Graph Algorithms: Shortest Paths

Zbyněk "Pedro" Křivka
krivka@fit.vutbr.cz
Brno University of Technology
Faculty of Information Technology
Czech Republic

Lecture at Escuela de Ingeniería Informática de Segovia, Universidad de Valladolid - Campus de Segovia, Spain

March 16, 2017

Brno University of Technology

Faculty of Information Technology

- ≈ 2000 students (Bc, MSc, PhD)
- ≈ 50 Erasmus students each semester
- Erasmus+ Agreement with your faculty
- http://www.fit.vutbr.cz/admissions/short.php.en

Outline (with hyperlinks)

Introduction
Graph Theory
Graph Representation

Single-Source Shortest Paths
Bellman-Ford Algorithm
Dijkstra Algorithm

All-Pairs Shortest Paths

References

Books

- Cormen, Leiserson, Rivest, Stein: Introduction to algorithms. The MIT Press and McGraw-Hill, 2001.
- Jiří Demel: Grafy a jejich aplikace [in Czech]. Academia, 2002.

Introduction

Graph Theory

Definitions

Directed graph (digraph) G is a pair

$$
G=(V, E),
$$

where

- V is a finite set of vertices (nodes) and
- $E \subseteq V^{2}$ is a set of edges (arrows, arcs).

An edge (u, u) is called a self-loop.
If (u, v) is an edge, we say that (u, v) is incident from u and incident to v, that is v is adjacent to u.

Figure: Digraph

Definitions

Undirected graph G is a pair

$$
G=(V, E),
$$

where

- V is a finite set of vertices and
- $E \subseteq\binom{V}{2}$ is a set of edges.

Note

An edge is a set $\{u, v\}$, where $u, v \in V$ and $u \neq v$. Self-loops are forbidden.
Convention: $\{u, v\},(u, v)$, and (v, u) denote the same edge.

Figure: Undirected Graph

Definitions

- A path $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a connected sequence of vertices where $\left(v_{i-1}, v_{i}\right) \in E$ for all $i=1,2, \ldots, k$.

Definitions

- A path $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a connected sequence of vertices where $\left(v_{i-1}, v_{i}\right) \in E$ for all $i=1,2, \ldots, k$.
- The length of p equals to the number of edges in p.

Definitions

- A path $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a connected sequence of vertices where $\left(v_{i-1}, v_{i}\right) \in E$ for all $i=1,2, \ldots, k$.
- The length of p equals to the number of edges in p.
- If there is p from u to u^{\prime}, we say that u^{\prime} is reachable from u by p, denoted as $u \stackrel{p}{\rightsquigarrow} u^{\prime}$.

Definitions

- A path $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a connected sequence of vertices where $\left(v_{i-1}, v_{i}\right) \in E$ for all $i=1,2, \ldots, k$.
- The length of p equals to the number of edges in p.
- If there is p from u to u^{\prime}, we say that u^{\prime} is reachable from u by p, denoted as $u \stackrel{p}{\rightsquigarrow} u^{\prime}$.
- A path is simple if all vertices in the path are distinct.

Definitions

- A path $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a connected sequence of vertices where $\left(v_{i-1}, v_{i}\right) \in E$ for all $i=1,2, \ldots, k$.
- The length of p equals to the number of edges in p.
- If there is p from u to u^{\prime}, we say that u^{\prime} is reachable from u by p, denoted as $u \stackrel{p}{\rightsquigarrow} u^{\prime}$.
- A path is simple if all vertices in the path are distinct.

- Give some examples of a path and simple path.
- Give an example of unconnected sequence.

Definitions

- A subpath s of $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a contiguous subsequence, $s=\left\langle v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}\right\rangle$, for $0 \leq i \leq j \leq k$.

Definitions

- A subpath s of $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a contiguous subsequence, $s=\left\langle v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}\right\rangle$, for $0 \leq i \leq j \leq k$.
- A path $c=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a cycle, if $k \geq 1$ and $v_{0}=v_{k}$.

Definitions

- A subpath s of $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a contiguous subsequence, $s=\left\langle v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}\right\rangle$, for $0 \leq i \leq j \leq k$.
- A path $c=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a cycle, if $k \geq 1$ and $v_{0}=v_{k}$.

- What is $\langle 1,2,4,5,4,1\rangle$?
- What is $\langle 1,2,4,1\rangle$?
- What is $\langle 2,2\rangle$?

Definitions

- A subpath s of $p=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a contiguous subsequence, $s=\left\langle v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}\right\rangle$, for $0 \leq i \leq j \leq k$.
- A path $c=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ is a cycle, if $k \geq 1$ and $v_{0}=v_{k}$.

