Graph Algorithms: Shortest Paths

Zbyněk "Pedro" Křivka

krivka@fit.vutbr.cz Brno University of Technology Faculty of Information Technology Czech Republic

Lecture at Escuela de Ingeniería Informática de Segovia, Universidad de Valladolid - Campus de Segovia, Spain March 16, 2017

Brno University of Technology Faculty of Information Technology

- ▶ \approx 2 000 students (Bc, MSc, PhD)
- ho pprox 50 Erasmus students each semester
- Erasmus+ Agreement with your faculty
- http://www.fit.vutbr.cz/admissions/short.php.en

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline (with hyperlinks)

Introduction

Graph Theory Graph Representation

Single-Source Shortest Paths

Bellman-Ford Algorithm Dijkstra Algorithm

All-Pairs Shortest Paths

References

Books

- Cormen, Leiserson, Rivest, Stein: Introduction to algorithms. The MIT Press and McGraw-Hill, 2001.
- ▶ Jiří Demel: Grafy a jejich aplikace [in Czech]. Academia, 2002.

イロト 不得下 イヨト イヨト 二日

Introduction

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Graph Theory

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

6 / 53

Directed graph (digraph) G is a pair

G=(V,E),

where

- ▶ V is a finite set of vertices (nodes) and
- $E \subseteq V^2$ is a set of edges (arrows, arcs).

An edge (u, u) is called a self-loop. If (u, v) is an edge, we say that (u, v) is incident from u and incident to v, that is v is adjacent to u.

Figure: Digraph

Undirected graph G is a pair

G=(V,E),

where

- V is a finite set of vertices and
- $E \subseteq \binom{V}{2}$ is a set of edges.

Note

An edge is a set $\{u, v\}$, where $u, v \in V$ and $u \neq v$. Self-loops are forbidden.

Convention: $\{u, v\}$, (u, v), and (v, u) denote the same edge.

Figure: Undirected Graph

A path p = ⟨v₀, v₁, v₂,..., v_k⟩ is a connected sequence of vertices where (v_{i-1}, v_i) ∈ E for all i = 1, 2, ..., k.

- A path p = ⟨v₀, v₁, v₂,..., v_k⟩ is a connected sequence of vertices where (v_{i-1}, v_i) ∈ E for all i = 1, 2, ..., k.
- ► The length of *p* equals to the number of edges in *p*.

- A path p = ⟨v₀, v₁, v₂,..., v_k⟩ is a connected sequence of vertices where (v_{i-1}, v_i) ∈ E for all i = 1, 2, ..., k.
- The length of *p* equals to the number of edges in *p*.
- ▶ If there is p from u to u', we say that u' is reachable from u by p, denoted as $u \xrightarrow{p} u'$.

・ロン ・雪 と ・ 画 と ・ 画

- A path p = ⟨v₀, v₁, v₂,..., v_k⟩ is a connected sequence of vertices where (v_{i-1}, v_i) ∈ E for all i = 1, 2, ..., k.
- The length of *p* equals to the number of edges in *p*.
- ▶ If there is p from u to u', we say that u' is reachable from u by p, denoted as $u \xrightarrow{p} u'$.
- A path is simple if all vertices in the path are distinct.

- A path p = ⟨v₀, v₁, v₂,..., v_k⟩ is a connected sequence of vertices where (v_{i-1}, v_i) ∈ E for all i = 1, 2, ..., k.
- The length of *p* equals to the number of edges in *p*.
- ▶ If there is p from u to u', we say that u' is reachable from u by p, denoted as $u \xrightarrow{p} u'$.
- A path is simple if all vertices in the path are distinct.

- Give some examples of a path and simple path.
- Give an example of unconnected sequence.

イロト 不得下 イヨト イヨト 二日

• A subpath s of $p = \langle v_0, v_1, v_2, \dots, v_k \rangle$ is a contiguous subsequence, $s = \langle v_i, v_{i+1}, v_{i+2}, \dots, v_j \rangle$, for $0 \le i \le j \le k$.

- ▶ A subpath s of $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a contiguous subsequence, $s = \langle v_i, v_{i+1}, v_{i+2}, ..., v_j \rangle$, for $0 \le i \le j \le k$.
- A path $c = \langle v_0, v_1, v_2, \dots, v_k \rangle$ is a cycle, if $k \ge 1$ and $v_0 = v_k$.

- ▶ A subpath s of $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a contiguous subsequence, $s = \langle v_i, v_{i+1}, v_{i+2}, ..., v_j \rangle$, for $0 \le i \le j \le k$.
- A path $c = \langle v_0, v_1, v_2, \dots, v_k \rangle$ is a cycle, if $k \ge 1$ and $v_0 = v_k$.

