonSelfacceptance }} 1 / 3$

Gist: $L_{\text {NonSelfAcceptance }}=\overline{L_{\text {SelfAcceptance }}}$

Definition:

$$
L_{\text {NonSelfAcceptance }}=\{0,1\}^{*}-L_{\text {SelfAcceptance }}
$$

 $\delta(M)=1110 \ldots 1$

TM M

- Does TM M accept $\delta(M)=1110 . . .1$?

42/45

Language $L_{\text {NonSelfAcceptance }} 2 / 3$

Theorem: $L_{\text {NonSelfAcceptance }}$ is accept by no TM.

Proof (by contradiction):

- Assume that $L_{\text {NonSelfAcceptance }}$ is accepted by a TM. Consider this infinite table:

Note:

- SelfAcceptance $\left(M_{i}\right)=$ Yes if $m_{i} \in L_{\text {SelfAcceptance }}$ No if $\boldsymbol{m}_{i} \notin L_{\text {SelfAcceptance }}$

43/45

Language $L_{\text {NonSelfAcceptance }} 3 / 3$

- Notice: $L_{\text {NonSelfAcceptance }}=\left\{m_{i}: m_{i} \notin L\left(M_{i}\right), i=1, \ldots\right\}$
- Let $L\left(\boldsymbol{M}_{k}\right)=L_{\text {NonSelfAcceptance }}$
- Selfacceptance $\left(M_{k}\right)=$ No implies

$$
\left(\begin{array}{l}
\boldsymbol{m}_{\boldsymbol{k}} \notin L\left(\boldsymbol{M}_{\boldsymbol{k}}\right) \text { implies } \\
\boldsymbol{m}_{\boldsymbol{k}} \in L_{\text {NonSelfAcceptance }} \\
\boldsymbol{m}_{\boldsymbol{k}} \in L\left(\boldsymbol{M}_{\boldsymbol{k}}\right) \\
\text { contradiction }
\end{array}\right.
$$

- Selfacceptance $\left(M_{k}\right)=$ Yes implies

$$
\left(\begin{array}{l}
m_{k} \in L\left(M_{k}\right) \text { implies } \\
m_{k} \notin L_{\text {NonselfAcceptance }} \text { implies } \\
m_{k} \notin L\left(M_{k}\right) \\
\text { contradiction }
\end{array}\right.
$$

- $L_{\text {NonSelfAcceptance }}$ is accepted by no TM $\boldsymbol{M}_{\boldsymbol{k}}$

Recursive Language

Gist: Recursive Language accepts TM that always halt
Definition: Let L be a language. If $L=L(M)$, where M is DTM that always halts, then L is a recursive language.

Theorem: The family of recursive languages is closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]
Theorem: The family of recursively enumerable languages is not closed under complement.

Proof: See the $L_{\text {Selffacceptance }}$

Other Hierarchy of Languages