- What is $\langle 1,2,4,5,4,1\rangle$?
- What is $\langle 1,2,4,1\rangle$?
- What is $\langle 2,2\rangle$?
- Acyclic graph contains no cycles.

Definitions

- A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

Definitions

- A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
- An undirected graph is connected if every pair of vertices is connected by a path.
- An connected, acyclic, undirected graph is a tree.
- Homework: Prove that $|E|=|V|-1$.
- An acyclic, undirected graph is a forest (several trees).

Graph Representation

Let $G=(V, E)$ be a graph. Denote:

- $n=|V|$
- $m=|E|$.

1. Adjacency-list representation

- effective for sparse graphs ($m \ll n^{2}$);

Let $G=(V, E)$ be a graph. Denote:

- $n=|V|$
- $m=|E|$.

1. Adjacency-list representation

- effective for sparse graphs ($m \ll n^{2}$);

2. Adjacency-matrix representation

- effective for dense graphs (m close to n^{2});
- when we often need quick answer whether two given vertices are connected by an edge.

Adjacency-list representation

$G=(V, E)$ is represented as

- an array $\operatorname{Adj}[1 \ldots n]$ with n lists, one (unsorted) list for each vertex,
- where $\operatorname{Adj}[u]$ stores all vertices v such that $(u, v) \in E$.

- Space complexity: $\Theta(m+n)$ (depends linearly on the size of the graph).

Weighted graph

- A weighted graph is a (di)graph where there is a value assigned to every edge using weight function $w: E \rightarrow \mathbb{R}$.

Weighted graph

- A weighted graph is a (di)graph where there is a value assigned to every edge using weight function $w: E \rightarrow \mathbb{R}$.
- Representation of $w(u, v)$ in adjacency list: extend the list item (a structure) for v in $\operatorname{Adj}[u]$ with value $w(u, v)$.

Weighted graph

- A weighted graph is a (di)graph where there is a value assigned to every edge using weight function $w: E \rightarrow \mathbb{R}$.
- Representation of $w(u, v)$ in adjacency list: extend the list item (a structure) for v in $\operatorname{Adj}[u]$ with value $w(u, v)$.
- Disadvantage: Finding whether an edge (u, v) belongs to E requires the search of the whole list $\operatorname{Adj}[u]$.

Adjacency-matrix representation

Let $G=(V, E)$ be a graph and assume $V=\{1,2, \ldots, n\}$. Adjacency matrix $A=\left(a_{i j}\right)$ is a matrix of size $n \times n$ such that

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

- Space complexity: $\Theta\left(n^{2}\right)$ (independent of the number of edges).

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

- Space complexity: $\Theta\left(n^{2}\right)$ (independent of the number of edges).
- Transpose matrix of $A=\left(a_{i j}\right)$ is a matrix $A^{T}=\left(a_{i j}^{T}\right)$, where $a_{i j}^{T}=a_{j i}$.

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

- Space complexity: $\Theta\left(n^{2}\right)$ (independent of the number of edges).
- Transpose matrix of $A=\left(a_{i j}\right)$ is a matrix $A^{T}=\left(a_{i j}^{T}\right)$, where $a_{i j}^{T}=a_{j i}$.
- If A represents an undirected graph, then $A=A^{T}$. It is enough to store just one half of A.

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

- Space complexity: $\Theta\left(n^{2}\right)$ (independent of the number of edges).
- Transpose matrix of $A=\left(a_{i j}\right)$ is a matrix $A^{T}=\left(a_{i j}^{T}\right)$, where $a_{i j}^{T}=a_{j i}$.
- If A represents an undirected graph, then $A=A^{T}$. It is enough to store just one half of A.
- Let $G=(V, E)$ be a weighted graph, then

$$
a_{i j}= \begin{cases}w(i, j) & \text { if }(i, j) \in E, \\ \text { NIL } & \text { otherwise }\end{cases}
$$

where NIL is a special value, mostly 0 or ∞.