► What is (1,2,4,5,4,1)?

イロト 不得下 イヨト イヨト 二日

- ► What is (1,2,4,1)?
- What is $\langle 2,2\rangle$?

- ▶ A subpath s of $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a contiguous subsequence, $s = \langle v_i, v_{i+1}, v_{i+2}, ..., v_j \rangle$, for $0 \le i \le j \le k$.
- A path $c = \langle v_0, v_1, v_2, \dots, v_k \rangle$ is a cycle, if $k \ge 1$ and $v_0 = v_k$.

► What is (1,2,4,5,4,1)?

イロト 不得下 イヨト イヨト 二日

- ► What is (1,2,4,1)?
- What is $\langle 2,2\rangle$?
- Acyclic graph contains no cycles.

▶ A graph G' = (V', E') is a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$.

- ▶ A graph G' = (V', E') is a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$.
- An undirected graph is connected if every pair of vertices is connected by a path.
- An connected, acyclic, undirected graph is a tree.
 - Homework: Prove that |E| = |V| 1.
- An acyclic, undirected graph is a forest (several trees).

Graph Representation

Let G = (V, E) be a graph. Denote:

- $\blacktriangleright n = |V|$
- ▶ m = |E|.
- 1. Adjacency-list representation
 - effective for sparse graphs ($m \ll n^2$);

Let G = (V, E) be a graph. Denote:

$$\blacktriangleright n = |V|$$

- ▶ m = |E|.
- 1. Adjacency-list representation
 - effective for sparse graphs $(m \ll n^2)$;
- 2. Adjacency-matrix representation
 - effective for dense graphs (m close to n^2);
 - when we often need quick answer whether two given vertices are connected by an edge.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Adjacency-list representation

- G = (V, E) is represented as
 - ▶ an array Adj[1...n] with n lists, one (unsorted) list for each vertex,
 - where Adj[u] stores all vertices v such that $(u, v) \in E$.

▶ Space complexity: $\Theta(m+n)$ (depends linearly on the size of the graph).

Weighted graph

A weighted graph is a (di)graph where there is a value assigned to every edge using weight function w : E → ℝ.

Weighted graph

- A weighted graph is a (di)graph where there is a value assigned to every edge using weight function w : E → ℝ.
- ▶ Representation of w(u, v) in adjacency list: extend the list item (a structure) for v in Adj[u] with value w(u, v).

イロト 不得 トイヨト イヨト 二日

Weighted graph

- A weighted graph is a (di)graph where there is a value assigned to every edge using weight function w : E → ℝ.
- ▶ Representation of w(u, v) in adjacency list: extend the list item (a structure) for v in Adj[u] with value w(u, v).
- ▶ Disadvantage: Finding whether an edge (u, v) belongs to E requires the search of the whole list Adj[u].

Adjacency-matrix representation

Let G = (V, E) be a graph and assume $V = \{1, 2, ..., n\}$. Adjacency matrix $A = (a_{ij})$ is a matrix of size $n \times n$ such that

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

・ロト ・聞ト ・ヨト ・ヨト

イロト 不得下 イヨト イヨト 二日

Space complexity: $\Theta(n^2)$ (independent of the number of edges).

2

3

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Space complexity: $\Theta(n^2)$ (independent of the number of edges).
- ▶ Transpose matrix of $A = (a_{ij})$ is a matrix $A^T = (a_{ij}^T)$, where $a_{ij}^T = a_{ji}$.

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

イロト 不得 トイヨト イヨト

- Space complexity: $\Theta(n^2)$ (independent of the number of edges).
- ▶ Transpose matrix of $A = (a_{ij})$ is a matrix $A^T = (a_{ij}^T)$, where $a_{ij}^T = a_{ji}$.
- ► If A represents an undirected graph, then A = A^T. It is enough to store just one half of A.

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

イロト 不得下 イヨト イヨト 二日

- Space complexity: $\Theta(n^2)$ (independent of the number of edges).
- ▶ Transpose matrix of $A = (a_{ij})$ is a matrix $A^T = (a_{ij}^T)$, where $a_{ij}^T = a_{ji}$.
- ► If A represents an undirected graph, then A = A^T. It is enough to store just one half of A.
- Let G = (V, E) be a weighted graph, then

$$a_{ij} = \begin{cases} w(i,j) & \text{if } (i,j) \in E, \\ \text{NIL} & \text{otherwise,} \end{cases}$$

where NIL is a special value, mostly 0 or ∞ .

Exercises

- 1. Let $deg_{-}(u)$ and $deg_{+}(u)$ be the number of outcoming edges from uand incoming edges to u, respectively. Given an adjacency-list representation of a digraph and a vertex v, how long does it take to compute degrees $deg_{-}(v)$ and $deg_{+}(v)$?
- 2. The transpose of a directed graph G = (V, E) is the graph $G^T = (V, E^T)$, where $E^T = \{(v, u) \in V \times V : (u, v) \in E\}$. Thus, G^T is G with all its edges reversed. Describe an efficient algorithm for computing G^T from G for the adjacency-list representation of G. Analyze the time complexity of your algorithm.
- 3. The square of a directed graph G = (V, E) is the graph $G^2 = (V, E^2)$ such that $(u, v) \in E^2$ if and only G contains a path with at most two edges between u and v. Describe an efficient algorithm for computing G^2 from G for the adjacency-list representation of G. Analyze the time complexity of your algorithm.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Single-Source Shortest Paths

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ == のへで

Shortest Paths – Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Shortest Paths – Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Measuring-cup Problem

- ▶ We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can pour from one cup to another as much as possible without spilling.
- How to measure 2 litres? How to do it in the cheapest way, if each liter is paid?

Shortest Paths – Motivation

- Transportation: How to get from A into B in the quickest/cheapest way?
- Optimization: cost minimization in static state space (e.g. knapsack problem, ...)

Measuring-cup Problem

- ▶ We have a 1-litre cup and a 3-litre cup. We can fill a cup and we can pour from one cup to another as much as possible without spilling.
- How to measure 2 litres? How to do it in the cheapest way, if each liter is paid?

What if I have 3-litre and 5-litre cup and I need to measure 4 litres? Is it possible?
Shortest Paths

- Given weighted directed graph G = (V, E) and
- weight function $w: E \to \mathbb{R}$.

Shortest Paths

- Given weighted directed graph G = (V, E) and
- weight function $w: E \to \mathbb{R}$.
- The weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Shortest Paths

- Given weighted directed graph G = (V, E) and
- weight function $w: E \to \mathbb{R}$.

• The weight of path
$$p = \langle v_0, v_1, \dots, v_k \rangle$$
 is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

The shortest-path weight from u to v is

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\rightsquigarrow} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

• A shortest path from u to v is any path p from u to v with $w(p) = \delta(u, v)$.

Shortest Paths - Variants

- Single-source shortest-paths problem
- Single-destination shortest-paths problem by reversing the direction of each edge
- Single-pair shortest-path problem is there faster solution?
- All-pairs shortest-paths problem single-source from each vertex or faster?

Lemma 1.

Let G = (V, E) be directed graph with weight function $w : E \to \mathbb{R}$. Let $p = \langle v_1, v_2, \ldots, v_k \rangle$ be a shortest path from v_1 to v_k . For any $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ be the subpath of p from v_i to v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof.

Lemma 1.

Let G = (V, E) be directed graph with weight function $w : E \to \mathbb{R}$. Let $p = \langle v_1, v_2, \ldots, v_k \rangle$ be a shortest path from v_1 to v_k . For any $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ be the subpath of p from v_i to v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof.

•
$$p$$
 is $v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$, where $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.

Lemma 1.

Let G = (V, E) be directed graph with weight function $w : E \to \mathbb{R}$. Let $p = \langle v_1, v_2, \ldots, v_k \rangle$ be a shortest path from v_1 to v_k . For any $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ be the subpath of p from v_i to v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof.

- p is $v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$, where $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.
- Assume that there is p'_{ij} from v_i to v_j with $w(p'_{ij}) < w(p_{ij})$.

Lemma 1.

Let G = (V, E) be directed graph with weight function $w : E \to \mathbb{R}$. Let $p = \langle v_1, v_2, \ldots, v_k \rangle$ be a shortest path from v_1 to v_k . For any $1 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ be the subpath of p from v_i to v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof.

- p is $v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$, where $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.
- Assume that there is p'_{ij} from v_i to v_j with $w(p'_{ij}) < w(p_{ij})$.
- ► Then, $v_1 \overset{p_{1i}}{\sim} v_i \overset{p'_{ij}}{\sim} v_j \overset{p_{jk}}{\sim} v_k$, where $w(p_{1i}) + w(p'_{ij}) + w(p_{jk}) < w(p)$. Contradiction.

Negative-weight edges

If G contains no negative-weight cycles reachable from the source s, then for all v ∈ V, δ(s, v) remains well defined (even if negative).