Exercises

1. Let $d e g_{-}(u)$ and $d e g_{+}(u)$ be the number of outcoming edges from u and incoming edges to u, respectively. Given an adjacency-list representation of a digraph and a vertex v, how long does it take to compute degrees $d e g_{-}(v)$ and $d e g_{+}(v)$?
2. The transpose of a directed graph $G=(V, E)$ is the graph $G^{T}=\left(V, E^{T}\right)$, where $E^{T}=\{(v, u) \in V \times V:(u, v) \in E\}$. Thus, G^{T} is G with all its edges reversed. Describe an efficient algorithm for computing G^{T} from G for the adjacency-list representation of G. Analyze the time complexity of your algorithm.
3. The square of a directed graph $G=(V, E)$ is the graph $G^{2}=\left(V, E^{2}\right)$ such that $(u, v) \in E^{2}$ if and only G contains a path with at most two edges between u and v. Describe an efficient algorithm for computing G^{2} from G for the adjacency-list representation of G. Analyze the time complexity of your algorithm.

Single-Source Shortest Paths

Shortest Paths - Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Shortest Paths - Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Measuring-cup Problem

- We have a 1 -litre cup and a 3-litre cup. We can fill a cup and we can pour from one cup to another as much as possible without spilling.
- How to measure 2 litres? How to do it in the cheapest way, if each liter is paid?

Shortest Paths - Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Measuring-cup Problem

- We have a 1 -litre cup and a 3-litre cup. We can fill a cup and we can pour from one cup to another as much as possible without spilling.
- How to measure 2 litres? How to do it in the cheapest way, if each liter is paid?
- What if I have 3-litre and 5-litre cup and I need to measure 4 litres? Is it possible?

Shortest Paths

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.

Shortest Paths

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.
- The weight of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Shortest Paths

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.
- The weight of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- The shortest-path weight from u to v is

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\rightsquigarrow} v\} & \text { if there is a path from } u \text { to } v \\ \infty & \text { otherwise }\end{cases}
$$

- A shortest path from u to v is any path p from u to v with $w(p)=\delta(u, v)$.

Shortest Paths - Variants

- Single-source shortest-paths problem
- Single-destination shortest-paths problem - by reversing the direction of each edge
- Single-pair shortest-path problem - is there faster solution?
- All-pairs shortest-paths problem - single-source from each vertex or faster?

Subpaths of Shortest Paths

Lemma 1.

Let $G=(V, E)$ be directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{1} to v_{k}. For any $1 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from v_{i} to v_{j}.
Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.
Proof.

Subpaths of Shortest Paths

Lemma 1.

Let $G=(V, E)$ be directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{1} to v_{k}. For any $1 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from v_{i} to v_{j}.
Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.
Proof.

- p is $v_{1} \xrightarrow{p_{1 i}} v_{i} \xrightarrow{p_{i j}} v_{j} \stackrel{p_{j k}}{\rightsquigarrow} v_{k}$, where $w(p)=w\left(p_{1 i}\right)+w\left(p_{i j}\right)+w\left(p_{j k}\right)$.

Subpaths of Shortest Paths

Lemma 1.

Let $G=(V, E)$ be directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{1} to v_{k}. For any $1 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from v_{i} to v_{j}.
Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.
Proof.

- p is $v_{1} \xrightarrow{p_{1 i}} v_{i} \stackrel{p_{i j}}{\rightsquigarrow} v_{j} \xrightarrow{p_{j k}} v_{k}$, where $w(p)=w\left(p_{1 i}\right)+w\left(p_{i j}\right)+w\left(p_{j k}\right)$.
- Assume that there is $p_{i j}^{\prime}$ from v_{i} to v_{j} with $w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)$.

Subpaths of Shortest Paths

Lemma 1.
Let $G=(V, E)$ be directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{1} to v_{k}.
For any $1 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ be the subpath of p from v_{i} to v_{j}.
Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.
Proof.

- p is $v_{1} \xrightarrow{p_{1 i}} \xrightarrow{\leadsto} v_{i} \xrightarrow{p_{i j}} v_{j} \xrightarrow{p_{i k}} v_{k}$, where $w(p)=w\left(p_{1 i}\right)+w\left(p_{i j}\right)+w\left(p_{j k}\right)$.
- Assume that there is $p_{i j}^{\prime}$ from v_{i} to v_{j} with $w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)$.
- Then, $v_{1} \xrightarrow{p_{1 i}} v_{i} \stackrel{p_{i j}^{\prime}}{\rightsquigarrow} v_{j} \xrightarrow{p_{k}} v_{k}$, where $w\left(p_{1 i}\right)+w\left(p_{i j}^{\prime}\right)+w\left(p_{j k}\right)<w(p)$. Contradiction.

Negative-weight edges

- If G contains no negative-weight cycles reachable from the source s, then for all $v \in V, \delta(s, v)$ remains well defined (even if negative).

Negative-weight edges

- If G contains no negative-weight cycles reachable from the source s, then for all $v \in V, \delta(s, v)$ remains well defined (even if negative).
- If G contains a negative-weight cycle reachable from s, δ is not well defined - repeating traverse of the negative-weight cycle.
- If there is negative-weight cycle on some path from s to v, we define $\delta(s, v)=-\infty$.

Negative-weight edges

- If G contains no negative-weight cycles reachable from the source s, then for all $v \in V, \delta(s, v)$ remains well defined (even if negative).
- If G contains a negative-weight cycle reachable from s, δ is not well defined - repeating traverse of the negative-weight cycle.
- If there is negative-weight cycle on some path from s to v, we define $\delta(s, v)=-\infty$.
- Note: There is always the shortest simple path, but not path. The algorithms work with paths \Rightarrow problem.

Representing Shortest Paths

- Let $G=(V, E)$ be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- If $\pi[v]=u \neq$ NIL, then $(u, v) \in E$ is highlighted in the graph drawing.

Representing Shortest Paths

- Let $G=(V, E)$ be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- If $\pi[v]=u \neq$ NIL, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ induced by π
- $V_{\pi}=\{v \in V: \pi[v] \neq \operatorname{NIL}\} \cup\{s\}$
- $E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$

Representing Shortest Paths

- Let $G=(V, E)$ be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- If $\pi[v]=u \neq$ NIL, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ induced by π
- $V_{\pi}=\{v \in V: \pi[v] \neq \operatorname{NLL}\} \cup\{s\}$
- $E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$
- After the algorithm is finished, G_{π} is a shortest-paths tree rooted at s containing shortest paths from s to all other reachable vertices.

Representing Shortest Paths

- Let $G=(V, E)$ be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- If $\pi[v]=u \neq$ NIL, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ induced by π
- $V_{\pi}=\{v \in V: \pi[v] \neq \operatorname{NIL}\} \cup\{s\}$
- $E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$
- After the algorithm is finished, G_{π} is a shortest-paths tree rooted at s containing shortest paths from s to all other reachable vertices.

```
Print-Path \((G, s, v)\)
1 if \(v=s\)
2 then print \(s\)
3 else if \(\pi[v]=\) NIL
4
5
6
    then print "No path from " \(s\) " to " \(v\) "!"
    else \(\operatorname{PRINT}-\operatorname{PATH}(G, s, \pi[v])\)
        print \(v\)
```

Shortest paths are not necessarily unique - Example

Figure: Shortest paths.

Shortest paths are not necessarily unique - Example

Figure: Shortest paths.

Relaxation

- $d[v]$ - shortest-path estimate (upper bound of weight)

$$
\begin{aligned}
& \text { Initialize-Single-Source }(G, s) \\
& 1 \text { for each vertex } v \in V \\
& 2 \quad \operatorname{do} d[v] \leftarrow \infty \\
& 3 \quad \pi[v] \leftarrow \text { NIL } \\
& 4 d[s] \leftarrow 0
\end{aligned}
$$

- Time complexity: $\Theta(n)$.

Relaxation

- $d[v]$ - shortest-path estimate (upper bound of weight)

Initialize-Single-Source (G, s)
1 for each vertex $v \in V$
$2 \quad$ do $d[v] \leftarrow \infty$
$3 \quad \pi[v] \leftarrow$ NIL
$4 d[s] \leftarrow 0$

- Time complexity: $\Theta(n)$.
$\left.\begin{array}{l}\operatorname{ReLAX}(u, v, w) \\ 1 \text { if } d[v]>d[u]+w(u, v) \\ 2 \quad \text { then } d[v] \leftarrow d[u]+w(u, v) \\ 3\end{array} \quad \pi[v] \leftarrow u\right)$

Bellman-Ford Algorithm

Bellman-Ford Algorithm

- If it returns FALSE, G contains negative-weight cycles reachable from s.
- If it returns True, π contains the shortest paths.

Bellman-Ford - Example

Figure: Computation by Bellman-Ford Algorithm.

- Edges are relaxed in the following order: $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$.

Bellman-Ford - Example

Figure: Computation by Bellman-Ford Algorithm.

- Edges are relaxed in the following order: $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$.

Bellman-Ford - Example

Figure: Computation by Bellman-Ford Algorithm.

- Edges are relaxed in the following order: $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$.

Bellman-Ford - Example

Figure: Computation by Bellman-Ford Algorithm.

- Edges are relaxed in the following order: $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$.

Bellman-Ford - Example

Figure: Computation by Bellman-Ford Algorithm.

- Edges are relaxed in the following order: $(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$.