Negative-weight edges

- If G contains no negative-weight cycles reachable from the source s, then for all v ∈ V, δ(s, v) remains well defined (even if negative).
- If G contains a negative-weight cycle reachable from s, δ is not well defined – repeating traverse of the negative-weight cycle.
- ▶ If there is negative-weight cycle on some path from s to v, we define $\delta(s,v) = -\infty$.

Negative-weight edges

- If G contains no negative-weight cycles reachable from the source s, then for all v ∈ V, δ(s, v) remains well defined (even if negative).
- If G contains a negative-weight cycle reachable from s, δ is not well defined – repeating traverse of the negative-weight cycle.
- If there is negative-weight cycle on some path from s to v, we define $\delta(s,v) = -\infty$.
- ► Note: There is always the shortest simple path, but not path. The algorithms work with paths ⇒ problem.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

- Let G = (V, E) be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- ▶ If $\pi[v] = u \neq \text{NIL}$, then $(u, v) \in E$ is highlighted in the graph drawing.

• Let G = (V, E) be a graph.

- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- ▶ If $\pi[v] = u \neq \text{NIL}$, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ induced by π

►
$$V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \cup \{s\}$$

► $E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} - \{s\}\}$

- Let G = (V, E) be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- ▶ If $\pi[v] = u \neq \text{NIL}$, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ induced by π

$$V_{\pi} = \{ v \in V : \pi[v] \neq \text{NIL} \} \cup \{ s \}$$

- $E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} \{s\}\}$
- After the algorithm is finished, G_π is a shortest-paths tree rooted at s containing shortest paths from s to all other reachable vertices.

- Let G = (V, E) be a graph.
- $\pi[v]$ is set to a predecessor to v; that is, a vertex or NIL.
- ▶ If $\pi[v] = u \neq \text{NIL}$, then $(u, v) \in E$ is highlighted in the graph drawing.
- Predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ induced by π

•
$$V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \cup \{s\}$$

- $E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} \{s\}\}$
- After the algorithm is finished, G_π is a shortest-paths tree rooted at s containing shortest paths from s to all other reachable vertices.

```
PRINT-PATH(G, s, v)

1 if v = s

2 then print s

3 else if \pi[v] = NIL

4 then print "No path from " s " to " v "!"

5 else PRINT-PATH(G, s, \pi[v])

6 print v
```

Shortest paths are not necessarily unique – Example

Figure: Shortest paths.

э

イロン イヨン イヨン イヨン

Shortest paths are not necessarily unique – Example

Figure: Shortest paths.

э

・ロト ・四ト ・ヨト ・ヨト

Relaxation

► d[v] - shortest-path estimate (upper bound of weight) INITIALIZE-SINGLE-SOURCE(*G*, *s*) 1 for each vertex $v \in V$ 2 do $d[v] \leftarrow \infty$ 3 $\pi[v] \leftarrow \text{NIL}$ 4 $d[s] \leftarrow 0$

• Time complexity: $\Theta(n)$.

Relaxation

► d[v] - shortest-path estimate (upper bound of weight)

INITIALIZE-SINGLE-SOURCE(*G*, *s*) **for** each vertex $v \in V$ **do** $d[v] \leftarrow \infty$ $\pi[v] \leftarrow \text{NIL}$ $d[s] \leftarrow 0$

• Time complexity: $\Theta(n)$.

$$\begin{array}{l} \operatorname{RELAX}(u, v, w) \\ 1 \quad \operatorname{if} d[v] > d[u] + w(u, v) \\ 2 \quad \operatorname{then} d[v] \leftarrow d[u] + w(u, v) \\ 3 \quad \pi[v] \leftarrow u \end{array}$$

Bellman-Ford Algorithm

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

28 / 53

Bellman-Ford Algorithm

```
BELLMAN-FORD(G, w, s)1INITIALIZE-SINGLE-SOURCE(G, s)2for i \leftarrow 1 to n - 13do for each edge (u, v) \in E4do RELAX(u, v, w)5for each edge (u, v) \in E6do if d[v] > d[u] + w(u, v)7then return FALSE8return TRUE
```

- ► If it returns FALSE, *G* contains negative-weight cycles reachable from *s*.
- If it returns T_{RUE} , π contains the shortest paths.

Figure: Computation by Bellman-Ford Algorithm.

Figure: Computation by Bellman-Ford Algorithm.