Bellman-Ford Algorithm - Time Complexity

```
Bellman-Ford(G,w,s)
1 Initialize-Single-Source(G,s)
2 for }i\leftarrow
3 do for each edge (u,v) \inE
4 do Relax (u,v,w)
5 for each edge (u,v) \inE
do if d[v]>d[u]+w(u,v)
7 then return FALSE
8 return TRUE
```

- Line 1 takes $\Theta(n)$.

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G,w,s)
1 InITIALIZE-SINGLE-SOURCE(G,s)
2 for }i\leftarrow1\mathrm{ to }n-
3 do for each edge (u,v) \inE
4 do RELAX (u,v,w)
5 \text { for each edge (u,v) } \in E
do if d[v]>d[u]+w(u,v)
7 then return FALSE
8 return TRUE
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take $(n-1)$-times $\Theta(m)$.

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G,w,s)
1 InITIALIZE-SINGLE-SOURCE(G,s)
2 for }i\leftarrow1\mathrm{ to }n-
3 do for each edge (u,v) \inE
4 do RELAX (u,v,w)
5 \mp@code { f o r ~ e a c h ~ e d g e ~ ( u , v ) ~ \in E }
do if d[v]>d[u]+w(u,v)
7 then return FALSE
8 return TRUE
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take $(n-1)$-times $\Theta(m)$.
- Lines 5-7 take $O(m)$.

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G,w,s)
1 InITIALIZE-SINGLE-SOURCE(G,s)
2 for }i\leftarrow1\mathrm{ to }n-
3 do for each edge (u,v) \inE
4 do RELAX (u,v,w)
5 \text { for each edge (u,v) } \in E
do if d[v]>d[u]+w(u,v)
7 then return FALSE
8 return TRUE
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take $(n-1)$-times $\Theta(m)$.
- Lines 5-7 take $O(m)$.
- In total, $\Theta(m n)$.

Dijkstra Algorithm

Dijkstra Algorithm

- Only for weighted, directed graphs without negative edges:
- $w(u, v) \geq 0$ for each edge $(u, v) \in E$.

Dijkstra Algorithm

- Only for weighted, directed graphs without negative edges:
- $w(u, v) \geq 0$ for each edge $(u, v) \in E$.
- Can we implement it with lower time complexity than Bellman-Ford algorithm?

Dijkstra Algorithm

$$
\begin{aligned}
& \text { Dijkstra(} G, w, s \text {) } \\
& 1 \text { Initialize-Single-Source }(G, s) \\
& 2 S \leftarrow \varnothing \\
& 3 Q \leftarrow V \\
& 4 \text { while } Q \neq \varnothing \\
& 5 \quad \text { do } u \leftarrow \text { Extract-Min }(Q) \\
& 6 \quad S \leftarrow S \cup\{u\} \\
& 7 \quad \text { for each vertex } v \in \operatorname{Adj}[u] \\
& 8 \quad \text { do } \operatorname{Relax}(u, v, w)
\end{aligned}
$$

- S is a set of finished vertices (their shortest distance from s is already computed).
- Q is a min-priority queue; the vertex with the lowest d-value is at the beginning of Q.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Dijkstra Algorithm - Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

- Insert and Decrease-Key take $O(1)$.
- Extract-Min takes $O(n)$ for each vertex (line 5).

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

- Insert and Decrease-Key take $O(1)$.
- Extract-Min takes $O(n)$ for each vertex (line 5).
- Relax is repeated m-times (line 8).

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

- Insert and Decrease-Key take $O(1)$.
- Extract-Min takes $O(n)$ for each vertex (line 5).
- Relax is repeated m-times (line 8).
- In total, $O\left(n^{2}+m\right)=O\left(n^{2}\right)$.

Min-Priority Queue Implemented by Heaps

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

- Insert and Decrease-Key take $O(1)$.
- Extract-Min takes $O(n)$ for each vertex (line 5).
- Relax is repeated m-times (line 8).
- In total, $O\left(n^{2}+m\right)=O\left(n^{2}\right)$.

Min-Priority Queue Implemented by Heaps

- For sparse graphs, we get the time complexity $O(m \log n)$ using binary heap.

Time Complexity of Dijkstra algorithm

Min-Priority Queue Implemented by Array

- Insert and Decrease-Key take $O(1)$.
- Extract-Min takes $O(n)$ for each vertex (line 5).
- Relax is repeated m-times (line 8).
- In total, $O\left(n^{2}+m\right)=O\left(n^{2}\right)$.

Min-Priority Queue Implemented by Heaps

- For sparse graphs, we get the time complexity $O(m \log n)$ using binary heap.
- In general, using Fibonacci heap we get the time complexity $O(n \log n+m)$.

Exercises

1. Modify the Bellman-Ford algorithm so that it sets $d[v]$ to $-\infty$ for all vertices v for which there is a negative-weight cycle on some path from the source s to v.
2. Give a simple example of a digraph with negative-weight edge(s) for which Dijkstra's algorithm produces incorrect answers. Why?

Demonstration Tool

Graph Simulator

- Application with GUI in Java by Jakub Varadinek and Otto Michalička
- Requirements: Java Runtime Environment 1.7 (32-bit or 64-bit version)
- Language: English, Czech, ?
- Algorithms: Breadth-First Search, Depth-First Search, Topological Sorting, Strongly-connected Components, Bellman-Ford and Dijkstra Algorithms
- Modes: Graph editing, Algorithm Simulation (stepping, breakpoints, variables)
- http://www.fit.vutbr.cz/~krivka/graphsim

All-Pairs Shortest Paths

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.
- Find all shortest paths from each vertex to the other vertices (solve n-times single-source shortests paths).
- Considering n-times Dijkstra algorithm: $O\left(n^{3}+n m\right)=O\left(n^{3}\right)$ time for array, or $O\left(n^{2} \log n+n m\right)$ for Fibonacci heap.

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph $G=(V, E)$ and
- weight function $w: E \rightarrow \mathbb{R}$.
- Find all shortest paths from each vertex to the other vertices (solve n-times single-source shortests paths).
- Considering n-times Dijkstra algorithm: $O\left(n^{3}+n m\right)=O\left(n^{3}\right)$ time for array, or $O\left(n^{2} \log n+n m\right)$ for Fibonacci heap.
- For negative weights of edges, use n-times Bellman-Ford: $O\left(n^{2} m\right)$ time (dense graphs: $O\left(n^{4}\right)$).

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E, \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in $n \times n$ matrix $D=\left(d_{i j}\right)$, where $d_{i j}=\delta(i, j)$ when the algorithm is finished.

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in $n \times n$ matrix $D=\left(d_{i j}\right)$, where $d_{i j}=\delta(i, j)$ when the algorithm is finished.
- Predecessor matrix $\Pi=\left(\pi_{i j}\right)$, where $\pi_{i j}$ is

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in $n \times n$ matrix $D=\left(d_{i j}\right)$, where $d_{i j}=\delta(i, j)$ when the algorithm is finished.
- Predecessor matrix $\Pi=\left(\pi_{i j}\right)$, where $\pi_{i j}$ is

1. NIL if $i=j$ or there is no path from i to j,

Shortest Path Representation

- Even for sparse graphs, the input is adjacency-matrix with weights $W=\left(w_{i j}\right)$, where

$$
w_{i j}= \begin{cases}0 & \text { if } i=j, \\ w(i, j) & \text { if } i \neq j \text { and }(i, j) \in E, \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in $n \times n$ matrix $D=\left(d_{i j}\right)$, where $d_{i j}=\delta(i, j)$ when the algorithm is finished.
- Predecessor matrix $\Pi=\left(\pi_{i j}\right)$, where $\pi_{i j}$ is

1. NIL if $i=j$ or there is no path from i to j,
2. otherwise the predecessor of j on some shortest path from i.

Printing of Shortest Paths

```
Print-All-Shortest-Path( \(\Pi, i, j\) )
1 if \(i=j\)
2 then print \(i\)
3 else if \(\pi_{i j}=\) NIL
4
5
6
                                    then print "No path from " \(i\) " to " \(j\) " exists!"
                                    else Print-All-Shortest-Path \(\left(\Pi, i, \pi_{i j}\right)\)
                                    print \({ }^{j}\)
```


Shortest Paths and Matrix Multiplication

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.
- Let p be a shortest path from i to j with m^{\prime} edges.

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.
- Let p be a shortest path from i to j with m^{\prime} edges.
- If there is no negative-weight cycle in p, then $m^{\prime}<\infty$.

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.
- Let p be a shortest path from i to j with m^{\prime} edges.
- If there is no negative-weight cycle in p, then $m^{\prime}<\infty$.
- If $i=j$, then $m^{\prime}=0$ and $w_{i j}=\delta(i, j)=0$.