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G, w, s)
  INITIALIZE-SINGLE-SOURCE(G, s)
 for i \leftarrow 1 to n-1
2
3
      do for each edge (u, v) \in E
             do RELAX(u, v, w)
4
5
  for each edge (u, v) \in E
      do if d[v] > d[u] + w(u, v)
6
7
            then return FALSE
  return TRUE
8
```

• Line 1 takes $\Theta(n)$.

Bellman-Ford Algorithm – Time Complexity

```
BELLMAN-FORD(G, w, s)
  INITIALIZE-SINGLE-SOURCE(G, s)
2
  for i \leftarrow 1 to n-1
3
      do for each edge (u, v) \in E
             do RELAX(u, v, w)
4
5
  for each edge (u, v) \in E
      do if d[v] > d[u] + w(u, v)
6
7
            then return FALSE
  return TRUE
8
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take (n-1)-times $\Theta(m)$.

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G, w, s)
  INITIALIZE-SINGLE-SOURCE(G, s)
2
  for i \leftarrow 1 to n-1
3
      do for each edge (u, v) \in E
             do RELAX(u, v, w)
4
5
  for each edge (u, v) \in E
      do if d[v] > d[u] + w(u, v)
6
7
            then return FALSE
  return TRUE
8
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take (n-1)-times $\Theta(m)$.
- Lines 5-7 take O(m).

Bellman-Ford Algorithm - Time Complexity

```
BELLMAN-FORD(G, w, s)
  INITIALIZE-SINGLE-SOURCE(G, s)
2
  for i \leftarrow 1 to n-1
3
      do for each edge (u, v) \in E
             do RELAX(u, v, w)
4
5
  for each edge (u, v) \in E
      do if d[v] > d[u] + w(u, v)
6
7
            then return FALSE
  return TRUE
8
```

- Line 1 takes $\Theta(n)$.
- Lines 2-4 take (n-1)-times $\Theta(m)$.
- Lines 5-7 take O(m).
- ► In total, $\Theta(mn)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

32 / 53

- Only for weighted, directed graphs without negative edges:
- $w(u,v) \ge 0$ for each edge $(u,v) \in E$.

- Only for weighted, directed graphs without negative edges:
- $w(u,v) \ge 0$ for each edge $(u,v) \in E$.
- Can we implement it with lower time complexity than Bellman-Ford algorithm?

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S \leftarrow \emptyset

3 Q \leftarrow V

4 while Q \neq \emptyset

5 do u \leftarrow \text{EXTRACT-MIN}(Q)

6 S \leftarrow S \cup \{u\}

7 for each vertex v \in Adj[u]