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.
- Let p be a shortest path from i to j with m^{\prime} edges.
- If there is no negative-weight cycle in p, then $m^{\prime}<\infty$.
- If $i=j$, then $m^{\prime}=0$ and $w_{i j}=\delta(i, j)=0$.
- If $i \neq j$, then we decompose path p into:

$$
i \stackrel{p^{\prime}}{\rightsquigarrow} k \rightarrow j,
$$

where p^{\prime} has $m^{\prime}-1$ edges.

Matrix Multiplication - Structure of Shortest Paths

- Representation - adjacency matrix with weights $W=\left(w_{i j}\right)$.
- Let p be a shortest path from i to j with m^{\prime} edges.
- If there is no negative-weight cycle in p, then $m^{\prime}<\infty$.
- If $i=j$, then $m^{\prime}=0$ and $w_{i j}=\delta(i, j)=0$.
- If $i \neq j$, then we decompose path p into:

$$
i \stackrel{p^{\prime}}{\rightsquigarrow} k \rightarrow j,
$$

where p^{\prime} has $m^{\prime}-1$ edges.

- Observe that p^{\prime} is a shortest path from i to k, so $\delta(i, j)=\delta(i, k)+w_{k j}$.

Matrix Multiplication - Recursive Solution

- Let $l_{i j}^{(m)}$ be a minimum weight of any path from i to j with at most m edges.

Matrix Multiplication - Recursive Solution

- Let $l_{i j}^{(m)}$ be a minimum weight of any path from i to j with at most m edges.
- $m=0$, if and only if $i=j$. Thus, $l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$

Matrix Multiplication - Recursive Solution

- Let $l_{i j}^{(m)}$ be a minimum weight of any path from i to j with at most m edges.
- $m=0$, if and only if $i=j$. Thus, $l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$
- $l_{i j}^{(m)}=\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right)=\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}$.

Matrix Multiplication - Recursive Solution

- Let $l_{i j}^{(m)}$ be a minimum weight of any path from i to j with at most m edges.
- $m=0$, if and only if $i=j$. Thus, $l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$
- $l_{i j}^{(m)}=\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right)=\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}$.
- Observe that a shortest path from i to j has at most $n-1$ edges, so

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=\ldots
$$

(If there is no negative-weight cycle.)

Matrix Multiplication - Computing

- Input matrix $W=\left(w_{i j}\right)$.

Matrix Multiplication - Computing

- Input matrix $W=\left(w_{i j}\right)$.
- We compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where for $m=1,2, \ldots, n-1$,

$$
L^{(m)}=\left(l_{i j}^{(m)}\right)
$$

Matrix Multiplication - Computing

- Input matrix $W=\left(w_{i j}\right)$.
- We compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where for $m=1,2, \ldots, n-1$,

$$
L^{(m)}=\left(l_{i j}^{(m)}\right) .
$$

- $L^{(n-1)}$ contains the actual shortest-path weights.

Matrix Multiplication - Computing

- Input matrix $W=\left(w_{i j}\right)$.
- We compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where for $m=1,2, \ldots, n-1$,

$$
L^{(m)}=\left(l_{i j}^{(m)}\right) .
$$

- $L^{(n-1)}$ contains the actual shortest-path weights.
- Observe that $l_{i j}^{(1)}=w_{i j}$; that is, $L^{(1)}=W$.

The Heart of All-Pairs Shortest Paths Algorithm

```
Extend-Shortest-Paths( \(L, W\) )
\(1 n \leftarrow \operatorname{rows}[L]\)
2 let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be an \(n \times n\) matrix
3 for \(i \leftarrow 1\) to \(n\)
\(4 \quad\) do for \(j \leftarrow 1\) to \(n\)
\(5 \quad\) do \(l_{i j}^{\prime} \leftarrow \infty\)
\(6 \quad\) for \(k \leftarrow 1\) to \(n\)
\(7 \quad\) do \(l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)\)
8 return \(L^{\prime}\)
```

- rows[L] denotes the number of rows of L.
- Time complexity: $\Theta\left(n^{3}\right)$.

The relation to matrix multiplication (finally)

- Let $C=A \cdot B$, where A and B are $n \times n$ matrices.