8 do \text{RELAX}(u, v, w)
```

- ► S is a set of finished vertices (their shortest distance from s is already computed).
- Q is a min-priority queue; the vertex with the lowest d-value is at the beginning of Q.

Dijkstra Algorithm – Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

イロト イ団ト イヨト イヨト 三日

Dijkstra Algorithm – Example

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

イロト イ団ト イヨト イヨト 三日

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

3

イロン イ団と イヨン イヨン

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

イロト イ団ト イヨト イヨト 三日

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

3

イロト イポト イヨト イヨト

Figure: The computation by Dijkstra Algorithm. Highlighted vertices belong to set S.

3

イロト イポト イヨト イヨト

Min-Priority Queue Implemented by Array

- INSERT and DECREASE-KEY take O(1).
- EXTRACT-MIN takes O(n) for each vertex (line 5).

Min-Priority Queue Implemented by Array

- INSERT and DECREASE-KEY take O(1).
- EXTRACT-MIN takes O(n) for each vertex (line 5).
- ▶ RELAX is repeated *m*-times (line 8).

Min-Priority Queue Implemented by Array

- INSERT and DECREASE-KEY take O(1).
- EXTRACT-MIN takes O(n) for each vertex (line 5).
- ▶ RELAX is repeated *m*-times (line 8).

• In total,
$$O(n^2 + m) = O(n^2)$$
.

Min-Priority Queue Implemented by Heaps

イロト 不得下 イヨト イヨト 二日

Min-Priority Queue Implemented by Array

- INSERT and DECREASE-KEY take O(1).
- EXTRACT-MIN takes O(n) for each vertex (line 5).
- ▶ RELAX is repeated *m*-times (line 8).

• In total,
$$O(n^2 + m) = O(n^2)$$
.

Min-Priority Queue Implemented by Heaps

► For sparse graphs, we get the time complexity O(m log n) using binary heap.

イロト 不得下 イヨト イヨト 二日

Min-Priority Queue Implemented by Array

- INSERT and DECREASE-KEY take O(1).
- EXTRACT-MIN takes O(n) for each vertex (line 5).
- ▶ RELAX is repeated *m*-times (line 8).

• In total,
$$O(n^2 + m) = O(n^2)$$
.

Min-Priority Queue Implemented by Heaps

- ► For sparse graphs, we get the time complexity O(m log n) using binary heap.
- ▶ In general, using Fibonacci heap we get the time complexity $O(n \log n + m)$.

イロト 不得下 イヨト イヨト 二日

Exercises

- 1. Modify the Bellman-Ford algorithm so that it sets d[v] to $-\infty$ for all vertices v for which there is a negative-weight cycle on some path from the source s to v.
- 2. Give a simple example of a digraph with negative-weight edge(s) for which Dijkstra's algorithm produces incorrect answers. Why?

Demonstration Tool

Graph Simulator

- Application with GUI in Java by Jakub Varadinek and Otto Michalička
- Requirements: Java Runtime Environment 1.7 (32-bit or 64-bit version)
- Language: English, Czech, ?
- Algorithms: Breadth-First Search, Depth-First Search, Topological Sorting, Strongly-connected Components, Bellman-Ford and Dijkstra Algorithms
- Modes: Graph editing, Algorithm Simulation (stepping, breakpoints, variables)
- http://www.fit.vutbr.cz/~krivka/graphsim

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

All-Pairs Shortest Paths

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

39 / 53

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph G = (V, E) and
- weight function $w : E \to \mathbb{R}$.

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph G = (V, E) and
- weight function $w: E \to \mathbb{R}$.
- Find all shortest paths from each vertex to the other vertices (solve *n*-times single-source shortests paths).
- ► Considering *n*-times Dijkstra algorithm: O(n³ + nm) = O(n³) time for array, or O(n² log n + nm) for Fibonacci heap.

Using Single-Source Shortest Paths Algorithms

- Given weighted directed graph G = (V, E) and
- weight function $w: E \to \mathbb{R}$.
- Find all shortest paths from each vertex to the other vertices (solve *n*-times single-source shortests paths).
- ► Considering *n*-times Dijkstra algorithm: O(n³ + nm) = O(n³) time for array, or O(n² log n + nm) for Fibonacci heap.
- ► For negative weights of edges, use *n*-times Bellman-Ford: O(n²m) time (dense graphs: O(n⁴)).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

• Even for sparse graphs, the input is adjacency-matrix with weights $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

イロト イロト イヨト イヨト 三日

• Even for sparse graphs, the input is adjacency-matrix with weights $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

We allow negative-weight edges.

イロト イロト イヨト イヨト 三日

• Even for sparse graphs, the input is adjacency-matrix with weights $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges.
- ► We assume no negative-weight cycles.

イロト 不得 トイヨト イヨト 二日

• Even for sparse graphs, the input is adjacency-matrix with weights $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in n × n matrix D = (d_{ij}), where d_{ij} = δ(i, j) when the algorithm is finished.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

► Even for sparse graphs, the input is adjacency-matrix with weights W = (w_{ij}), where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in n × n matrix D = (d_{ij}), where d_{ij} = δ(i,j) when the algorithm is finished.
- Predecessor matrix $\Pi = (\pi_{ij})$, where π_{ij} is

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

► Even for sparse graphs, the input is adjacency-matrix with weights W = (w_{ij}), where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in n × n matrix D = (d_{ij}), where d_{ij} = δ(i, j) when the algorithm is finished.
- Predecessor matrix $\Pi = (\pi_{ij})$, where π_{ij} is
 - 1. NIL if i = j or there is no path from i to j,

► Even for sparse graphs, the input is adjacency-matrix with weights W = (w_{ij}), where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges.
- We assume no negative-weight cycles.
- The results stored in n × n matrix D = (d_{ij}), where d_{ij} = δ(i, j) when the algorithm is finished.
- Predecessor matrix $\Pi = (\pi_{ij})$, where π_{ij} is
 - 1. NIL if i = j or there is no path from i to j,
 - 2. otherwise the predecessor of j on some shortest path from i.

Printing of Shortest Paths