The relation to matrix multiplication (finally)

- Let $C=A \cdot B$, where A and B are $n \times n$ matrices.
- Then,

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

The relation to matrix multiplication (finally)

- Let $C=A \cdot B$, where A and B are $n \times n$ matrices.
- Then,

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

- Compare to

$$
l_{i j}^{(m)}=\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
$$

Find 3 differences (apart from algorithm/variable renaming)

```
Extend-Shortest-Paths ( \(L, W\) )
\(n \leftarrow \operatorname{rows}[L]\)
let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be an \(n \times n\) matrix
for \(i \leftarrow 1\) to \(n\)
\(4 \quad\) do for \(j \leftarrow 1\) to \(n\)
\(5 \quad\) do \(l_{i j}^{\prime} \leftarrow \infty\)
\(6 \quad\) for \(k \leftarrow 1\) to \(n\)
\(7 \quad\) do \(l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)\)
return \(L^{\prime}\)
```

Matrix-Multiply (A, B)
$n \leftarrow \operatorname{rows}[A]$
2 let $C=\left(c_{i j}\right)$ be an $n \times n$ matrix
3 for $i \leftarrow 1$ to n
$4 \quad$ do for $j \leftarrow 1$ to n
$5 \quad$ do $c_{i j} \leftarrow 0$
$6 \quad$ for $k \leftarrow 1$ to n
$7 \quad$ do $c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}$
8 return C

Matrix Multiplication - Notation

- Letting $X \cdot Y$ denote the matrix computed by Extend-Shortest-Paths (X, Y).

Matrix Multiplication - Notation

- Letting $X \cdot Y$ denote the matrix computed by Extend-Shortest-Paths (X, Y).
- Then, we compute the following matrices

$$
\begin{aligned}
L^{(1)} & =L^{(0)} \cdot W=W \\
L^{(2)} & =L^{(1)} \cdot W=W^{2} \\
L^{(3)} & =L^{(2)} \cdot W=W^{3} \\
& \vdots \\
L^{(n-1)} & =L^{(n-2)} \cdot W=W^{n-1}
\end{aligned}
$$

where W^{n-1} contains the shortest path weights.

Slow Multiplicative Method

```
Slow-All-Shortest-Paths( \(W\) )
\(1 n \leftarrow \operatorname{rows}[W]\)
\(2 L^{(1)} \leftarrow W\)
3 for \(m \leftarrow 2\) to \(n-1\)
4 do \(L^{(m)} \leftarrow\) EXtEND-Shortest-Paths \(\left(L^{(m-1)}, W\right)\)
5 return \(L^{(n-1)}\)
```

- Time complexity: $\Theta\left(n^{4}\right)$.

How to Speed Up Multiplicative Method?

- We are often interested only in matrix $L^{(n-1)}$.

How to Speed Up Multiplicative Method?

- We are often interested only in matrix $L^{(n-1)}$.
- If there is no negative-weight cycle, then $L^{(m)}=L^{(n-1)}$ for all $m \geq n-1$.

How to Speed Up Multiplicative Method?

- We are often interested only in matrix $L^{(n-1)}$.
- If there is no negative-weight cycle, then $L^{(m)}=L^{(n-1)}$ for all $m \geq n-1$.
- Multiplicative operation defined in Extend-Shortest-Paths is associative.

How to Speed Up Multiplicative Method?

- We are often interested only in matrix $L^{(n-1)}$.
- If there is no negative-weight cycle, then $L^{(m)}=L^{(n-1)}$ for all $m \geq n-1$.
- Multiplicative operation defined in Extend-Shortest-Paths is associative.
- Therefore, we can decrease the number of products from $n-1$ to $\lceil\log n-1\rceil$ and compute the sequence of matrices

$$
\begin{array}{ccccc}
L^{(1)} & = & W & & \\
L^{(2)} & = & W^{2} & & \\
L^{(4)} & = & W^{4} & = & W^{2} \cdot W^{2} \\
L^{(8)} & = & W^{8} & = & W^{4} \cdot W^{4} \\
& & \vdots & & \\
L^{\left(2^{[\log n-1]}\right)} & = & W^{\left(2^{[\log n-1]}\right)} & = & W^{2^{[\log n-1]-1}} \cdot W^{2^{[\log n-1]-1}}
\end{array}
$$

Since $2^{\lceil\log n-1\rceil} \geq n-1$, we get the final product $L^{\left(2^{[\log n-1]}\right)}=L^{(n-1)}$.

Faster Multiplicative Method

```
FAST-ALL-SHORTEST-PATHS \((W)\)
\(1 n \leftarrow \operatorname{rows}[W]\)
\(2 L^{(1)} \leftarrow W\)
\(3 m \leftarrow 1\)
4 while \(m<n-1\)
5 do \(L^{(2 m)} \leftarrow\) EXTEND-SHORTEST-PATHS \(\left(L^{(m)}, L^{(m)}\right)\)
\(6 \quad m \leftarrow 2 m\)
7 return \(L^{(m)}\)
```

- Time complexity: $\Theta\left(n^{3} \log n\right)$.