```
PRINT-ALL-SHORTEST-PATH(\Pi, i, j)1if i = j2then print i3else if \pi_{ij} = \text{NIL}4then print "No path from " i " to " j " exists!"5else PRINT-ALL-SHORTEST-PATH(\Pi, i, \pi_{ij})6print j
```

Shortest Paths and Matrix Multiplication

• Representation – adjacency matrix with weights $W = (w_{ij})$.

- Representation adjacency matrix with weights $W = (w_{ij})$.
- Let p be a shortest path from i to j with m' edges.

- Representation adjacency matrix with weights $W = (w_{ij})$.
- Let p be a shortest path from i to j with m' edges.
- ▶ If there is no negative-weight cycle in p, then $m' < \infty$.

- Representation adjacency matrix with weights $W = (w_{ij})$.
- Let p be a shortest path from i to j with m' edges.
- ▶ If there is no negative-weight cycle in p, then $m' < \infty$.
- If i = j, then m' = 0 and $w_{ij} = \delta(i, j) = 0$.

- Representation adjacency matrix with weights $W = (w_{ij})$.
- ▶ Let *p* be a shortest path from *i* to *j* with *m*′ edges.
- ▶ If there is no negative-weight cycle in p, then $m' < \infty$.
- If i = j, then m' = 0 and $w_{ij} = \delta(i, j) = 0$.
- If $i \neq j$, then we decompose path p into:

$$i \stackrel{p'}{\leadsto} k
ightarrow j$$
 ,

where p' has m' - 1 edges.

- Representation adjacency matrix with weights $W = (w_{ij})$.
- ▶ Let *p* be a shortest path from *i* to *j* with *m*′ edges.
- ▶ If there is no negative-weight cycle in p, then $m' < \infty$.
- If i = j, then m' = 0 and $w_{ij} = \delta(i, j) = 0$.
- If $i \neq j$, then we decompose path p into:

$$i \stackrel{p'}{\leadsto} k \to j$$

where p' has m' - 1 edges.

• Observe that p' is a shortest path from i to k, so $\delta(i,j) = \delta(i,k) + w_{kj}$.

Matrix Multiplication - Recursive Solution

Let l^(m)_{ij} be a minimum weight of any path from i to j with at most m edges.

Matrix Multiplication - Recursive Solution

Let l^(m)_{ij} be a minimum weight of any path from i to j with at most m edges.

•
$$m = 0$$
, if and only if $i = j$. Thus, $l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

Matrix Multiplication – Recursive Solution

Let l^(m)_{ij} be a minimum weight of any path from i to j with at most m edges.

•
$$m = 0$$
, if and only if $i = j$. Thus, $l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

►
$$l_{ij}^{(m)} = \min(l_{ij}^{(m-1)}, \min_{1 \le k \le n} \{l_{ik}^{(m-1)} + w_{kj}\}) = \min_{1 \le k \le n} \{l_{ik}^{(m-1)} + w_{kj}\}.$$

Matrix Multiplication – Recursive Solution

Let I^(m)_{ij} be a minimum weight of any path from i to j with at most m edges.

•
$$m = 0$$
, if and only if $i = j$. Thus, $l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

►
$$l_{ij}^{(m)} = \min(l_{ij}^{(m-1)}, \min_{1 \le k \le n} \{l_{ik}^{(m-1)} + w_{kj}\}) = \min_{1 \le k \le n} \{l_{ik}^{(m-1)} + w_{kj}\}.$$

• Observe that a shortest path from i to j has at most n-1 edges, so

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \dots$$

(If there is no negative-weight cycle.)

(ロ)、(型)、(E)、(E)、(E)、(O)(O)

Matrix Multiplication – Computing

• Input matrix $W = (w_{ij})$.

Matrix Multiplication – Computing

• Input matrix $W = (w_{ij})$.

► We compute a series of matrices L⁽¹⁾, L⁽²⁾,...,L⁽ⁿ⁻¹⁾, where for m = 1, 2, ..., n - 1, L^(m) = (I^(m)_{ii}).
Matrix Multiplication – Computing

- Input matrix $W = (w_{ij})$.
- We compute a series of matrices L⁽¹⁾, L⁽²⁾,...,L⁽ⁿ⁻¹⁾, where for m = 1, 2, ..., n − 1, L^(m) = (l^(m)_{ii}).
- ► L⁽ⁿ⁻¹⁾ contains the actual shortest-path weights.

イロト イヨト イヨト イヨト ヨー のくの

Matrix Multiplication – Computing

- Input matrix $W = (w_{ij})$.
- We compute a series of matrices L⁽¹⁾, L⁽²⁾,...,L⁽ⁿ⁻¹⁾, where for m = 1, 2, ..., n − 1, L^(m) = (I^(m)_{ii}).
- ► L⁽ⁿ⁻¹⁾ contains the actual shortest-path weights.
- Observe that $l_{ij}^{(1)} = w_{ij}$; that is, $L^{(1)} = W$.

The Heart of All-Pairs Shortest Paths Algorithm

EXTEND-SHORTEST-PATHS(L, W)1 $n \leftarrow rows[L]$ 2 let $L' = (l'_{ij})$ be an $n \times n$ matrix 3 for $i \leftarrow 1$ to n4 do for $j \leftarrow 1$ to n5 do $l'_{ij} \leftarrow \infty$ 6 for $k \leftarrow 1$ to n7 do $l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj})$ 8 return L'

- ▶ *rows*[*L*] denotes the number of rows of *L*.
- Time complexity: $\Theta(n^3)$.

イロト 不得下 イヨト イヨト 二日

The relation to matrix multiplication (finally)

• Let $C = A \cdot B$, where A and B are $n \times n$ matrices.

The relation to matrix multiplication (finally)

- Let $C = A \cdot B$, where A and B are $n \times n$ matrices.
- ► Then,

$$c_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

The relation to matrix multiplication (finally)

• Let $C = A \cdot B$, where A and B are $n \times n$ matrices.

Then,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Compare to

$$l_{ij}^{(m)} = \min_{1 \le k \le n} \{ l_{ik}^{(m-1)} + w_{kj} \}$$

Find 3 differences (apart from algorithm/variable renaming)

```
EXTEND-SHORTEST-PATHS(L, W)

1 n \leftarrow rows[L]

2 let L' = (l'_{ij}) be an n \times n matrix

3 for i \leftarrow 1 to n

4 do for j \leftarrow 1 to n

5 do l'_{ij} \leftarrow \infty

6 for k \leftarrow 1 to n

7 do l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj})

8 return L'
```

```
MATRIX-MULTIPLY(A, B)
1 n \leftarrow rows[A]
   let C = (c_{ij}) be an n \times n matrix
2
   for i \leftarrow 1 to n
3
         do for i \leftarrow 1 to n
4
5
                   do c_{ii} \leftarrow 0
                        for k \leftarrow 1 to n
6
7
                             do c_{ii} \leftarrow c_{ii} + a_{ik} \cdot b_{ki}
8
    return C
```

イロト 不得下 イヨト イヨト 二日

Matrix Multiplication – Notation

• Letting $X \cdot Y$ denote the matrix computed by EXTEND-SHORTEST-PATHS(X, Y).

Matrix Multiplication – Notation

- ► Letting X · Y denote the matrix computed by EXTEND-SHORTEST-PATHS(X, Y).
- Then, we compute the following matrices

$$\begin{array}{rcl} L^{(1)} & = & L^{(0)} \cdot W & = & W \\ L^{(2)} & = & L^{(1)} \cdot W & = & W^2 \\ L^{(3)} & = & L^{(2)} \cdot W & = & W^3 \\ & & \vdots \\ L^{(n-1)} & = & L^{(n-2)} \cdot W & = & W^{n-1} \end{array}$$

where W^{n-1} contains the shortest path weights.

50 / 53

Slow Multiplicative Method

SLOW-ALL-SHORTEST-PATHS(W) 1 $n \leftarrow rows[W]$ 2 $L^{(1)} \leftarrow W$ 3 for $m \leftarrow 2$ to n - 14 do $L^{(m)} \leftarrow$ EXTEND-SHORTEST-PATHS($L^{(m-1)}, W$) 5 return $L^{(n-1)}$

• Time complexity: $\Theta(n^4)$.

• We are often interested only in matrix $L^{(n-1)}$.

- We are often interested only in matrix $L^{(n-1)}$.
- If there is no negative-weight cycle, then L^(m) = L⁽ⁿ⁻¹⁾ for all m ≥ n − 1.

- We are often interested only in matrix $L^{(n-1)}$.
- ▶ If there is no negative-weight cycle, then $L^{(m)} = L^{(n-1)}$ for all $m \ge n-1$.
- Multiplicative operation defined in EXTEND-SHORTEST-PATHS is associative.

- We are often interested only in matrix $L^{(n-1)}$.
- ▶ If there is no negative-weight cycle, then $L^{(m)} = L^{(n-1)}$ for all $m \ge n-1$.
- Multiplicative operation defined in EXTEND-SHORTEST-PATHS is associative.
- ▶ Therefore, we can decrease the number of products from n-1 to $\lceil \log n 1 \rceil$ and compute the sequence of matrices

Faster Multiplicative Method

FAST-ALL-SHORTEST-PATHS(W) 1 $n \leftarrow rows[W]$ 2 $L^{(1)} \leftarrow W$ 3 $m \leftarrow 1$ 4 while m < n - 15 do $L^{(2m)} \leftarrow$ EXTEND-SHORTEST-PATHS $(L^{(m)}, L^{(m)})$ 6 $m \leftarrow 2m$ 7 return $L^{(m)}$

• Time complexity: $\Theta(n^3 \log n)$.